"A Theory of Macroprudential Policies in the Presence of Nominal Rigidities" by Farhi and Werning

Discussion by Anton Korinek

Johns Hopkins University

SF Fed Conference

March 2014

Summary

Quick Summary:

- when output is demand-determined, the distribution of wealth across agents matters
- we can reduce unemployment by reallocating wealth towards
 - agents with high marginal propensity to consume
 - agents who spend disproportionately on unemployed factors (and conversely for overheating)
- these reallocations can be done ex-ante (macro-prudential) or ex-post (redistribution with macro stabilization benefits)

Contribution

- culmination of several years of work of Emmanuel and Iván on inefficient financial allocations in New Keynesian-style models
- overturn old (and out-dated) consensus that "macro stabilization is the job of monetary policy"
- identify a general role for financial market intervention in (New) Keynesian models
- provide generic inefficiency results for Keynesian models (akin to Geanakoplos-Polemarchakis, Greenwald-Stiglitz, 1986)
- → very ambitious
 - it does so successfully

Contribution

- culmination of several years of work of Emmanuel and Iván on inefficient financial allocations in New Keynesian-style models
- overturn old (and out-dated) consensus that "macro stabilization is the job of monetary policy"
- identify a general role for financial market intervention in (New) Keynesian models
- provide generic inefficiency results for Keynesian models (akin to Geanakoplos-Polemarchakis, Greenwald-Stiglitz, 1986)
- → very ambitious
 - it does so successfully

Contribution

How surprised should we be about the results?

- General idea:
 - reallocating wealth between agents with different propensity to spend (plus further details) will affect demand
 - → intuition well known from traditional Keynesian model
- Contribution: embed mechanism into rigorous Keynesian framework
 - clarifies our thinking (e.g. results hold under complete markets)
 - micro-foundations allow for careful welfare analysis
 - clear guide for quantifying policy intervention (reflected in optimal tax formula)
 - → large benefits to modern treatment of Keynesian ideas

Policy Relevance

Old World View:

- monetary policy is responsible for AD management
- (micro-)prudential banking regulation is responsible for financial stability
- → world view shattered by financial crisis

Macroprudential Policy Beyond Banking Regulation

New (Emerging) World View:

- monetary policy alone cannot do the job of AD management
- macro-prudential regulation is useful to complement it
 - because of limits to monetary policy (AD externalities)
 - because of financial market imperfections (financial externalities)
 - \rightarrow macropru is most important when the two imperfections combine
- → macro-prudential policy needs to go beyond banking regulation
- → implications for perimeter of regulation (shadow banking etc.)
- → Jeanne and Korinek (2014), "Macroprudential Policy Beyond Banking Regulation"

Structure of Paper

Theory Part: Generic Inefficiency à la Geanakoplos-Polemarchakis

Applications: very relevant, but much more applied:

- Deleveraging in a liquidity trap
- Capital controls under fixed exchange rates
- Capital controls in the face of liquidity traps
- Fiscal transfers in a monetary union
- ...

Cohesiveness of the paper:

- how well do the general model and the applications fit together? (theory very general, applications very stark)
- → desirable to provide a simpler in-between example

Necessary Ingredients

What are the necessary ingredients for the inefficiency to matter? (Or: what are the necessary ingredients for a planner to improve equilibrium?)

- output is demand-determined in paper: stark restrictions on monetary policy:
 - ZLB on interest rates
 - fixed exchange rate and interest parity
- agents need to have significantly different MPCs in paper:
 - either agents in different countries
 - or differential financial constraints

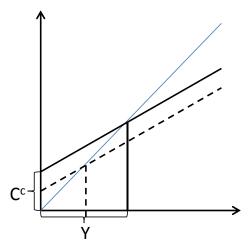
A Simple Keynesian Example

Two types of agents:

- Capitalists:
 - obtain fraction α of output Y_t
 - ▶ infinitely-lived \rightarrow MPC = $(1 \beta) << 1$
- Workers:
 - ▶ obtain fraction (1α) of output Y_t
 - hand-to-mouth → MPC = 1

Output demand-determined (with usual micro-foundations):

$$Y_t = C_t^c + C_t^w = C_t^c + (1 - \alpha)Y_t = \frac{C_t^c}{\alpha}$$


Demand of capitalists C_t^c determined by real interest rate R_{t+1} :

$$u'(C_t^c) = \beta R_{t+1} E\left[u'(C_{t+1}^c)\right]$$

Illustration of Example: Keynesian Cross

$$Y_t = C_t^c + (1 - \alpha)Y_t$$

Simple Example: Introduce Demand Shocks

- Assume a shock Δ_t to period t demand (possible micro-foundations: wealth redistribution, future uncertainty, etc.)
- In ideal case, central bank adjusts R_{t+1} to restore demand by Δ_t
- If R_{t+1} cannot adjust, then Keynesian multiplier is triggered
 - ightarrow demand-determined equilibrium
 - \rightarrow over-/underproduction
- BUT: wealth redistribution by $\approx \Delta_t$ restores efficient output
 - ex-post: via fiscal transfers, automatic stabilizers, etc.
 - ex-ante: via "macroprudential" policy:
 - **★** make workers buy $\approx \Delta_t$ insurance from capitalists
 - ★ this is MORE insurance than privately optimal for workers
- note: opposite results for supply shocks

Contrasting Fire-Sale and AD Externalities

Macroprudential regulation justified by both fire-sale externalities and AD externalities:

- Models of fire-sale externalities (Lorenzoni, 2008; Jeanne-Korinek, 2010, ...)
 - welfare cost = being financially constrained
 - no direct effect on output
- Models of AD externalities (Farhi-Werning, Schmitt-Grohe-Uribe, 2012, Korinek-Simsek):
 - welfare cost = output gap
 - no direct impact on financial constraints

Both very relevant, with different timing (first more of 1, then more of 2)

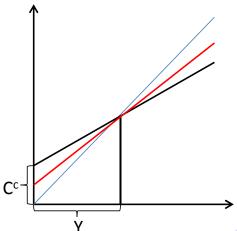
Combining AD and Fire-Sale Externalities

Extension of our Keynesian Example to Fire Sales:

- introduce asset, with price $P_t(C_t^w)$ increasing in worker consumption
- ullet worker consumption C_t^w is increasing in asset price $P_t \simeq C_t^w$

$$C_t^{\mathbf{w}} = (1 - \alpha)Y_t + \tilde{\phi}P_t = (1 - \alpha)Y_t + \phi C_t^{\mathbf{w}} = \frac{1 - \alpha}{1 - \phi}Y_t$$

aggregate demand is


$$Y_t = C_t^c + C_t^w = C_t^c + \frac{1-lpha}{1-\phi}Y_t = \frac{1-\phi}{lpha-\phi}C_t^c$$

- ightarrow fire-sale and AD effects compound each other
- → externalities from both also compound each other!

Fire Sales Compound AD Externalities

$$Y_t = C_t^c + \frac{1 - \alpha}{1 - \phi} Y_t$$

Liquidity Traps and Excessive Leverage

Can monetary policy substitute for macroprudential policy?

- Macroprudential policy: creates a wedge between MRS_{t,t+1} of borrowers versus lenders
- Monetary policy: common wedge on $MRS_{t,t+1}$ of both borrowers and lenders
 - \rightarrow effects on leverage are ambiguous
 - Substitution effect on borrowers → less leverage
 - ▶ temporary income effect on borrowers → more leverage
 - and opposite forces on lenders
 - → in standard specifications, leverage actually goes up!
- →Korinek and Simsek (2014), "Liquidity Trap and Excessive Leverage"

ALSO: a higher inflation target would help

