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Outline

@ Out-of-sample tests of predictive accuracy are used extensively
throughout economics and finance.
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@ Regarded by many researchers as the “ultimate test of a forecasting
model” to quote: Stock and Watson (2007).

e Frequently done with the approach by West (1996), McCracken
(2007), and Clark & McCracken (2001,2005).
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@ Out-of-sample tests of predictive accuracy are used extensively
throughout economics and finance.

@ Regarded by many researchers as the “ultimate test of a forecasting
model” to quote: Stock and Watson (2007).

e Frequently done with the approach by West (1996), McCracken
(2007), and Clark & McCracken (2001,2005).

o Linear Regression models, estimated with past data, e.g. recursively, or
by rolling window.
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A Predictive Regression Model

@ Predictive regression model for an h-period forecast horizon

Yerh = B'Xe + €evn, t=1,...,n

where X; € Rk,
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A Predictive Regression Model

@ Predictive regression model for an h-period forecast horizon
Yerh = B'Xe + €evn, t=1,...,n

where X; € Rk,

@ Recursive least squares. Obtain /3; by regressing ys on X,_, for
s=1,...,t
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A Predictive Regression Model

@ Predictive regression model for an h-period forecast horizon

Yerh = B'Xe + €evn, t=1,...,n

where X; € Rk,

@ Recursive least squares. Obtain /3; by regressing ys on X,_, for
s=1,...,t

@ Forecast
)A/t+h|t([3t) - ﬁ;Xt-
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Another Predictive Regression Model

@ Predictive regression model with fewer regressors
yt+h:5/Xt+77t+h, t=1,....n,

X, € Rk,
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Another Predictive Regression Model

@ Predictive regression model with fewer regressors
yt+h:5/Xt+77t+h, t=1,....n,

X, € Rk,

o Now
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Another Predictive Regression Model

@ Predictive regression model with fewer regressors
)/t+h:5/Xt+77t+h, t=1,....n,

X, € Rk,

o Now

@ and
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The Null Hypothesis

@ West (1996) proposed to judge the merits of a prediction model
through its expected loss evaluated at the population parameters.
Under mean squared error (MSE) loss:

Ho : Elyr — )A/t|t—h(/3)]2 = Ely: — )N/t|t—h(5)]2~
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The Null Hypothesis

@ West (1996) proposed to judge the merits of a prediction model
through its expected loss evaluated at the population parameters.
Under mean squared error (MSE) loss:

Ho : Elyr — )A/t|t—h(/3)]2 = Ely: — )N/t|t—h(5)]2~

o Note: In nested case, X; C X;, equivalent to testing Hj : o = 0

(where 5 = (51, 85) and 1 = 9).
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MSE Statistics

o Consider the difference of the resulting out-of-sample MSEs

n

AMSE, = > (vt = Feje-n(0e-1))* = (vt — Jeje—n(Be—n))?,
t=n,+1

where n, = |pn]| with 0 < p < 1, is the number of observation set
aside for the initial estimation.
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A Test Statistic for Nested Case

o In nested case, X; C X, 3 = (81, 85) and B1 = 0.
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A Test Statistic for Nested Case

o In nested case, X; C X;, 3= (3, 3) and (1 = 4.
@ McCracken (2007) established the limit distribution of

AMSE,
T, = >

n

0-

for the case h = 1 and homoskedastic errors.
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A Test Statistic for Nested Case

o In nested case, X; C X;, 3= (3, 3) and (1 = 4.
@ McCracken (2007) established the limit distribution of

 AMSE,

0-

for the case h = 1 and homoskedastic errors.

Th = zq:[ / uBi( )(1Bi(u)—/1u_28,-(u)2du],

i=1

where B;(u) are mutually independent standard Brownian motions.
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A Test Statistic for Nested Case

o In nested case, X; C X;, 3= (3, 3) and (1 = 4.
@ McCracken (2007) established the limit distribution of

 AMSE,

0-

for the case h = 1 and homoskedastic errors.

Th = zq:[ / uBi( )(1Bi(u)—/1u_28,-(u)2du],

i=1
where B;(u) are mutually independent standard Brownian motions.

o g =k —k = dim(8,) (number of extra regressors in larger model).
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A Test Statistic for Nested Case

o In nested case, X; C X, 3 = (81, 85) and B1 = 0.
@ McCracken (2007) established the limit distribution of

 AMSE,

0-

for the case h = 1 and homoskedastic errors.

Th = zq:[ / uBi( )(1Bi(u)—/1u_28,-(u)2du],

i=1
where B;(u) are mutually independent standard Brownian motions.
o g =k —k = dim(8,) (number of extra regressors in larger model).

@ McCracken tabulated critical values using simulations.
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More on the Nested Case

e Limit distribution for the general case (h > 1 and heteroskedastic
error) derived by Clark and McCracken (2005).

Hansen & Timmermann (EUI/UCSD) Equivalence of Statistics Hamilton 2014 8/ 39



More on the Nested Case

e Limit distribution for the general case (h > 1 and heteroskedastic
error) derived by Clark and McCracken (2005).

@ Their expression simplified by Stock and Watson (2003) to:

T, % Z/\,- [2 /1 u=LBi(u)dBi(u) — /1 uzB;(u)zdu] :

i=1

where \; are eigenvalues (to be defined).
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Wald Statistic

@ Consider quadratic form statistic

n n 71 n
Sp = Z}’txt/_h th—hxt/_h zxt—h%-
t=1 t=1 t=1
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Wald Statistic

@ Consider quadratic form statistic

n
> XX
t=1

71 n
zxt—h%-
t=1

Sn =Y vX{_,
t=1
e Conventional Wald statistic (Hp : 5 = 0) takes the form

n
W, =625, (Z Xt_hxt’h> By =
t=1

o]

Hamilton 2014

Equivalence of Statistics
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Contributions |: Equivalence

@ Test statistic

AMSE, = S, =S, — S, + S'np + constant + 0p(1),
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Contributions |: Equivalence

@ Test statistic

AMSE, = S, =S, — S, + S'np + constant + 0p(1),

o where AMSE,, = Z’t’:npﬂ(yt — )”/t|t7h)2 —(yt — f/t|t,h)2 and
71 n

Z thh}/n

t=1
—1 n

Z Xe—hYt-

t=1

n n
Sno= D> e Xip | XeenX{
t=1 t=1

5, = Zyt;(t/fh th—h;(t/fh
t=1 t=1
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Contributions |: Equivalence in Nested Case

@ Test statistic

Zt n,)+1( yt|t h) *()’t*)A/t|t—h)2

52
0¢

Th=
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Contributions |: Equivalence in Nested Case

@ Test statistic

Zt n,)+1( yt|t h) *()’t*)A/t|t—h)2

52
0¢

Th=

o Instead
Ta(p) = Wy — W,, + constant + 0,(1),
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Contributions |: Equivalence in Nested Case

@ Test statistic

Zt n,)+1( yt|t h) *()’t*)A/t|t—h)2
6-2

£

Th=

o Instead
Ta(p) = Wy — W,, + constant + 0,(1),

o where W, is conventional Wald statistic for Hy : 5 = 0 using
observations t = 1,..., m.
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Contributions |: Equivalence in Nested Case

@ Test statistic

Zt n,)+1( yt|t h) *()’t*)A/t|t—h)2
6-2

£

Th=

o Instead
Ta(p) = Wy — W,, + constant + 0,(1),

o where W, is conventional Wald statistic for Hy : 5 = 0 using
observations t = 1,..., m.
o Just difference of two Wald tests (aside from constant)
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Contributions II: Simplification

@ Limit distribution which involves the stochastic integrals

1 1
2 /p utB(u)dB(u) — /p u2B(u)?du = B?(1) — p tB?(p) + log p.
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1 1
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o Simply difference of two (dependent) y3s — plus constant log p.
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Contributions II: Simplification

@ Limit distribution which involves the stochastic integrals

1 1
2 /p utB(u)dB(u) — /p u2B(u)?du = B?(1) — p tB?(p) + log p.

o Simply difference of two (dependent) y3s — plus constant log p.
e Moreover,
B2(1) — p1B2(p) = V1— p(Z2 — 23)

(two independent 7).
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Contributions II: Simplification

@ Limit distribution which involves the stochastic integrals

1 1
2 /p utB(u)dB(u) — /p u2B(u)?du = B?(1) — p tB?(p) + log p.

o Simply difference of two (dependent) y3s — plus constant log p.
e Moreover,
B2(1) — p1B2(p) = V1— p(Z2 — 23)
(two independent 7).

@ Special case g =2 T,(p) LA double-exponential.
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@ For some positive definite matrix, X, we have

Lnu]
sup ||n7t Z Xe_nX{_p — uZ|| = op(1).
u€el0,1] —1
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Assumption 2

@ "Scores’ X;_pe+ play an important role.
Define
~1/2
Upt=n / thhgt"
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@ "Scores’ X;_pe+ play an important role.
Define
~1/2
Upt=n / thhgt"

°
Lnu]

sup ||nt Z Un,etip o — ulj|| = 0p(1),
uel0,1] —1

forsome ', j=0,1,...,h—1.
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@ "Scores’ X;_pe+ play an important role.
Define
~1/2
Upt=n / thhgt"

°
Lnu]

sup ||nt Z Un,etip o — ulj|| = 0p(1),
uel0,1] —1

forsome ', j=0,1,...,h—1.

e Define (nearly long-run variance)

h—1
Q= > T,

j=—h+1
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o Define
Lns] [ns]

Un(s) = Z Unt = n1/2 ZXt_hgt.
t=1 t=1
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o Define
Lns] [ns]
Un(s) = Z Unt = n~1/2 ZXt_hgt.
t=1 t=1

k

@ For some U € D[o,l]'

which is bounded in probability,
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o Define
Lns] [ns]
Un(s) = Z Unt = n~1/2 ZXt_hgt.
t=1 t=1

k

@ For some U € D[o,l]'

which is bounded in probability,

Un(s) = U(s).
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o Define
| ns] | ns]
Un(s) = Z Unt = n~1/2 ZXt_hgt.
t=1 t=1
@ For some U € Df(O 1 which is bounded in probability,
°

Un(s) = U(s).

@ (U is a Brownian motion in the canonical case).
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Assumption 4

o Define

t
My =1 XeX].
s=1
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o Define

t
My =1 XeX].
s=1

o We need

Z Unt m( _Z_l)un,t = op(1),

t=n,+1

1 O - -
n Y UneonM X X pMZY = Y Un e = 0p(1):
t=n,+1
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Theorem 1: Simple No-Change Forecast

@ Given Assumptions 1-4

n
> 2= (e = Pege—n(Be—n))?> = Sn — Sn, + rlog p + 0p(1),
t=np+1
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Theorem 1: Simple No-Change Forecast

@ Given Assumptions 1-4

n
> 2= (e = Pege—n(Be—n))?> = Sn — Sn, + rlog p + 0p(1),
t=np+1

@ where
k= tr{X1Q}.
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Theorem 1: Simple No-Change Forecast

@ Given Assumptions 1-4

n
> 2= (e = Pege—n(Be—n))?> = Sn — Sn, + rlog p + 0p(1),
t=np+1

@ where
k= tr{X1Q}.

@ True for any value of f.
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Corollary 1: Compare Any Two

e Given Assumptions 1-4 (for both models)

n

Z (yt - yt|t—h(8t—h))2 - (yt - )A’t|t—h(3t—h))2

t=n,+1

equals } 3
Sn—Sn, — Sn+ Sn, + (kK — &) log p + 0p(1),
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Corollary 1: Compare Any Two

e Given Assumptions 1-4 (for both models)

n

Z (yt - yt|t—h(8t—h))2 - (yt - )A’t|t—h(3t—h))2

t=n,+1

equals

@ where
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@ Suppose
Yerh = B1X1e + B5Xoe + €, t=1,...,n

and
Yt+h = 6,X1t + Neths t=1,...,n
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Auxiliary Regressor (infeasible)

o Write
211 [ ]
Y = ,
< 221 222 )

Zi = Xor — To1 X7 Xur,

and define

which captures the part of X5; that is orthogonal to Xi;.
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Auxiliary Regressor (feasible)

@ Sample equivalent

n n -1
§ !/ § !
Zn,t = X2t - X2,S—hX17s—h X]-ys_hX].,S—h X]_t.

s=1 s=1
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Auxiliary Regressor (feasible)

@ Sample equivalent

n n -t
Znt = Xot — Z X2,S—hX:{,s—h <Z X1,5—hX{,s—h> Xt

s=1 s=1

@ Used to compute

-1 ,
Z Zn7t7hyt7
t=1

(variation of y; explained by X5 ;_ 5, which is not explained by Xj ;).

n n
& ! /
So =D 9Znen | D ZnihZne
t=1 t=1
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Theorem 2: Compare Nested Models

@ Given Assumptions 1-4

B Z?:anrl(yf - )N/t\tfh(gtfh))2 - (Yt - yt\tfh(étfh))2
o 52
0%

3

Th

equals
W, — W,, + 0;2/% log p + 0p(1),
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Theorem 2: Compare Nested Models

@ Given Assumptions 1-4

_ Z?:anrl(yf - )N/t\tfh(gtfh))2 - (Yt - yt\tfh(étfh))2

52

3

Th

equals
W, — W,, + 0;2/% log p + 0p(1),

@ where £ = r — &.
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Theorem 2 (cont): Nested Local Alternative

o W, — VVV,,p + 02k log p + op(1) with k = k — &.
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Theorem 2 (cont): Nested Local Alternative

o W, — VVV,,p + 02k log p + op(1) with k = k — &.
o If
Bo = n"2b

with b € RY fixed, then

Hansen & Timmermann (EUI/UCSD) Equivalence of Statistics Hamilton 2014



Theorem 2 (cont): Nested Local Alternative

o W, — VVV,,p + 02k log p + op(1) with k = k — &.
o If
Bo = n"2b

with b € RY fixed, then

@ where  is long-run variance of {Z,, ; e}, and

Y =Y~ Tu¥ T
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Finite Sample Correlation (n=200)

7="" DGP-1 DGP-2 DGP-3 DGP-4 DGP-5 DGP-6

np

0.2 0.962 0.972 0.959 0.954 0.969 0.955
0.4 0.975 0.980 0.971 0.963 0.971 0.956
0.6 0.977 0.979 0.975 0.960 0.973 0.943
0.8 0.979 0.98 0.977 0.955 0.971 0.947
1.0 0.980 0.978 0.975 0.96 0.969 0.941
1.2 0.980 0.976 0.975 0.954 0.967 0.935
1.4 0.979 0.974 0.976 0.954 0.962 0.934
1.6 0.978 0.973 0.974 0.948 0.959 0.936
1.8 0.977 0.973 0.975 0.948 0.959 0.926
2.0 0.975 0.972 0.975 0.948 0.958 0.927
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Q-Q Plot (n=50
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Hansen & Timmermann
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Lun]

\1F Z Zi_ner = QY2B(u),

where B(u) is a standard g-dimensional Brownian motion.
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Eigenvalues

o Consider
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Eigenvalues

o Consider

@ Diagonalize, so that

where Q'Q =/ and A = diag(A1,..., Aq).
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Theorem 3 (Null)

@ Under the null hypothesis (5> = 0)
J 1 1
To 5 ) A [2/ ulB,-dB,-—/ u2B,-2du],
i=1 op P

where B = (By, ..., Bg) is a standard g-dimensional Brownian
motion.
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Theorem 3 (Null)

@ Under the null hypothesis (5> = 0)

1 1
IS IPY [2/ ulB,-dB,-—/ u2B,-2du],
; Jp p

i=1
where B = (By, ..., Bg) is a standard g-dimensional Brownian
motion.
e This limit distribution is identical to

q
>_Ai [BI(1) = o7 BE(p) + log p] -
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all of it)

o Consider the local alternative
52 = Cnil/zbv

(normalized so that o= 2b'Sh = &)
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Theorem 3 (all of it)

o Consider the local alternative

52 = Cnil/zbv
(normalized so that o= 2b'Sh = &)
o T, LN
q
Y A [BF(1) = p B (p) + log p + (1 — p)c® + aic{ Bi(1) — Bi(p)}] ,
i=1

where a = b’iﬁif Q.

Hamilton 2014 29 / 39
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Proof of Simplification

e Consider (for u > 0)
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Proof of Simplification

e Consider (for u > 0)

@ By Ito stochastic calculus:

u
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Proof of Simplification

e Consider (for u > 0)

@ By Ito stochastic calculus:

_ OF OF | 1 _8°F _ 2 1 R2
dF = 95dB + [95 + 3 5, | du = 2BdB - L B%du.

e So jpl 2BdB — fpl L B%du = fpl dF(u) equals

F(1) = F(p) = B*(1) — log 1 — B?(p)/p + log p.
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Proof of Simplification

e Consider (for u > 0)

@ By Ito stochastic calculus:

_ OF OF | 1 _8°F _ 2 1 R2
dF = 95dB + [95 + 3 5, | du = 2BdB - L B%du.

e So jpl 2BdB — fpl L B%du = fpl dF(u) equals

F(1) = F(p) = B*(1) — log 1 — B?(p)/p + log p.

@ Moreover. Same as

V1—p(Zf = Z3) +logp,  Zi ~iidN(0,1)
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o Let B be a univariate

1 1
2/ u"lBdB — / u2B2du < /1 p(Z2 — Z3) + log p,
p P

where Z; ~ iidN(0, 1).
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o Let B be a univariate

1 1
2/ u"lBdB — / u2B2du < /1 p(Z2 — Z3) + log p,
p P

where Z; ~ iidN(0, 1).

@ So simple a difference between two independent chi-squares
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Analytical Results Beats Simulations

@ McCracken:

2/1 u_lB(u)dB(u)/l u2B?(u)du.

P P
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Analytical Results Beats Simulations

@ McCracken:

2/1 u_lB(u)dB(u)/l u2B?(u)du.

P P

@ Critical values requires extensive simulations.
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Analytical Results Beats Simulations

@ McCracken:

2/1 u_lB(u)dB(u)/l u2B?(u)du.

P P

@ Critical values requires extensive simulations.

o Brownian motion B(u) discretized by n=/2 31" 2 with

e ~ 1idN(0, 1)
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Analytical Results Beats Simulations

@ McCracken:

2/1 u_lB(u)dB(u)/l u2B?(u)du.

P P

@ Critical values requires extensive simulations.

o Brownian motion B(u) discretized by n=/2 31" 2 with

g; ~ 1idN(0,1)
o N repetitions
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Analytical Results Beats Simulations

@ McCracken:

2/1 u_lB(u)dB(u)/l u2B?(u)du.

P P

@ Critical values requires extensive simulations.
o Brownian motion B(u) discretized by n=/2 31" 2 with
ei ~ iidN(0,1)
o N repetitions

o With n = 5,000 and N = 10, 000...
... takes 50,000,000 random variables to compute a critical value.
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Critical Values: Simulated vs Analytical (q=2)

p= 0909 0.833 0.625 0.500 0.417 0.357 0.333
= 0.1 0.2 0.6 1 1.4 1.8 2

a= 2168 2.830 3.851 4.146 4.225 4214 4191
0.99 1.996 2691 3907 4.200 4.304 4.278 4.250

o= 1198 1515 1.880 1.870 1.766 1.633 1.563
0.95 1.184 1.453 1.891 1.802 1.752 1.692 1.706

1nd row: Analytical using non-central Laplace distribution.
2st row: Simulated critical values from McCracken (2007). 7 = (1 — p)/p.

(Discrepancies have little practical relevance, as the size distortions are very small).
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Conclusion

@ Equivalence of commonly used test statistic and Wald statistics.
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@ Equivalence of commonly used test statistic and Wald statistics.

o Greatly simplifies both the computation of the test statistic and the
expression for its limit distribution.

o We also establish local power properties of the test. These show that
the power of the test is decreasing in the sample split point, p.

@ Raise serious questions about testing the stated null hypothesis
out-of-sample in this manner.

o Subtracting a subsample Wald statistic from the full sample Wald
statistic dilutes the power of the test and does not lead to any obvious
advantages. such as robustness to outliers.

o Moreover, the test statistic, T,, is not robust to heteroskedasticity (the
conventional full sample Wald test can easily be adapted to the
heteroskedastic case).
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Proof of Simplification

Note that

y_BW-BG) . B

VT=p N
are independent standard Gaussian random variables. Thus the distribution
we seek is that of

2
W = (\/1—pU+\/ﬁV> — V2 4 logp,

where U, V ~ iidN(0, 1).

Hansen & Timmermann (EUI/UCSD) Equivalence of Statistics Hamilton 2014 35 /39



Proof of Simplification

Expressed in a quadratic from:

U\'( 1-p p(1—p) u
W = < > < + log p.
4 p(l=p) p-1 4
We can now use the fact that any real symmetric matrix, A, can

decomposed into A = QAQ" where Q'Q = | and A is a diagonal matrix
with the eigenvalues of A in the diagonal. This leads to

o V1=p 0
WZ( 0 _m>2+|ogp,

where Z ~ N5 (0, /) (a simple rotation of U, V). So it now follows that

=\/1-p Zl— + log p.

l.e. a scaled difference between to independent chi-squares plus log p.
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Proof of Simplification

Let X and Y be independent X?, and consider S = X — Y. The density is
of a X<27 is

q/27lefu/2

)

1
f(U) = 1{u20}2q/27[_(g)u

and we seek the convolution between X and —Y

/1{u>0}f(u)1{us>0}f(u —s)du = . f(u)f(u— s)du,
o0 1 1
_ q/2—1 _—u/2 -~
/OVS 2021 ()" € zq/zr(g)(”
1 o0
o s/2/ - q/2—-1 _—
=— ¢ ulu—s e
2 (DD Jous )
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Proof of Simplification

Simplest if g =2
oo
g=2=1 5/2/ (u(u— )0 e vdu=Le %
0vs
which is the double exponential distribution with 2 as scale parameter.

g=4=fi(s) = 1665/2/ (u2 —us)e “du
0vs

o oo

= 16e5/2 </ ve Ydu — s/ ue‘“du)
0Vs 0Vvs

= Le/2(I(3,0Vs) —s(2,0Vs)),

where [(a, b) is the incomplete gamma function. By the symmetry of the
distribution we can just derive the distribution for negative values of s.
For s < 0 we have f;(s) = 16e5/2( (3) —sl(2) = 1—16e5/2 (2 —5s), so that

fi(s) =24 (2 + |s|) e 2.
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Proof of Simplification

Exploiting the symmetry in general leads to:

) = ()
where

H(s) = /030 (u(u + |s])) 2" e“du.

We also have a general expression for the mode of the distribution...
because

H(0) = / ui e Udu = (g + 1),
0

so that
(0) = Mg+1) ¢
7 20T(3)r(3)  29B(3.3)
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