9" International Institute of Forecasters’ Workshop

Sept. 28-29, 2012 at Federal Reserve Bank of San Francisco

Computing early-warning pattern-information in the dawn of crisis:
a captive monkey system and a banking system.

Hsieh Fushing
Oscar Jordan
Brianne Beisner
Brenda McCowan

Hsieh Fushing is in Dept. of Statistics at UC Davis, Oscar Jordan in
Economic Research of Federal Reserve Bank of San Francisco and Dept.
of Economics at UC Davis, Brianne Beisner in Dept. of Population Health
& Reproduction, School of Veterinary Medicine, and

Brenda McCowan in Dept. of Population Health & Reproduction,
Animal Behavior Laboratory for Welfare & Conservation,

School of Veterinary Medicine at UC Davis.

Address correspondence to Hsieh Fushing (fhsieh@ucdavis.edu) and
Oscar Jordan (Oscar.Jorda@sf.frb.org).




[Abstract:]

Consider a system in its stable phase that is well approximated by a
network that embraces a flow-based hierarchy built upon all its nodes,
called power structure. In this system, all nodes can use the flow-based
hierarchy to instantly access the same global collection of local
information, but each node has only heterogeneous and limited
computing capabilities to handle such a large amount of information. We
argue that, under diverse and large enough stresses, such a system
would be driven through a series of unstable phases, and commonly
ending in a sudden collapse of its power structure. The manifestation of
this collapse involves the loss of all long and cross-layers connectivity,
while only keeping short and discrete, unconnected branches because all
individuals now primarily focus on their illusive immediate survival. We
further point out that such a sudden whole-scale shut-down of
connectivity is by no means a collective phenomenon, and its seeming
synchrony is primary due to simultaneous response to the same
constraint of instant information availability.

To capture the coming of such a sudden structural change on a single
network can be rather difficult. However this power structure collapsing
phenomenon motivates us to couple such a network with another
behavioral network, and then perform joint modeling on the pair of
behavioral networks. We then extract early-warning pattern-information
from observed changes in inter-behavioral associations. The
fundamental concept used here is: when a system is undergoing its
power structure collapsing process, joint-modeling can effectively
capture the induced trend of inter-behavioral independence, which is
characterized by a loss of inter-behavioral subtlety in regulation and
coordination across all nodes in the dawn of a crisis.



[Section 1: Introduction].

Technological advances in phone and internet communications now
permit the constant and rapid transfer of information across the globe
on a sub-second basis. Thus, the availability of global information has
increased so dramatically in recent years that we now live in a drastically
different society than we did just 20 years ago. One of the most
significant aspects that differentiates our current generation from the
previous one is the instant availability of a global collection of local (GCL)
information, and this information is available to almost everyone. The
highly integrated and globalized nature of the banking system of today is
dependent upon, and structured around, this availability of GCL (as are
many other aspects of our society). Therefore, when we try to compute
the intrinsic structure of the banking system and develop potential
early-warning pattern-information in the dawn of a financial crisis, it is
unthinkable that this aspect would be overlooked. And yet that is exactly
what we see: in the literature on systemic risks to banking systems, the
availability of GCL is not addressed. Most likely this is due to a lack of
methodology of handling its implied global effects. In this paper we
discuss one such global effect, and then develop a direction for
computing early-warning pattern-information.

First, we need to look at the underlying setting of our banking system
and the way in which it is modeled. For instance, electric grid networks
[Amin and Schewe(2007)], banking ecosystems [Haldane and May (2010,
2011), May, et al (2008), May and Arinaminpathy (2010)], and flow
networks are among many modeling approaches developed after the
most recent financial crisis. The theme behind these modeling efforts is
to treat the banking network as a complex dynamic system. This
modeling approach has been promoted by the joint study on New
Direction for Understanding Systemic Risk (National Research Council of
National Academies 2007), and several conferences for this study were
cosponsored by the Federal Reserve Bank of New York and the National
Academy of Sciences.

All of these modeling approaches share one common structure: each
node takes in only information from local interactions and local
connections, and similarly delivers its reaction to only its local vicinity.
This is the primary way of shock propagation and risk contagion under



consideration in the entire literature. This state of research seems to
reflect the definition of “systemic risk” by the Bank for International
Settlement as” the risk that the failure of a participant to meet its
contractual obligations may in turn cause other participants to default
with a chain reaction leading to broader financial difficulties”.

However, in sharp contrast, this structural assumption sounds unrealistic,
or even contradictory to the real world setting where the banking system
is indeed subject to the aforementioned GCL information perspective.
Hence the potential implications possibly derived from the availability of
global collections of local information are left unmentioned. Intuitively
these potential consequences cannot only have greater impact, but can
also percolate at a much faster pace than effects brewed via a slow chain
reaction mechanism could possibly deliver.

Not only do current models ignore global collections of local information,
but also system dynamics. One implicit assumption of the ecological,
power-grid and flow-theory modeling approaches is that the network
remains constant and static during the course of shock propagation [Gai
and Kapadia (2010)]. This assumption almost completely ignores the
“mutuality” between a node and the banking system. Under the setting
of GCL, both large and small nodes directly and closely interact with the
system, producing mutually reinforcing feedback loops. These nonlinear
feedback loops can collectively change the network wiring construct very
quickly, and such changes can occur continuously over time. Thus this is
a potential underlying mechanism of the marked feature of diminishing
availability of interbank loans, known as “liquidity-hoarding” or “funding
liquidity shock”. From our point of view, this sort of shock should not be
used as the initial shock in studies of contagion of systemic risks, as in
Haldane and May (2011), because this shock itself is actually one
manifestation of systemic risk under study.

This feedback mechanism and the resultant changes in the network
wiring all point to one reality facing researchers studying systemic risk on
a banking system: current attempts at modeling the whole banking
system have been rather unrealistic for this age of information, at least
from the GCL information perspective. Further it might be beneficial to
recognize that the endeavors on finding the early-warning



pattern-information based on a model system could also be unrealistic, if
not dangerously misleading.

Recent research indicates that identification and detection of
early-warning pattern-information is still in its infancy, see Scheffer, et al.
(2009) for a review. The shared common focus is on detecting the
“tipping-points” in a closed dynamic system. It then becomes essential to
detect when a system is approaching the threshold of, but has not yet
transitioned into, another state, a phenomenon known as “critical
slowing”, in order to extract early-warning patterns. However, identifying
the phenomenon of “critical slowing” is also quite difficult within a
dynamic system given the fact that dynamic models used may not be
able to realistically represent the banking system. Instead, it may be
more beneficial to look beyond dynamic modeling for a different
approach to extract realistic early-warning pattern information in the
dawn of a banking crisis.

[Section 2: A banking system and a captive monkey system]
To illustrate the modeling-free approach, we first compare two systems
here: one banking system and one captive monkey system.

A banking system: as a banker watches the constantly running sovereign
and corporative bond'’s yield rates in the world-wide market on one
computer screen, and prices and indexes in world-wide stock market on
the other computer screen, and political and weather news channels on
the others. This is the GCL information shared by everyone in every bank
around the globe.

A banker constantly monitors changes from multiple sources of global
collections of local information, such as bond yield rates in the world
market, prices and indexes in the world stock market, political news, and
weather news. Such information is available to everyone in every bank
around the world. Suppose every individual banker is equipped with a
device for computing the current world-wide “capital flows” at any time
point by taking in GCL information. So its screen shows the flows going
into “safe-havens”, and contrastingly going out of financially hot spots. A
banker then tinkers or changes the bank’s portfolio according to this
computed information and implied one from GCL information. It is



important to note that, though the computing device could have
heterogeneous powers depending on the size of the bank, all similar
devices are made based on the same currently available banking theory,
such as arbitrage pricing theory (APT).

A captive monkey system: Like the banker, a monkey is constantly
watching the social interactions of its group members, such as who
grooms, helps, or harasses whom. Even very large groups of 200
monkeys, individuals can easily monitor the social interactions of others
and act accordingly in their own future interactions. This is also a global
collection of local information.

All of this GCL information is noted, remembered, and incorporated into
the monkey’s perception of the current situation in its social group.
Grooming behavior communicates whether kin relationships are still
strong, which pairs of monkeys are in a sexual consortship, or whether a
new coalition may form. Aggressive and submissive interactions suggest
whether the alpha male is still well respected by the group, whether the
stability of the hierarchy has changed, and if there might be
opportunities to rise in rank.

Many networks in a banking system:

When looking at the interior structure of a global banking system, we see
a collection of bank nodes, such as the World Bank, the International
bank settlement, central banks, mega international banks, and regional
banks. The network relationships among these bank nodes are defined
by various mutual and contractual relations, such as Inter-bank lending,
trading in Federal Funds Market, shared- holding on common assets and
various other financial products and banking behaviors. The key concept
here is that each type of inter-bank relationship constitutes one banking
network. Lending networks describe inter-bank lending relationships, for
example. Each banking network can be used to approximate a single
dynamic aspect of the banking system as a whole. That is, there are
versatile relationships being represented by versatile networks among all
banks. These versatile banking networks as a whole constitute the
multifaceted dynamics of this banking system from the behavior
perspective.



Many networks in a captive monkey system:

Monkey society is also a complex system consisting of many layers of
inter-behavioral relationships. Monkeys groom each other, fight with
each other, offer coalitionary support during some of these fights, and
exchange status signals that communicate social power and dominance.
Each type of behavior can be used to construct the network of a single
aspect of monkey society. A grooming network describes the grooming
relationships among group members, for example. So the four
corresponding behavior-specific networks together provide a very good
approximation of behavioral dynamics of the society as a whole.

System crisis:

A banking crisis could be best described by a sudden, unintended
system-wide loss of banking behaviors or inter-bank interactions.
Monkey societies may suffer from an analogous crisis, known as cage
wars or social collapse, in which serious fighting erupts because group
members no longer agree on the dominance hierarchy. Typically in these
societal collapses, lower-ranking monkeys attack and kill the highest
ranking family, which completely disrupts the dominance hierarchy.
These tragic events, though relatively infrequent, are extremely
financially costly and create many management problems, as the entire
group must be disbanded and relocated elsewhere.

Summarized corresponding characteristics between the banking and
monkey systems:

1) Node-wise: monkeys cannot emigrate from captive confinement,
while a bank is captured by its global banking network; that is a
bank typically would cease to exist outside of the banking
network.

2) Dyadic Behavioral relationships: both the banking and the captive
monkey system is defined by many behavioral networks of
interest;

3) Accessing GCL information: each monkey as well as bank can
access GCL information and then make individual decisions.

4) Crisis: A social collapse is to a group of captive monkeys as a
banking crisis is to a banking system.



To better see the structural similarity between these two systems, we
further suggest the following potential contrasting behaviors:

1) Grooming vs. Bank loans

2) Aggression vs. derivatives

3) Alliance vs. corporate bond

4) Status vs. interbank lending (overnight) (Federal fund trading)

After seeing the structural similarity between these two systems, in the
next section, we attempt to establish the common “tipping-point”
structure shared by these two dynamics as “the collapse of power
structure” under GCL information perspective. And then we propose that
the “key idea” for computing of the pattern-information of early-warning
signals for a social collapse, and suggest a similar fundamental idea for
computing early-warning signals for a bank crisis.

[Section 3: Collapse of power structure as the tipping-point in the dawn
of a crisis]

Each aforementioned behavior in the two systems commonly gives rise
to a weighted directed graph (or network). The distinct network “flow”
characteristic is our focus. A flow between two nodes is a path of
successive same direction links leading from one starting node to the
ending one. We show that this collection of flows collectively constitute
a computable pattern, called a “power structure”. This power structure
indeed functionally summarizes the behavior-specific aspect of system
dynamics. It should be noted here that some behaviors are more suitable
and informative than others to serve as the bases for constructing such a
power structure. The choice is a judgment call based on subject matter
knowledge.

The structural tipping-point may be identified, aka the “critical slowing”
phenomenon, by comparing two power structures derived from
networks observed at two different time points (1) when the system is
stable, and (2) when it is unstable (preferably right before the crisis
occurs). Using the GCL perspective, we argue that the tipping-point is
most likely to be a collapse in the power structure. Furthermore, the
phenomenon of critical slowing suggests that we should be able to
compute, or even observe, bi-network independence in which the
pattern of relationships in one network become independent of the



other behavioral networks. This statistical concept can be much more
easily quantified than the critical slowing for deriving the early-warning
pattern-information in the next section.

[Subsection: Monkey’s Power structure.]
In monkey societies, the four behaviors of grooming, aggression, alliance,
and status all play an integral part in the system dynamics as a whole.
However, our knowledge and understanding of monkey society tells us
that status interactions are the backbone of the society, the relationships
upon which the other behaviors are based. Thus, the status signaling
network is the fundamental basis for the power structure underlying
monkey society. Status interactions are governed by dominance — they
are signals given by a subordinate animal to a dominant animal. Most
important is the “silent-bared-teeth” (SBT) display, which is a peaceful
communication of subordination. Because the SBT is unidirectional
(always given by subordinate to dominant), primatologists often use the
SBT to determine rank orders.

Further the behavioral logic goes as follows. SBTs express true
dominance relationships. Once dominance is understood, dominance
governs aggression, grooming, and alliances. Aggression is mostly from
dominant to subordinate. Grooming is often from subordinate to
dominant, unless dominants initiate grooming to reconcile after a fight.
And alliances are most often made between kin, which rank near each
other. That’s how the status network is the base for all other behaviors.
For this reason, we choose status behavior to be the base for our power
structure construction.

A considerable amount of computation is required to reveal the power
structure of a monkey society, just as an overall hierarchy must be
carefully calculated from a collection of reliable dyadic rankings. We
discuss the computation below. However, we note that the resultant
pattern-information is crucial. Once a flow-based construct of power
structure has been determined, this structure immediately suggests a
concept of “flow topology”: the flow of information through this power
structure highlights topological features such as which nodes are linked
in hierarchical order and separate “streams” of flow are visible. This
concept indeed opens a new window for understanding a directed



network. Its application is especially evident when comparing a series of
two or more flow-topologies among the [more or less] same population
of nodes. Pairwise comparison easily reveals changes between these two
networks, and serial comparison allows further discovery of the changing
dynamics.

Below we briefly describe the key steps for building such a power
structure on a directed network using flow topology. A detailed
description of this method can be found in a separate report by Fujii, et
al. (2012, UCD manuscript). The key ingredient is to compute the
conductance between each pair of nodes, regardless of whether there is
an empirically observed link. Conductance, a term borrowed from
electrical circuitry, describes the strength or current flowing through a
potentially missing link. In an electrical network, conductance is the
effective current flowing from one point to another. In a behavioral
network, conductance is the strength or current that flows between any
two nodes, regardless of empirically observed interaction. Thus,
conductance is computed by accumulating the strength along all possible
same-direction pathways leading from one node to the target node. In a
directed network, conductance strength is imputed from indirect
pathways between nodes, and these computed values update the
conductance strength beyond the observed network. This concept says
that if power information is perceived to transmit through an edge as if
through an electrical circuit network, then the signal should transmit not
only via direct (empirically observed) edges, but also between any two
nodes indirectly.

Two approaches can be employed for computing the dyadic conductance:
A) Tricking-down percolation, i.e. via Markov random walk flowing

among node-media; B) Transitivity, i.e. via exhaustively computing all
flows of all orders.

[A. Trickling-down Percolation].

The underlying mechanism is information transitivity that was proposed
in Fushing et al. [2011a & b]. This percolation tends to go through the
node-media following a downward direction. From this directional
aspect, this percolation is rather unique and quite distinct from
unidirectional percolation on a network.



Let the empirical (status) relational data matrix C = [cij] and

the Beta random field {Beta(ac;+b, ac;+b)} built onto it are the
foundation of this percolation. The algorithm of this trickling down
percolation is given as following steps:

[P-0:] Consider a potential dominance action initiated by the i-th
subject toward a randomly selected immediate neighbor, say j-th

subject, thatis, ¢;; > 0. The probability of this action being

successful is s;; which is random simulated strengths from
Beta(acij+b, aCji'l‘b).

[P-1:] Generate a Bernoulli random variable B(1, s;;) with

probability g(®(i,j) for the outcome “success (=1)". If it turns

out to be a “failure (=0)”, this trickling down process stops.

[P-2:] Repeat the [P-0:]- [P-1:] cycle until it stops. Then record the
trickling down path in a progressive fashion into a matrix format
as:

1) Let the trickling-down path be < i —(iy, .....Ix)—ix4+1 > with
i =iy and only the ending action from i, to i,,; beinga
failure;

2) The percolation matrix is denoted by E,,,=[e ], initially been
set to zeros for all its entries, and then the entries on i-th row
and {iy, .....[} columns are added by 1; the entries on i;-th
row and {i,, .....[; } are added by 1. Proceed this similar
recording until the entry (i;_1, i) being added by 1.

3) we record the path-ending action by adding 1 to the entry
(ix+1, ix), since it is failure.

[P-3:] We repeat M times on the step [P-2] to construct an
ensemble of trickling down paths and record them into the
ensemble Ey=YM_, E,..

[P-4:] We convert ensemble matrix E); into an action
Epmij

transmission matrix Ay = [a;;] with a;; = —————.
J U = B 4Ev
M,ij M,ji



e [P-5:] Finally we perform the rescaling
step:DAy = dig(...., X j=1¢ij...)[a;;] asthe final conductance

matrix.

The percolation moves through the node-media via a random walk. First,
the direction of the random walk is determined by randomly selecting a
starting node, and next an immediate neighbor with whom to interact.
Next, the length of the random walk is determined by drawing from a
distribution of randomly simulated strengths (from a Beta random field),
the probability of this particular interaction occurring. The random walk
proceeds to this next node if the strength of the link between them is
sufficiently high. These steps are repeated until the strength drawn
indicates no interaction (fail), and the exact path is recorded. Importantly,
the previously calculated conductance guides the random walk, making
random walks more likely to occur via pathways with higher conductance
strength.

The tricking-down percolation implicitly takes the series of strengths
along the flow pathway into computations. The drawback is that it more
often goes through “popular” and relative short paths. That is, it suffers
the limitation of not finding the long and “unpopular” paths. The next
approach, called transitivity, takes all paths of equal length equally. The
advantage is the computing efficiency for all possible paths, but the
disadvantage is ignoring the fact that some paths are more popular and
should be given more weighting than others.

[B: Transitivity]

e [T-1]. For each dyad, we compute the numbers of flow paths of all
different lengths.

e [T-2]. Every flow pathway contains some information about “dyadic
dominance”, and the longer pathway is, the less dominance is
worthy. A logistic regression is performed to evaluate the net
averaged dominance of each order of flow paths.

e [T-3]. The conductance is imputed by combining the predicted
dominance plus the observed one.

After computing all conductance (from all flow pathways) for all possible
pairs, a hierarchy flow-chart is computed which represents the power
structure for the flow topology on the system, see Fuijii, et al. (2012, UCD



manuscript) for all details. Below we illustrate this by showing flow

topologies via conductance for SBT networks from one monkey group at
a stable time point (in 2009) and at an unstable time point (in 2011) four

months before a cage war.

Figure 1. SBT and its power structure: (a) 2009; (b) 2011’
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[Subsection: Power structure comparison and its implications]
By comparing these two power structures, we see clearly, but not

surprising, the following:

1) 2009 power structure seems to describe a steady Power structure
among this group of monkeys during the peaceful period of time;

2) While the 2011 flow-topology strongly indicates the previous

power structure has almost completely collapsed even before the

cage war.

Here we make our first main conjecture of this paper:

The collapse of the power structure is chiefly due to availability of GCL
information, and conversely the collapse of the power structure is the

only form emerging from a crisis under GCL information perspective

setting.

Our argument for this conjecture is given as follows. With available GCL

information, a monkey ‘computes’ its perception of current societal

dynamics. This is the monkey’s perception of his/her position within the

society as well as his/her perception of the state of the society as a




whole (e.g. opportunities to rise in rank due to disintegration of others’
alliances or dominance rank). This very subject-specific summarized
dynamics can be very different from monkey to monkey depending on its
brain size, or computing capability, personality (bold individuals may see
impending collapse as an opportunity to increase rank, while
fearful/gentle individuals may see the same situation as something to
avoid), and its current position in the power structure (this influences
which opportunities are noticed and which go unnoticed). Hence
subject-specific computations of the current dynamics consist of many
pieces of global and local understanding with varying degrees of
correctness.

When there is a merging negative trend within the monkey society, as a
merging constraint placed on all computations, every monkey would
need to “simultaneously” modify its behaviors according their own
computed subject-specific dynamics, which are indeed converging. The
relationships going through several layers in the hierarchy of the power
structure are especially prone to being terminated because more
monkeys are involved, meaning having more uncertainty. For instance, a
power structure contains a serial dominance (>), say A>B>C. If monkey C
observes that monkey B stops showing SBT-status to A, then monkey C
might run into danger of conflicting with monkey B if it indeed shows SBT
to monkey A. Very importantly this kind of adapting is whole-scale under
GCL setting. Hence this synchrony of acting is more of reflex to GCL
information than being collectively adapting to nearest neighbors’
actions.

Though this is heavily based on Gibson’s (1979) idea that organisms
regulate their behaviors with respect to the “affordance” of the
environment (see also Barrett, et al. (2012, Phil. Trans. Royal Society B.),
our emphasis here is on the aspect of synchrony.

In the face of the accumulating inertia of this negative trend, the offering
from environment is depleting. Individuals synchronously behave to
ensure their own stability. Hence the more subtle relationships among
group members are severed almost simultaneously as each individual
monkey responds to its perception of the current situation, and these
subtle, indirect relationships are the ones that constituted the power
structure. That is, there emerges an on-going whole-scale feedback loop



between individual decisions to change their behavior based upon the
perceived environment, which augments the perception that the social
environment is in upheaval, which causes more monkeys to change their
behavior. This feedback loop continues until the negative inertia erupts
into deleterious aggression and a cage war. Consequently a crisis occurs
on top of the collapse of the power structure.

[Subsection: Potential implications on Federal Fund or interbank
Market.]

The concept of this power structure collapse can have far reaching
implications for studies of systemic risk. The power structure collapse in
the monkey society in 2011 preceded a cage war later that year, so we
can confidently postulate that the process leading to the cage war (the
crisis) involved a structural phase shift. Although the society might
recover from a given power structure collapse before a crisis ensues, the
discovery of a series of phase-shifts in the same direction (i.e. toward
loss of power structure) would indicate increasing degrees of urgency
that a global crisis is at hand. This dynamic perspective could have
similar bearing in most systemic risk research.

As the key means of distributing liquidity throughout the financial system,
Federal Fund Market in US and Interbank markets in many advanced
economic countries are important components in global banking system.
The overnight lending between two banks is not typically insured. Hence
it is subject to risk upon the potential of default of the borrowing bank,
and the risk is reflected through the interest rate.

A power structure of such a market is would be very informative
flow-topology for prescribing the state of the whole banking system at
any temporal time point. Further, over a long enough time span, its
topological dynamics could be very relevant to systemic risk evaluation
on the scale of economic region as well as on the scale of global banking
system.

Several social network studies of bank markets show that research is
moving in the right direction. The “social network” topology of Austrian
Interbank market was constructed in Boss et. al (2004) and of Federal
Fund market in Bech and Atalay (2008). However, social network analysis



does not include power structure, but only averaged summarizing
statistics. These statistics miss the essence of flow dynamics contained in
the data networks. On the other hand, if flow-topology can be
constructed across long periods of time, then we are likely to be able to
detect potential footprints or critical phases in regarding to systemic risks
in dynamics of the global banking system.

[Section: Maximum entropy based joint modeling approach]

In a stable monkey society, primatologists have discovered that social
dynamics are governed by a set of general rules or constraints. For
example, females form close alliances with kin to defend their resources
and their family rank against other families in the group. This means that
aggression, status, and alliance interactions have interdependencies.
Dyads that form alliances tend not to fight much (and these are likely to
be kin). Aggression and status both follow dominance relationships and
are primarily unidirectional. We holistically term the overall
interrelationships as behavioral subtlety.

On the other hand, when the monkey society is approaching its crisis,
the tipping-point embraced by the group dynamics is in the form of
power structure collapse. During the unstable stage, the processing of
collapsing power structure should be revealed through gradually losing
the behavioral subtlety in the monkey dynamics, that is, all aspects of
behavioral interdependences are getting lighter and thinner, until we see
that two behavioral networks are nearly independent of each other. For
example, if dominance no longer governs aggressive and status
interactions, then the inter-dependence between these networks will be
gradually lost, and become increasingly independent.

Though interdependences between two or multiple behaviors are not
directly observable, in this paper we show how to evaluate such dynamic
features by coupling multiple network data. It is noted that, since one
monkey can interact with only one behavior to another monkey at a time
point, there is no data of multivariate format. So the classical Pearson
correlation and its variants are not applicable here. The data format is in
the behavior specific networks constructed across a temporal span. Thus
a new methodology is needed to evaluate interdependences among
different networks. We have developed one evaluating technique based



on the maximum entropy principle taken from statistical mechanics
[Chan, et al, 2012]. This technique should be capable of providing
essential information for early-warning pattern-information.

Our technique provides a new way of alleviating the well-known
difficulty in capturing such a critical slowing leading to a sudden phase
change in the dynamics among many hundreds or thousands of nodes.
Together, the behavioral subtlety concept and the joint modeling
technique have great potential for dynamic analysis in general. The
concept of behavioral interdependence provides a framework by which
to both characterize and evaluate the structural features of
tipping-points and critical slowing phases. Therefore, given the dynamic
similarity between the monkey and banking systems under the GCL
setting, we believe our approach proposed here should be valuable for
evaluating early-warning pattern-information in banking system.

The maximum entropy based joint modeling approach is briefly
described below with derivations given in the Appendix (for full detail of
about this methodology, see Chan, et al. (2012)).

As the monkey’s SBT status behavior is chosen to derive the power
structure, it is natural to focus on coupling the status network with
grooming, aggression, and alliance networks. Here we discuss only
pairwise coupling for simplicity. Our analytical technique is termed ‘joint
modeling’ and it is based upon the maximum entropy principle. In the
case of the banking system, though we have no suitable data sets for
similar analysis that can be presented here, we suggest coupling the
network of Federal fund or interbank markets with other banking
behavioral networks, as mentioned in the previous section, for similar
joint modeling analysis.

To simplify our illustration, the basic idea of jointly modeling for only two
binary (un-weighted) networks, corresponding to two types of social
behaviors, will be described in detail here. Our specific goal is modeling
the probabilistic distribution of a link in one network being associated a
link in the other network. By association, we mean that each directed
link is encoded by a binary code: either 00, 01 or 11. Here the
2-dimensional binary code represents the link presence in both
directions of the relationship between two nodes. Therefore, the link



pair between every pair of nodes in a two-behavior network is encoded
by a 4-dimensional binary code. For example, let the two behaviors be
grooming and (SBT) status. A monkey dyad with mutual grooming, but
no status can be represented by the 4-dimensional code vector
(1,1,0,0) (see nodes 2, 3 in Figure 1). A pair of monkeys with opposite
directional grooming and status represented by a linkage vector
(1,0,0,1) (see nodes 3,4 in Figure 1). Thus, there are 16 possible
4-dimensional linkage vectors, although there are only 10
biologically-distinct vectors. The empirical distribution of these 10
categories of linkage vectors represents the empirical association
information between these two behaviors of interest.

Figure 2.
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Our maximum entropy based joint modeling is equipped with an
iterative procedure to construct a distribution from a known candidate
distribution by adding a new structural component at a time when
approaching the good fitness of the empirical distribution. Each of the
structural components, also called (inter-relational) constraint, can be



taken as one learned knowledge that scientists need in order to recreate
a realistic parametric probability fit. The set of components explicitly
reveals all key association information embedded within the empirical
distribution. The iterative steps are heuristically described as follows.

We begin with the distribution, assuming independence between the
two behaviors of interest (i.e. no association among the links). First, the
four empirical marginal distributions of the vector codes are calculated
and then the expected probabilities (or counts) of the 10 linkage vector
categories are computed by assuming that each of the links of the two
networks are independent. By comparing the empirical distribution with
the expected one (assuming independence), any significant discrepancy
in any category indicates a missing piece of information regarding the
association between the two behaviors in the null model. It should be
noted, however, that this is also subject to randomness of finite
sampling.

Next, to correct any significant discrepancies we need to choose a
constraint function that captures the missing association, and
incorporate such a chosen constraint function into the revised version of
probability distribution. The latter incorporation is the work of the
maximum entropy principle, which chooses the maximum entropy
distribution among all distributions fitting the constraints with empirical
values calculated from the data. The advantage of using maximum
entropy is that no extra or artificial assumptions are taken into the
modeling. We now compare this new computed maximum entropy
distribution with the empirical distribution; ideally the new distribution
would include the right amount of association and improved in fitting
the data.

We repeat this cycle of choosing a proper constraint function to describe
the discrepancy and then updating the probability distribution until the
discrepancy between the overall expected and empirical counts of the 10
categories is below a critical Chi-squared percentile. We discuss our
analysis results and corresponding implications in the next section.



[Section: Analysis results and conclusions]

The iterative results of joint model on status and grooming networks are
reported in Table 1 and 2 on 2009 and 2011, respectively. The four
constraints shown successively improve the modeling. So they can be
seen as four extracted features between these two behavioral networks.

The important evidence revealed by these four features by comparing
the two tables is that all four features are needed to barely improve our
fitting to an acceptable level with respect to the Chi-square values on the
2009 joint model, but only the f; would be enough on the 2011 joint
model. This clearly means that these two behaviors are complexly
inter-related with each other in 2009, while this subtle complexity
disappeared in 2011. Grooming and status are statistically independent
in 2011, which is highly unlikely, given the dynamics of the monkey
system in stable state.

If the independence phase has been gradually building for some time
since 2009, then this phase can be easily detected long before the crisis
event. Similar conclusions can be made by comparing the joint modeling
for status and alliance in Table 3 and 4, respectively.



Table 1. Maximum entropy calculations for joint modeling of Grooming
and Status networks in 2009

grooming Total indep fl f2 3 f4
status
1000 98 153.92 143.27 140.30 140.12 130.84
(20.32) (14.31) (12.75) (12.66) (8.24)
1100 32 5.01 38.86 38.05 38.01 35.49
(145.29) (1.21) (0.96) (0.95) (0.34)
0010 412 400.34 399.28 462.35 461.77 444.71
(0.34) (0.41) (5.48) (5.36) (2.41)
0011 0 33.91 33.82 5.41 5.41 5.21
(33.91) (33.82) (5.41) (5.41) (5.21)
1010 15 13.04 12.14 14.05 8.41 13.81
(0.30) (0.68) (0.06) (5.16) (0.10)
1001 30 13.04 12.14 14.05 23.41 38.43
(22.07) (26.30) (18.10) (1.85) (1.85)
1110 6 0.42 3.29 3.81 3.81 6.25
(73.21) (2.23) (1.26) (1.26) (0.01)
1011 0 1.10 1.03 0.16 0.16 0.27
(1.10) (1.03) (0.16) (0.16) (0.27)
1111 0 0.04 0.28 0.04 0.04 0.07
(0.04) (0.28) (0.04) (0.04) (0.07)
0000 4775 4726.30 4713.75 4616.01 4610.16 4619.64
(0.50) (0.80) (5.48) (5.89) (5.22)
total x? 297.0714 81.04574 49.71641 38.7586 23.72612




Table 2 Maximum entropy calculations for joint modeling of Grooming
and Status networks in 2011

grooming Total indep fl f2 3 f4
status
1000 116 149.39 140.81 140.58 140.42 137.22
(7.46) (4.37) (4.30) (4.25) (3.28)
1100 28 4.24 30.22 30.17 30.14 29.45
(133.05) (0.16) (0.16) (0.15) (0.07)
0010 238 240.52 240.11 247.09 246.81 242.46
(0.03) (0.02) (0.33) (0.31) (0.08)
0011 6 11.00 10.98 5.82 5.82 5.71
(2.27) (2.26) (0.01) (0.01) (0.01)
1010 5 6.83 6.44 6.62 3.29 4.37
(0.49) (0.32) (0.40) (0.88) (0.09)
1001 15 6.83 6.44 6.62 13.29 17.65
(9.77) (11.39) (10.59) (0.22) (0.40)
1110 2 0.19 1.38 1.42 1.42 1.89
(16.82) (0.28) (0.23) (0.24) (0.01)
1011 0 0.31 0.29 0.16 0.16 0.21
(0.31) (0.29) (0.16) (0.16) (0.22)
1111 0 0.01 0.06 0.03 0.03 0.04
(0.01) (0.06) (0.03) (0.03) (0.04)
0000 5298 5260.61 5251.78 5242.99 5237.21 5241.20
(0.27) (0.41) (0.58) (0.71) (0.62)
total x? 170.4748 19.56063 16.78067 6.9537 4.810583




Table 3 Maximum entropy calculations for joint modeling of alliance and
status networks in 2009

alliance Total indep fl f2 3 f4
status
1000 87 129.10 121.58 119.06 118.93 112.50
(13.73) (9.84) (8.63) (8.57) (5.78)
1100 26 3.49 28.10 27.51 27.48 26.00
(145.27) (0.16) (0.08) (0.08) (0.00)
0010 423 404.68 403.87 467.66 467.14 455.09
(0.83) (0.91) (4.27) (4.17) (2.26)
0011 0 34.28 34.21 5.48 5.47 5.33
(34.28) (34.21) (5.48) (5.47) (5.33)
1010 25 10.94 10.30 11.93 20.07 30.57
(18.09) (20.99) (14.33) (1.21) (1.01)
1001 12 10.94 10.30 11.93 7.07 10.77
(0.10) (0.28) (0.00) (3.44) (0.14)
1110 3 0.30 2.38 2.76 2.75 4.19
(24.75) (0.16) (0.02) (0.02) (0.34)
1011 0 0.93 0.87 0.14 0.14 0.21
(0.93) (0.87) (0.14) (0.14) (0.21)
1111 0 0.03 0.20 0.03 0.03 0.05
(0.03) (0.20) (0.03) (0.03) (0.05)
0000 4803 4777.47 4767.90 4669.04 4663.82 4670.97
(0.14) (0.26) (3.84) (4.15) (3.73)
total x? 238.1352 67.86995 36.82985 27.28788 18.85823




Table 4. Maximum entropy calculations for joint modeling of Alliance and
Status networks in 2011

alliance total indep fl f2 3 f4
status
1000 127 157.15 148.50 148.25 147.97 146.89
(5.79) (3.11) (3.05) (2.97) (2.69)
1100 28 4.71 28.30 28.26 28.20 28.00
(115.20) (0.00) (0.00) (0.00) (0.00)
0010 239 239.78 239.50 246.45 245.98 244.60
(0.00) (0.00) (0.23) (0.20) (0.13)
0011 6 10.96 10.95 5.81 5.80 5.76
(2.25) (2.24) (0.01) (0.01) (0.01)
1010 17 7.19 6.79 6.99 16.88 18.38
(13.41) (15.36) (14.35) (0.00) (0.10)
1001 3 7.19 6.79 6.99 2.88 3.14
(2.44) (2.11) (2.27) (0.00) (0.01)
1110 1 0.22 1.29 1.33 1.33 1.45
(2.86) (0.07) (0.08) (0.08) (0.14)
1011 0 0.33 0.31 0.16 0.16 0.18
(0.33) (0.31) (0.16) (0.16) (0.18)
1111 0 0.01 0.06 0.03 0.03 0.03
(0.01) (0.06) (0.03) (0.03) (0.03)
0000 5276 5244.62 5238.33 5229.56 5219.56 5220.95
(0.19) (0.27) (0.41) (0.61) (0.58)
total 2 142.4655 23.5324 20.59748 4.070777 3.872492

Table 5 reveals that the 2009 inter-relationship between status and
aggression behaviors is rather complicated. The Chi-square values are
reduced step-by-step, though they never reach the critical level. In other
words, these four constraint functions are not the correct features for

the 2009 network data. But these constraints suitable for the same

inter-relationship in 2011. Hence this comparison of joint modeling
between 2009 and 2011 on status and aggression behaviors indeed




again provides us the same characteristic evidence: inter-behavioral
relationships are much more complex and subtle in 2009, while the
subtlety is lost by 2011. Along this line of argument, we are confident to
detect early-warning pattern-information in the captive monkey dynamic
system. We are also confident that similar computations would
potentially lead to computing for early-warning pattern-information in
banking system.

Table 5. Maximum entropy calculations for joint modeling of Aggression
and Status networks in 2009

aggression | total indep fl f2 f3 f4
status
1000 332 488.56 433.97 424.97 412.90 384.25
(50.17) (23.96) (20.34) (15.85) (7.10)
1100 114 59.64 146.38 143.35 139.27 129.61
(49.56) (7.16) (6.01) (4.59) (1.88)
0010 289 339.03 340.93 394.78 383.56 356.15
(7.38) (7.91) (28.34) (23.31) (12.66)
0011 0 28.72 28.88 4.62 4.49 4.17
(28.72) (28.88) (4.62) (4.49) (4.17)
1010 147 41.38 36.76 42.57 155.97 193.60
(269.55) (330.60) (256.22) (0.52) (11.22)
1001 2 41.38 36.76 42.57 10.97 13.61
(37.48) (32.87) (38.66) (7.33) (9.91)
1110 25 5.05 12.40 14.36 13.95 17.32
(78.78) (12.81) (7.89) (8.75) (3.41)
1011 0 3.51 3.1 0.50 0.48 0.60
(3.51) (3.11) (0.50) (0.48) (0.60)
1111 0 0.43 1.05 0.17 0.16 0.20
(0.43) (1.05) (0.17) (0.16) (0.20)
0000 4225 4002.40 4024.83 3941.38 3829.40 3863.96
(12.38) (9.96) (20.41) (40.87) (33.73)
total x? 537.9403 458.3071 383.1573 106.3561 84.88729




Table 6. Maximum entropy calculations for joint modeling of Aggression
and Status networks in 2011

aggression | total indep fl f2 3 f4
status
1000 372 456.74 426.28 425.56 419.23 404.69
(15.72) (6.91) (6.74) (5.32) (2.64)
1100 80 45.30 88.20 88.06 86.75 83.74
(26.57) (0.76) (0.74) (0.52) (0.17)
0010 172 210.53 211.36 217.50 214.26 205.01
(7.05) (7.33) (9.52) (8.34) (5.32)
0011 2 9.63 9.66 5.13 5.05 4.83
(6.04) (6.08) (1.91) (1.84) (1.66)
1010 78 20.88 19.49 20.06 79.89 95.58
(156.23) (175.66) (167.41) (0.04) (3.23)
1001 3 20.88 19.49 20.06 4.89 5.85
(15.31) (13.95) (14.50) (0.73) (1.39)
1110 7 2.07 4.03 4.15 4.09 4.89
(11.73) (2.18) (1.96) (2.07) (0.91)
1011 2 0.95 0.89 0.47 0.47 0.56
(1.14) (1.38) (4.94) (5.06) (3.74)
1111 0 0.09 0.18 0.10 0.10 0.12
(0.09) (0.18) (0.10) (0.10) (0.12)
0000 4734 4604.85 4622.87 4615.13 4546.47 4562.17
(3.62) (2.67) (3.06) (7.74) (6.47)
total 2 243.5242 217.1091 210.8734 31.75803 25.63412

[Discussion]
An important question about the dynamics of a banking system is: what
does the tipping-point look like? Many suggestions have been proposed.
Here we cite one description of the tipping point from Prof. G. Sugihara’s

article in 2012 Seed Magazine:

“...Indeed, with regard to risk management through diversification, it is
ironic that diversification become so extreme that diversification was lost:




everyone owning part of everything creates complete homogeneity. ....".

And then comes the common saying: “homogeneity breeds disaster”. So
if complete portfolio homogeneity is taken as a tipping-point in banking
dynamics, then we might need to measure and monitor the trajectory of
the degree of homogeneity via either asset or liability sides of the
portfolio of all involved banks in order to detect the presence of its
critical slowing phase. From our perspective, portfolio homogeneity may
not be the true underlying mechanism which leads to a crisis, but rather
the collapse of the power structure.

Another natural question is what role does an individual node play in the
banking system? How does an individual bank’s behavior fit in with our
understanding of the system? We suggest that any answer that does not
incorporate GCL information (which is not a node-centric perspective) is
not a mechanistic answer.

Hence we like to conclude that a banking system is more like a captive
monkey system and less like an electric power grid system being studied
by electrical engineers, or an ecological system by biologists. Both
electrical power grids and ecological systems assume constant network
structure, and this is unrealistic for a banking system which we know is
quite dynamic. Although such constant-structure models could be
relevant to a financial trouble in a small scale, they are certainly not
equipped to handle the global one.

Further we should ask: are our proposed properties realistic enough to
be transformed into realistic understanding toward such a complex
banking system? Here we do not pretend to know the answer to this
question. However we do believe that, as far as approaching a crisis is
concerned, the two systems considered here share similar important
ingredients in dynamics: the ability to access the global collection of local
(GCL) information among all nodes, big or small, and the power structure
collapse as their tipping-point. Hence we confidently suggest our
early-warning pattern-information to researchers with interest in
banking system.
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[Appendix (Chan, et al, 2012): Derivation of Maximum Entropy
Procedure]

To simplify notation, we let x be (x12,x32,x32,x12), the four
dimensional vector. We maximize the relative entropy for p,, by

maximizing
Pm (X)
Z Prm (%) log (I@o(x))

summed over all probabilities where p, is the null probability
distribution and p,, probability distribution with maximum entropy
subject to the constraints of the data, and the constraint These
constraints are

d(x)

Ni2

E (0] =ZAX)

where the expectation is determined by

Ez[ﬁ )] =2xp1(0)fi(x)

We thus have two constraints:
> PWA® = BIA®]
X

and the sum all probabilities is 1:

Z pi1(x) =1

Therefore we can maximize the entropy using the Lagrange operation



L(py, Ay, ) = 2 p1(x) log <p1(x)>

Po(x)

s (Z PA® - Bilfi (x)]) —u (Z pa®) - 1)

We take the derivative of the Lagrange operation to get

<IID1 (x)
Po(x)

0
— L(p1, A1, 1) = log >+1_7\1f1(x)_#=0

P

By solving this equation for p,, we get

P1 (%) = po(x)exp(—2Ay f1(x))exp(—u + 1)

Let Z(A,) = Xy ]p)o(x)exp(—/llfl(x)), which is called the partition

function. Applying the constraint that all probabilities must sum to 1,
we determine that

exp(—u+1) = 70

Then applying the first constraint, we get

1 —_—
ZZ(,M) HDO(x)eXp(_/llﬁ(x))ﬁ(x) = Ei[fi(2)]

which is equivalent to
d —_
JlogZ(/ll) = E1[fi(®)]
1
In order to find

p1(x1?,x32,x32,x1?) = p1(x) = ﬁpo(x)exp(—/hfl(x)) we solve

for A; by the previous equation. This process can be repeated
iteratively for each f;, andpy.



