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Abstract. We estimate the level and evolution of inequality in assets, human capital wealth
and permanent income. Our definition of the latter variable does not rely on a specific util-
ity function and imposes no restrictions on income processes. We characterize the distribu-
tion of human wealth using nonparametric identification results that allow for state-dependent
stochastic discounting and unobserved heterogeneity. Accounting for the value of human cap-
ital delivers a different view of inequality. We find that (i) in 2016 the top 10% shares of total
wealth and permanent income were roughly 1/3 lower than the corresponding share of assets;
(ii) between 1989 and 2016 the top 10% shares of total wealth and permanent income grew
significantly faster than the corresponding share of asset wealth. Hence, human wealth has had
a mitigating influence on overall inequality but this mitigating effect has declined over time.
We show that households at the top of the assets distribution have not increased their share
of human wealth. Instead, higher concentration of permanent income is due to the growing
importance of assets in lifetime wealth portfolios.
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1 Introduction

“The magnitudes termed ‘permanent income’ and ‘permanent consumption’ that play such a critical
role in the theoretical analysis cannot be observed directly for any individual consumer unit. The most
that can be observed are actual receipts and expenditures during some finite period....The theoretical
constructs are ex ante magnitudes; the empirical data are ex post. Yet in order to use the theoretical
analysis to interpret empirical data, a correspondence must be established between the theoretical
constructs and the observed magnitudes.” M. Friedman (1957)

A primary objective of inequality research is to understand the forces shaping differ-

ences in the economic wellbeing of individuals and households. Empirical research has made

progress towards this goal by analyzing inequality of observable variables, primarily income

and wealth.1 However, a broader assessment of economic inequality would require that one

also accounts for the heterogeneity associated with future earnings potential. This is apparent

in the optimal redistribution branch of the literature where equalization of marginal utilities

from consumption is often assumed to be the underlying policy goal, and optimal policies

depend on the unobservable value of ex-ante expected future earnings.2

Yet-to-be realized earnings may constitute the most important determinant of economic

wellbeing for many households. A young person with a steeply increasing expected earnings

profile may be better off than inferred by simply measuring their current net worth or in-

come. The extent to which future earnings matter depends on how much they are discounted.

Appropriate discounting of future earnings effectively accounts for the ease with which con-

1See for example the work of Saez and Kopczuk (2004), Piketty and Saez (2006), Saez and Zucman (2014),
Bricker, Henriques, Krimmel et al. (2016), Kaymak and Poschke (2016) and Rios-Rull, Kuhn et al. (2016). An
extensive literature on the distribution of wages and earnings documents widening inequality in the working
population (see for example Levy and Murnane (1992), Gottschalk, Moffitt, Katz et al. (1994), Goldin and Katz
(2007) and Autor, Katz, and Kearney (2008)). Studies of the wealth distribution focus on the financial/real wealth
held by the wider population, including the unemployed and those who do not participate in the labor market
(see Saez and Zucman, 2014; Bricker, Henriques, Krimmel et al., 2016). More recently, the work of De Nardi,
Fella, and Paz-Pardo (2016) illustrates how rich income processes (as those described in Guvenen, Karahan,
Ozkan et al., 2016) may be reflected in the equilibrium distribution of wealth. Interestingly, Athreya, Ionescu,
and Neelakantan (2015; 2017) provide evidence that human capital investments may have important effects on
financial portfolios in the cross-section and throughout the life-cycle.

2This is an extensive literature. The New Dynamic Public Finance part of the literature is surveyed by
Golosov, Tsyvinski, Werning et al. (2006) and Kocherlakota (2010). Examples from the Ramsey planning section
of the literature include Conesa, Kitao, and Krueger (2009) and Davila, Hong, Krusell et al. (2012).
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sumption can be shifted across time periods as well as for uncertainty about future earnings

and consumption.3 Being constrained by a credit limit or facing a great deal of risk reduces a

household’s valuation of their future earnings.

In this paper we estimate pecuniary measures that reflect the values of both human capital

and asset wealth. Then, we study trends in the concentration of these variables over the period

1989-2016. At the heart of our analysis are nonparametric estimates of the value to individuals

of their yet-to-be realized earnings, which we refer to as their human wealth. These estimates

differ from the simple expected present value of future earnings in several ways. Importantly,

they feature state-dependent stochastic discounting, rather than risk-free discounting. Com-

bining human wealth estimates with observed asset wealth data allows us to estimate lifetime

wealth, which is the sum of human wealth and asset wealth. We also construct estimates

of permanent income, which is the (age-adjusted) annuity value of lifetime wealth. The latter

statistic is reminiscent of ‘permanent income’ as defined by Friedman (1957), with the obvious

difference that in Friedman’s model human wealth is the risk-free present value of expected

future earnings. We find that in 2016 the top 10% share of permanent income was almost 1/3

lower than the top 10% share of asset wealth, and the top 10% share of lifetime wealth was

even lower. However, between 1989 and 2016, permanent income concentration has grown at

a yearly rate of almost 1%, much faster than the 0.5% growth in asset wealth concentration.

Concentration in total (lifetime) wealth inequality has grown even faster, at almost 1.3% per

year. Hence, we infer that (i) human capital has had a mitigating influence on the level of

overall inequality; and (ii) this mitigating influence appears to be declining over time.

To obtain our estimates we combine data from the Panel Study of Income Dynamics

(PSID) and the Survey of Consumer Finances (SCF). The PSID is useful for its panel data

3The way future income is discounted is important. Huggett and Kaplan (2016) convincingly argue that the
true value of human capital is far below the value that would be implied by discounting future net earnings at
the risk-free interest rate, an approach that is commonly advocated because of its simplicity (see Becker, 1975;
Jorgenson and Fraumeni, 1989; R. Haveman and Schwabish, 2003). Mechanically discounting income flows to
approximate human capital rules out state-dependent valuations of future earnings.
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on earnings and consumption, which are required for identification of nonparametric human

wealth valuation functions. We then apply these estimated functions to SCF data, where the

resulting estimates of human wealth can be combined with observed net worth. This allows

one to obtain more accurate estimates of lifetime wealth and permanent income. We do not

make assumptions about the processes that generate risk in the labor market. Any aggregate

risk present in the data is accounted for in our estimates of human wealth. To obtain a long

enough sample to identify the aggregate risk component, we impute consumption in the PSID

prior to 1999 using the method suggested by Attanasio and Pistaferri (2014). Thus, all PSID

data from 1968 to 2016 are utilized when estimating human wealth.

Crucially, our estimates of human wealth account for state-dependent stochastic discount

factors and for changes in marginal utility. Rather than assuming specific functional forms we

estimate stochastic discount factors nonparametrically. This dispenses with several restrictions

and lets data guide the choice of utility function in a flexible way. Nonparametric identification

of the marginal utility function is achieved by using and extending key results in Escanciano,

Hoderlein, Lewbel et al. (2016). This involves writing the intertemporal Euler equation in

such a manner that the estimated marginal utility function is the solution of a homogeneous

Fredholm equation of the second kind. Given identification of the stochastic discount factor,

human wealth then depends on an integral over its possible future values multiplied by the

realizations of the stochastic discount factor.

Having obtained a marginal utility function, the estimated human wealth valuation equa-

tion turns out to be the solution of an inhomogeneous Fredholm equation of the second kind.

The non-homogeneous form of this specification demands that we extend existing results to

prove nonparametric identification of human wealth.

A separate issue arises from the fact that only one realization of the future state of the world

is observed for each person and time-period in our sample. Hence we do not observe the entire

distribution of possible future outcomes, on which an individual’s human wealth depends. We
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address this data limitation by approximating the distribution of possible outcomes using those

observed for individuals who are, in a way made clear later, ex-ante similar. This approach

works under an identification assumption, which we refer to as conditional equivalence of ex-

pectations. This assumption simply states that individuals who are ex-ante equivalent, in terms

of individual characteristics and the aggregate state, face the same distribution of ex-post out-

comes. Our implementation allows for the distribution of ex-post outcomes to vary with both

observable characteristics and unobservable types. Unobservable heterogeneity is potentially

very important in this situation because certain forms of heterogeneity, such as heterogeneous

income profiles, could lead to differences in the distributions of ex-post outcomes even if in-

dividuals have identical ex-ante observable characteristics. To identify unobservable types we

adapt the method developed by Bonhomme, Lamadon, and Manresa (2017) in such a way that

the number of unobservable types is chosen to reflect the degree of ex-ante heterogeneity in the

sample. Inclusion of these types in the conditioning set assuages our concern that unobserved

differences in human wealth may lead to underestimates of the degree of inequality.

The upshot of our econometric work is an analysis of inequality of human wealth, lifetime

wealth and permanent income that can be immediately related to many existing studies of in-

equality based on observed incomes or net worth. This approach allows one to ask questions

like ‘what is the top 1% share of lifetime wealth?’ and ‘how has the Gini coefficient of per-

manent income changed over time?’, despite the fact that both lifetime wealth and permanent

income are ex-ante magnitudes that cannot be directly observed. These variables are closely

related to economic wellbeing, and certainly more so than current income or assets alone. By

their nature, these theoretical constructs are identified through a set of structural assumptions,

hence the usefulness of our estimates is limited by the plausibility of those assumptions. Our

use of nonparametric methods ensures that only the low level assumptions of the theory, such

as utility maximization, are used to identify the value of human wealth, rather than higher

level assumptions, such as specific utility functional forms or wage generating processes. As
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such, we make the assumptions underlying our estimates as plausible as possible, while still

maintaining comparability between our analysis and existing studies of inequality based on

observable wealth and income.

2 Theory

2.1 Lifetime Wealth

The state of the economy at time t is represented by Ωt. The history of states of the world

is then Ωt = {Ω0, Ω1, . . . , Ωt}. Ωt includes realizations of all aggregate and idiosyncratic

(individual-level) risk. An individual’s observable characteristics, such as education, age and

gender, are contained in the vector Xit. An individual’s unobservable type, which may be

informative about their expected earnings or consumption profile, is denoted by ηi. If an indi-

vidual is married they will have a spouse with observable characteristicsXjt and unobservable

type ηj . A household’s wealth portfolio is a vector containing various assets and liabilities.

For an unmarried household this vector is ait = {aκit}κ∈k, where aκit is the individual’s position

in asset κ. For a married household consisting of an individual i and their spouse j, the wealth

portfolio is a(ij)t.

Individual Value Functions. An individual enjoys utility from consumption and leisure,

denoted u(cit, `it), and (possibly) from being married to their spouse, denoted ♥it(j). An

individual’s value function when single, V S
i , depends on their own state variables and their

beliefs about marital prospects. The value function when married, V M
i , depends on both own

and spousal state variables, and beliefs about the prospect of remaining married. An individual

may supply a fraction hit of their time in the labour market, for which they earn a wage wit.

Wages vary with Xit and Ωt.

If individual i is single at time t their value function V S
i will depend on a continuation
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value at time t + 1 that includes the possibilities of choosing to get married or remain single

in the following period:

V S
i (ait, Xit, ηi, Ω

t) = max
cit,`it,hit,ait+1

{
u (cit, `it) (1)

+ β (1− µit)E{Ωt+1}
[
V S
i (ait+1, Xit+1, ηi, Ω

t+1)
]

+ βµitE{Ωt+1,Xjt+1,ηj ,ajt+1}
[
V M
i (a(ij)t+1, Xit+1, Xjt+1, ηi, ηj, Ω

t+1)
] }
.

The probability µit = µ (Xit, ηi, Ω
t) is the conditional probability that i chooses to get married

next period, after meeting potential partners. This probability depends on individual charac-

teristics and the state of the world. In the event that i chooses to marry, their indirect utility

will depend on the wealth and characteristics of their partner, ajt+1 and Xjt+1, as well as the

state of the world next period. Thus, the expected value of being married is taken over the dis-

tribution of these variables among the j individuals that person i might choose to marry. The

assets of a newly formed married household will be the sum of the spouses initial individual

assets: a(ij)t+1 = ait+1 + ajt+1.

The consumption choice of i is defined over their current budget set

∑
κ∈k

aκit+1 + cit ≤ withit +
∑
κ∈k

Rκ
t a

κ
it − Tt (ait, wit, hit) , (2)

whereRκ
t is the one-period return on asset κ, and T (ait, wit, hit) is a function summarizing all

tax liabilities. The individual’s time constraint `it = 1− hit and current borrowing constraint∑
κ∈k a

κ
it+1 ≥ ait also affect these choices.

If individual i is married to individual j at time t, then i’s value function will include

a continuation value that allows for the possibilities of staying married or separating in the
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following year:

V M
i (a(ij)t, Xit, Xjt, ηi, ηj, Ω

t) = (3)

u (c∗it, `
∗
it)

+ β
{
(1− µ̃it)E{Ωt+1,ait+1}

[
V S
i (ait+1, Xit+1, ηi, Ω

t+1)|a∗(ij)t+1

]
+µ̃itE{Ωt+1}

[
V M
i (a∗(ij)t+1, Xit+1, Xjt+1, ηi, ηj, Ω

t+1)
]}

+♥it(j).

In the above equation the values
(
a∗(ij)t+1, c

∗
it, `
∗
it

)
are the values of household savings, as well

as consumption and leisure for individual i, that result from the joint household optimiza-

tion problem described below. The parameter µ̃it = µ (Xit, Xjt, ηi, ηj, Ω
t) is the conditional

probability of a household choosing to stay married. If the household divorces before next

period their asset portfolio is split and individual i receives a part ait+1 of it. Because there

may be uncertainty about the divorce settlement, a conditional expectation over possible asset

divisions is taken when evaluating the divorce part of the continuation value. While we don’t

model the choice of getting married explicitly, we assume that the marriage shock ♥it(j) cap-

tures the presence of non-pecuniary returns to being married to person j. These returns are

assumed to be additively separable and drop out of all marginal calculations.

Household Planner Problem. Once married, the joint optimization problem of the spouses

can be viewed as that of a planner who maximizes a weighted average of the spouses’ utilities

using a set of Pareto weights. Above we have denoted by V M
i the utility of person i when

they are assigned the allocations that the household planner finds optimal. Next, we need to

distinguish this from person i’s utility under (possibly) non-optimized allocations, which we
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denote by Ṽ M
i . The problem of the household planner is:

V M
(ij)(a(ij)t, Xit, Xjt, ηi, ηj, Ω

t) =max
b(ij)t

{
λ(ij)Ṽ

M
i (a(ij)t, Xit, Xjt, ηi, ηj, Ω

t) (4)

+(1− λ(ij))Ṽ M
j (a(ij)t, Xjt, Xit, ηj, ηi, Ω

t)
}
,

where the decision vector is b(ij)t =
{
cit, cjt, `it, `jt, hit, hjt, a(ij)t+1

}
, and λ(ij) is the Pareto

weight on individual i in the household planning problem.

The feasible consumption set for married households is determined by the budget con-

straint

∑
κ∈k

aκ(ij)t+1 + c(ij)t ≤withit + wjthjt +
∑
κ∈k

Rκ
t a

κ
(ij)t − Tt

(
a(ij)t, wit, wjt, hit, hjt

)
, (5)

where c(ij)t is total consumption expenditure of the household. This is related to the con-

sumption resources allocated to each spouse by the constraint c(ij)t = ϑ(cit + cjt), where ϑ

represents an adult equivalence scale. Individual time allocation constraints `it = 1− hit and

`jt = 1 − hjt, and the household borrowing limit
∑

κ∈k a
κ
(ij)t+1 ≥ a(ij)t also constrain the

household planner’s choices.

2.2 Valuation of Human Wealth

We model human capital as an asset that pays dividends in the form of earnings; hence, human

wealth is the value of this asset. We assume that the dividends correspond to the earnings

of a worker who optimally chooses labor supply. Letting θit be the shadow price of this

hypothetical asset, in Appendix A we show that its valuation takes the familiar asset pricing

form:

θit = Eit
[
β
uc(cit+1, `it+1)

uc(cit, `it)
(yit+1 + θit+1)

]
. (6)
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Thus, human wealth is the expected value of the stochastically discounted sum of next period’s

earnings plus the continuation value of human capital.

A complication that arises in this setting is that the current valuation of an asset depends

on its effect on a person’s marital bargaining power, if and when that person gets married

in the future. If buying an asset does not increase the individual’s utility once married, that

asset would be worth less to them than otherwise. In this paper we do not attempt to explicitly

estimate the effect on marital bargaining power of owning more shares of a hypothetical asset.4

Rather, we make the simplifying assumption that bargaining between newly married couples

can be represented through the symmetric Nash bargaining solution. In other words, the ex-

post Pareto weights of spouses do adjust in response to pre-marital investments, and they

do so through the effect of pre-marital investments on the outside options of spouses and on

the marital surplus. In Appendix A we show that this assumption implies that any effect on

human capital valuations operates exclusively through a single person’s continuation value in

marriage.

Another complication relates to how the hypothetical asset is allocated upon divorce. We

assume that, in such circumstances, sole ownership of the asset based on individual i’s labor

income would go to person i, and that other assets, possibly including a claim on alimony,

would be allocated to the ex-spouse as compensation. The reason we assume that i takes

ownership of the hypothetical asset is that we are valuing i’s human capital, which they would

own upon divorce as well.5 This assumption, along with the one described in the previous

paragraph, allows us to derive tractable formulas for valuing one’s own human capital. We

exploit this tractability in the empirical analysis.

4In fact, this is a very interesting question in its own right but would require a much more sophisticated
approach to modeling household interactions.

5One can, of course, be ordered to pay alimony out of human capital returns in the real world. However,
alimony is usually a fixed amount of money, so changes in earnings affect the earners’ net-income, not their
spouses. Thus, alimony is better represented as an extra allocation of financial assets to the ex-spouse than an
allocation of human capital, which is how we model it.
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The Role of Borrowing Constraints. As discussed in Appendix A, we follow the ‘non-

traded asset’ approach originally suggested by Lucas Jr (1978) to value human capital. This

approach implicitly assumes that agents may trade human capital at the margin. This does

not mean that agents do not face borrowing constraints in their portfolio of real assets ait (or

a(ij)t if married). Rather, it means that even agents who are borrowing constrained in terms

of different financial assets may contemplate selling a marginal unit of human capital at the

appropriate price. There is an important and intuitive reason for this feature of the model. Our

exercise recovers a price at which agents would choose not to trade away their human capital.

For individuals that are borrowing constrained this price will clearly tend to be lower than for

similar, but unconstrained, individuals. This is because constrained individuals would benefit

from selling human capital as this would move them away from their borrowing constraint.

Therefore this lower price is exactly what we want to recover because borrowing constrained

individuals have lower valuations of their future earnings than unconstrained individuals. In-

deed, future earnings are worth less to individuals who cannot access them in advance, and

the way we have structured our exercise allows us to explicitly quantify this effect.

3 Estimating Human Wealth

Our approach to estimation of human wealth features two sequential steps. In the first step

we apply the methods developed in Escanciano, Hoderlein, Lewbel et al. (2016) to recover

nonparametric estimates of marginal utility functions, and of the deterministic component of

the discount factor (β). These are then used in a second step to obtain nonparametric esti-

mates of human wealth. We overview both steps in detail, even though only the identification

results for the second step are novel. The careful description of the first step greatly aids in

understanding our identification and estimation approach in the second step.6

6We also outline a new procedure to accommodate the use of biennial data in the first step.
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3.1 Identification

3.1.1 Nonparametric Marginal Utility Function Identification

It is helpful to use compact notation q = (c, `) and q′ = (c′, `′) to represent the current and

future choices of an arbitrary individual. The consumption decision of an individual who is

not at a corner solution is described by the following intertemporal Euler equation:

uc(q) = βE [uc(q
′)R′|q] . (7)

This condition is written for the return R′ on an arbitrary asset; R′ could be the return on

any asset traded by a subset of agents. Conditioning on current choices q is equivalent to

conditioning on the entire information set because all relevant information is acted upon and

reflected in these decisions.7

We begin by rewriting equation (7) in a form that replaces the expectation operator with

the associated integral over the space of q′. In this integral the future marginal utilities are

weighted by a factor corresponding to the product of (i) the conditional expectation of future

rates of return and (ii) the Markov (transition) kernel estimator describing transitions from q

to q′. The notation we use for this weighting factor is ψ(q, q′) = E [R′|q, q′]× f(q′|q), where

f is the conditional density of q′. The Euler equation (7) can be represented as

uc(q)− β
∫
uc(q

′)ψ(q, q′)dq′ = 0. (8)

As explained by Escanciano et al., this is a homogeneous Fredholm integral equation of the

second kind. The solution for uc(q) given β is well known. However, in our case both uc(q)

7From the point of view of an econometrician, the right-hand-side of Euler equation (7) is a function of
consumption and leisure choices that depend on the (yet unknown) future state of the world Ω′. That is, one
could write (7) as

uc(q(Ω)) = βE [uc(q
′(Ω′))R′(Ω′)|Ω] .

For notational simplicity we omit the (Ω,Ω′).
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and β must be determined, which leads to a question of identification.

Finite Support Case. Identification is easiest to understand if we restrict ourselves to the

case in which the space of qi is a finite number M of consumption/leisure pairs. Formally, the

support is q ∈
{
q1, q2, . . . , qM

}
. Under this assumption we can rewrite the Euler equation (8)

at any current choice vector qk as

uc(q
k)− β

M∑
m=1

uc(q
m)ψd(q

k, qm) = 0, (9)

where ψd is a discrete analogue of the transition function ψ. Rather than solving a complicated

integral equation, identification in this finite example requires solving a linear system. Writing

equation (9) in matrix notation, this entails solving

(I − βΨ)Uc = 0, (10)

where Uc =
(
uc(q

1), uc(q
2), . . . , uc(q

M)
)′, and Ψ is a M×M matrix, with Ψkm = ψd(q

k, qm).

This system has a nontrivial solution with Uc � 0 only if det(I − βΨ) = 0, which is true

if β−1 is an eigenvalue of Ψ . In such cases the solution for Uc will depend on the eigenvector

of Ψ associated with the eigenvalue β−1. Thus, β is identified as the inverse of any eigenvalue

of Ψ such that β ∈ (0, 1), and Uc is identified as the solution of the homogeneous system for

the associated eigenvector. In general, Ψ may have multiple eigenvalues larger than unity, thus

only set identification is achieved in the finite support case. It is worth noting that Ψ is not

simply a transition matrix (whose largest eigenvalue would be 1), but rather a transition matrix

multiplied (element-wise) by expected asset returns E [R′|q, q′].

General Case. Proof of identification in the general case where q has a continuous support

requires functional analysis, but is reminiscent of the finite support case above. One first
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defines a linear operator A that, when applied to the unknown function uc(q), results in

(Auc)(q) = β

∫
uc(q

′)ψ(q, q′)dq′. (11)

By definition this implies that uc = βAuc. In the case that uc and Auc are positive valued

(marginal utility is positive) and A is a compact operator, a solution for uc exists only if β =

1/ρ(A), where ρ(A) is the largest eigenvalue (spectral radius) of the operatorA.8 Therefore, if

these assumptions are maintained, a unique value of β and a unique function uc solve equation

(8) and point identification is achieved.

3.1.2 Nonparametric Human Wealth Identification

We now turn to the second step and to the question of nonparametric identification of θit in

equation (6). Relying on the results derived above, we posit that β and the marginal utility

function are identified.

Next, we introduce the vector z containing variables that summarize an individual’s in-

formation set. Unlike the estimation of the marginal utility function, we now also consider

individuals who may be credit constrained. Therefore current consumption and leisure may

not fully summarize each individual’s information set, posing a problem when approximating

expectations. For this reason we make the following assumption:

Definition (Conditional Equivalence of Expectations): Expectations are conditionally equiv-

alent with respect to the vector z if for any individual i and time period t

Eit
[
β
uc(q

′)

uc(q)

(
y′ + θ′

)]
= E

[
β
uc(q

′)

uc(q)

(
y′ + θ′

)∣∣∣z = zit

]
.

Conditional equivalence of expectations holds if zit is sufficient to span the current information

8In the infinite dimensional case a linear compact positive operator has one positive eigenvector and its
corresponding eigenvalue is equal to the spectral radius of the operator. Hence, we have uniqueness in this case.
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set of any individual i and time t.9 Assuming this is the case, we can rewrite the human

wealth valuation equation (6) with θit replaced by a function θ(j, z), where j is the age of the

individual:

θ(j, z) = E
[
β
uc(q

′)

uc(q)

(
y′ + θ(j + 1, z′)

)∣∣∣z] . (12)

This is a functional equation, similar to the Euler equation analyzed above.

We rewrite equation (12) as an integral equation after operating two substitutions. First,

define δ(j, z, z′) = E[β(u′c/uc)|j, z, z′] × f jZ′|Z(z
′|j, z), where f jZ′|Z is the age-specific con-

ditional density of z′. Each δ(j, z, z′) can be described as an appropriately discounted den-

sity function for z′ at age j, for given conditioning set z. Second, we define g(j, z) =

E[β(u′c/uc)y′|j, z], which subsumes the expected discounted value of the human wealth divi-

dend. It follows that the human wealth equation can be written as

θ(j, z) = g(j, z) +

∫
θ(j + 1, z′)δ(j, z, z′)dz′. (13)

Comparing the above functional equation to the integral form of the intertemporal Euler equa-

tion, the key difference is that eq. (13) is an inhomogeneous Fredholm integral equation of

the second kind. The lack of homogeneity is due to the presence of the term g(j, z), which

introduces the age-dependent intercept in equation (13).

One can provide conditions for a unique solution of equation (13) by exploiting the deter-

ministic nature of age transitions. We begin by defining the vector-valued functions

Θ(z) = (θ(1, z), θ(2, z), . . . , θ(J − 1, z), θ(J, z))′

G(z) = (g(1, z), g(2, z), . . . , g(J − 1, z), 0)′,

where J is an arbitrarily old age at which earnings are zero. Furthermore, arrange the age-

9This assumption can be verified by testing whether ex-post measures of realized shocks are in fact orthog-
onal to observed consumption expenditures.
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specific transition functions into a J × J matrix

∆(z, z′) =



0 δ(1, z, z′) 0 . . . 0

0 0 δ(2, z, z′) 0

0 0 0
. . . 0

...
...

... δ(J − 1, z, z′)

0 0 0 . . . 0


. (14)

This matrix conforms with Θ(z′) in a way that permits the following representation of the

integral equation (13):

Θ(z) = G(z) +

∫
∆(z, z′)Θ(z′)dz′. (15)

Like in Escanciano et al., we next define a linear operator B composed of a finite set of age-

specific linear operators Bj . Each age-specific operator satisfies

(Bjθ)(j + 1, z) =

∫
δ(j, z, z′)θ(j + 1, z′)dz′. (16)

Then, the operator B is defined as follows:

B =



0 B1 0 . . . 0

0 0 B2 0

0 0 0
. . . 0

...
...

... BJ−1

0 0 0 . . . 0


. (17)
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This ensures that B is a linear operator such that:

(BΘ)(z) =

∫
∆(z, z′)Θ(z′)dz′. (18)

Using this definition within equation (15), the function Θ is uniquely determined to be Θ =

(I − B)−1G, provided the operator I − B has a well defined inverse.10 The invertibility of

I − B depends on the properties of B: this follows from the assumption that, for a large

enough age J , the value of human wealth is zero, which leads to B being upper triangular

and hollow. The simple intuition for this identification result becomes apparent if one solves

the pricing equation (15) recursively, starting from the last age in which human wealth has a

non-zero value. That is, in the last period one can use the fact that the human wealth value

next period is zero to solve for the value of human wealth in the current period, which will

simply be g(J − 1, z). This solution can then be stored and used to solve for the value of

human wealth one period prior, allowing for a backward recursion up to the initial age.

Finite example. When the support of z is restricted to be finite, so that z ∈
{
z1, z2, . . . , zM

}
,

proof of a unique solution for Θ amounts to proving a unique solution for a linear system. In

such a case each operator δ(j, z, z′) becomes a matrix. Each such matrix is an element of the

block matrix ∆, which is hollow and upper triangular. Applying this to our human wealth

equation we have Θ = G + ∆Θ, the solution of which is Θ = (I − ∆)−1G, if the inverse

exists. Because ∆ is hollow and upper triangular, all eigenvalues of (I − ∆) are unity, and

therefore the inverse exists and Θ has a unique solution.

10This is the case if the operator B is compact and it does not have an eigenvalue of exactly unity.
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3.2 Empirical Implementation

We consider a sample {qit, q′it, zit, z′it, R′it, y′it, jit, j′it}. Index i ∈ N denotes an element within

the set N of observed individuals. Index t ∈ τ(i) identifies the periods within the set of years

τ(i) for which the variables are observed for individual i. Crucially, the set τ(i) includes

sample years for which i is observed in both the current and subsequent sample periods: that

is, both choices qit and q′it must be observed. For example, if a person is observed for three

subsequent waves of the data panel that person contributes two observations to the sample.

We let τo(i) ⊂ τ(i) be the subset of observations in which individual i is at an interior

solution for assets (that is, not borrowing constrained). Then, we proceed sequentially. First,

we describe our implementation of the estimator of the marginal utility function by Escan-

ciano et al. This description features our extension to allow a mixture of annual and biennial

observations. Second, we overview our estimator of the human wealth valuation functions.

3.2.1 Estimation of the Marginal Utility Function

The first step in the estimation of the marginal utility function is to replace the linear operator

A in equation (11) with the estimator

(Âuc)(q) =
N∑
i=1

∑
t∈τo(i)

uc(q
′
it)R

′
itφit(q). (19)

The weighting functions φit(q) deliver the locally weighted average estimator (Nadaraya-

Watson estimator) of the conditional expectation in equation (11). Mechanically, we construct

the weighting functions as

φit(q) =
Kit(q)

f̂(q)
, (20)

where

f̂(q) =
N∑
i=1

∑
t∈τo(i)

Kit(q), (21)
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and

Kit(q) = KH (q − qit) . (22)

The function KH(·) is a multivariate Gaussian kernel function with bandwidth vector H .

Since the estimator Â has a finite dimensional range (unlike the true A), Â has a finite

number of eigenvalues and eigenfunctions, which can be computed by solving a linear system.

Hence any eigenfunction ûc(q) of Â must be a linear combination of the functions φit(q), i.e.

ûc(q) =
∑N

i=1

∑
t∈τo(i) bitφit(q) for some set of coefficients bit. Using this result, the empirical

counterpart of the intertemporal Euler equation can be re-written as

N∑
i=1

∑
t∈τo(i)

bitφit(q) = β̂
N∑
i=1

∑
t∈τo(i)

 N∑
m=1

∑
s∈τo(s)

bmsφms(q
′
it)

R′itφit(q). (23)

The left side of the equation above simply replaces uc(q) with its estimator. The right side

first uses equation (19) to replace the expectation in the Euler equation (7) with its estimator,

and then also replaces uc(q′it) with its estimator (the part in square brackets). Straightforward

algebra shows that a sufficient condition for the Euler equation above to have a solution is

bit − β̂
N∑
m=1

∑
s∈τo(s)

bmsφms(q
′
it)R

′
it = 0, (24)

for every i ∈ N and t ∈ τo(i). This can be rewritten in matrix form with Φ being a square

matrix with elements Φkl = φl(q
′
k)R

′
k, and b being a vector containing the coefficients bit

appropriately concatenated. Thus the restrictions in equation (24) are

(I − β̂Φ)b = ~0. (25)

Letting λ∗ be the largest eigenvalue of Φ in absolute value, and b∗ the associated eigenvector,
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the estimators of β and uc(q) are respectively

β̂ =
1

|λ∗|
(26)

ûc(q) =
N∑
i=1

∑
t∈τo(i)

b∗itφit(q). (27)

With no loss of generality ûc(q) can be scaled to have a unit norm.

Incorporating Biennial Data. If data are available only at two year intervals, the empirical

counterpart of the Euler equation becomes

ûc(q) = β̂2

N∑
i=1

∑
t∈τo(i)

ûc(q
′
it)R

′
itφit(q), (28)

where q′it denotes decisions taken two years after t, and R′it is the return on assets over a

two-year period. One complication of adding biennial data is that the interpretation of the

largest eigenvalue of Φ is 1/β2 for this set of observations and 1/β for the annual observations.

Estimating separately in the two samples, or transforming the annual data into a biennial panel,

implies a reduction in sample size and loss of precision. Thus, we seek an estimation approach

that allows for the joint use of annual and biennial data.

Our solution entails the transformation β̂2 = β̂β0, where β0 is some initial estimate of β̂

(possibly based only on the annual data sample). Then, after replacing R′it with R̃′it = β0R
′
it,

we employ biennial observations in the following moment condition:

ûc(q) = β̂
N∑
i=1

∑
t∈τo(i)

ûc(q
′
it)R̃

′
itφit(q). (29)

Now the largest eigenvalue of Φ can be correctly interpreted as 1/β for all observations in the

extended sample. However, the estimates of β̂ and ûc are conditional on β0, hence they can

19



be improved upon if a better estimate of β0 becomes available. We replace β0 by β̂ and re-

estimate, iterating this procedure until β̂ is approximately equal to the guess β0 and no further

improvement is feasible.

3.2.2 Estimation of Human Wealth

Point estimates of marginal utility can be recovered for each individual choice observed in our

sample by evaluating the function ûc(q) at qit.11 Given these point estimates, the next step is

to construct an estimator for the age-specific human wealth valuation functions. For ease of

presentation, we describe this estimator for the case of annual observations. Later we illustrate

how to extend it to biennial observations.

We begin by estimating the value of the expected dividend function g(j, z) in equation (13)

using the Nadaraya-Watson estimator:

ĝ(j, z) =
N∑
i=1

∑
t∈τj(i)

β̂
ûc(q

′
it)

ûc(qit)
y′itγit(z). (30)

To this purpose we need to link individuals of the same age across time periods. First, we

define τj(i) as the singleton set of years in which individual i is j years old. Then, given an

individual i of age j in period t, we let τj(it)(m) be the singleton set of years in which an

individual m is exactly the same age as individual i in period t (that is, exactly j years old).

The weighting functions γit(z) are then constructed as

γit(z) =
Kz
it(z)∑N

m=1

∑
t∈τj(it)(m)K

z
mt(z)

, (31)

where Kz
it(z) is a multivariate kernel function.12

11This can be done even if the particular person-year observation (i, t) refers to a credit constrained individual,
hence not used in the estimation procedure described above.

12Here we follow Li and Racine (2007) by defining zc and zd to be the sub-vectors of continuous and discrete
variables contained in z. The multivariate kernel function for a given zit can then be written as Kz

it(z) =
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Next, we form estimators of the θ(j, z) functions. We re-write equation (13) replacing all

functions by their estimators:

θ̂(j, z) = ĝ(j, z) +
N∑
i=1

∑
t∈τj(i)

θ̂(j + 1, z′it)β̂
ûc(q

′
it)

ûc(qit)
γit(z). (32)

Because we have an estimate of ĝ(j, z), the only obstacle to obtain an estimate of the cur-

rent human wealth function θ̂(j, z) is that the future function θ̂(j + 1, z′) is so far unknown.

However, as it is clear from equation (32), the entire function θ̂(j + 1, z′) need not be known.

Rather, one only needs to estimate its value at the subset of points z′it that are observed (the

data points for which t ∈ τj(i)). Stacking all θ̂(j + 1, z′it) into vectors Θ̃j+1, and similarly

stacking the ĝ(j + 1, z′it) into vectors G̃j+1, we can re-write equation (32) in compact form as

Θ̃j = G̃j + ΓjΘ̃j+1. The matrix Γj has number of rows equal to the number of observations

stacked in Θ̃j and number of columns equal to the number of observations stacked in Θ̃j+1.

The elements of Γj are

[Γj]mi = β̂
ûc(q

′
it)

ûc(qit)
γit(zmt). (33)

Each column of Γj includes the transition kernel and stochastic discount factor of a given

individual i. For each such individual i there is a corresponding age j + 1 human wealth

estimate contained in Θ̃j+1. However, each row of Γj is evaluated at the data vector zmt of

a (usually) different individual m.13 For each such individual m there is a corresponding age

j human wealth estimate contained in Θ̃j . If the data sample is unbalanced one may have

(
∏

zs∈zc Khs(zs−zs,it))×(
∏

zs∈zd 1{zs=zs,it}). The first product includes univariate gaussian kernel functions
with bandwidth hs. The second product includes indicator functions, which ensure the kernel has positive value
for an observation with the corresponding values of all discrete variables, and zero otherwise. For example,
this means that female data will have no influence on the conditional expectation for a male observation, and
vice-versa.

13We structure our data so that an observation consists of pairs {zit, z′it} and {jit, j′it}. If an individual
in the sample is observed over multiple periods, then this individual contributes multiple observations to the
estimation. Therefore, while a kernel γit(z) is generally evaluated using data from different individuals, it may
also be evaluated (at most once) at different data points for the same individual. This effectively treats the
evaluation of one’s own future realizations, where the individual is one year older, as a different observation.
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different numbers of observations at different ages. In this case Γj will not be square and the

lengths of Θ̃j and Θ̃j+1 will differ.

We combine vectors Θ̃j and G̃j into larger vectors Θ̃ = (Θ̃′1, . . . , Θ̃
′
J−1, Θ̃

′
J)
′ and G̃ =

(G̃′1, . . . , G̃
′
J−1,~0

′)′, where J is an arbitrarily old age by which all individuals have either died

or retired. We then also arrange all matrices Γj into a block matrix Γ ,

Γ =



0 Γ1 0 . . . 0

0 0 Γ2 . . . 0

0 0 0
. . . ...

...
...

... ΓJ−1

0 0 0 . . . 0


. (34)

Using this notation the set of j-specific equations Θ̃j = G̃j+ΓjΘ̃j+1 can be written compactly

as:

Θ̃ = G̃+ ΓΘ̃. (35)

Because (I − Γ ) is invertible14, one can directly solve for Θ̃ = (I − Γ )−1G̃.

Finally, to obtain estimators of the complete functions θ(j, z), rather than just estimating

at a subset of observed data points, we return to equation (32). Because the point estimates

of θ̂(j + 1, z′it) are now available (they are the elements of Θ̃), equation (32) can be evaluated

at any point z. Thus, the vector of estimators for the age-specific human wealth valuation

functions (θ̂(1, z), θ̂(2, z), . . . , θ̂(J, z))′ has now been obtained.

Incorporating Biennial Data. We now consider the case in which some sample data are at

annual frequency while others are only available at a biennial frequency. To accommodate

14Note that Γ is upper triangular and hollow, therefore (I − Γ ) is upper-triangular with ones on the leading
diagonal, so its determinant is also one.
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this discrepancy we denote τ 1j (i) and τ 2j (i) as the set of annual and biennial sample years,

respectively, in which i was of age j. For an observation drawn during a period of biennial

sampling, equation (32) can be rewritten by iterating the valuation equation one-year further

into the future:

θ̂(j, z) = ĝ1(j, z) + ĝ2(j, z) +
N∑
i=1

∑
t∈τ2j (i)

θ̂(j + 2, z′it)
ûc(q

′
it)

ûc(qit)
γit(z). (36)

It is understood that, for the biennial sample, q′it and z′it are data observations two years into

the future. The functions ĝ1(j, z) and ĝ2(j, z) are estimates of the conditional expectation of

discounted earnings, one and two years ahead, for a j year old individual with current state

vector z. These estimates are computed as in equation (30), where ĝ1 is estimated using data

from the annual sample period and ĝ2 is estimated using data from the biennial sample period.

As before, we form vectors Θ̃ and G̃, as well as a matrix Γ such that Θ̃ = G̃+ ΓΘ̃. Some

elements of Θ̃ and G̃ are based on annual observations using equation (32) with τ(i) replaced

by τ 1(i), and others are based on biennial observations using equation (36).

Matrix Γ is somewhat more complicated because rows corresponding to biennial obser-

vations must conform with columns of Θ̃ corresponding to values two years ahead. Thus, Γ

now must have the form

Γ =



0 Γ 1
1 Γ 2

1 0 . . . 0

0 0 Γ 1
2 Γ 2

2 . . . 0

0 0 0
. . . . . . ...

...
...

... 0 Γ 1
J−1

0 0 0 . . . 0 0


, (37)

where Γ 1
j and Γ 2

j are constructed as explained in equation (33). The reason we now have
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two blocks in each row of Γ is to allow rows corresponding to annual observations to mul-

tiply Θ̃j+1, and rows corresponding to biennial observations to multiply Θ̃j+2. Rows of Γ 1
j

corresponding to annual observations will contain elements as in equation (33), whereas rows

corresponding to biennial observations will consist of zeros. Conversely, rows of Γ 2
j corre-

sponding to annual observations will contain all zeros, but rows corresponding to biennial

observations will contain elements as in equation (33). After constructing such a matrix Γ we

can solve for Θ̃ = (I = Γ )−1G̃ as before.

The last step is to construct an estimator for the general function θ̂(j, z), once estimates

have been recovered by computing Θ̃ at the observed sample points. This requires a weighting

of equations (32) and (36). We define numbers of annual and biennial observations n1 =∑N
i=1

∑
t∈τ1(i) 1 and n2 =

∑N
i=1

∑
t∈τ2(i) 1. Using these counts we form the estimator as

θ̂(j, z) =ĝ1(j, z) +
n1

n1 + n2

β̂ N∑
i=1

∑
t∈τ1j (i)

θ̂(j + 1, z′it)
ûc(q

′
it+1)

ûc(qit)
γit(z)

 (38)

+
n2

n1 + n2

ĝ2(j, z) + β̂2

N∑
i=1

∑
t∈τ2j (i)

θ̂(j + 2, z′it)
ûc(q

′
it)

ûc(qit)
γit(z)

 .

Weighting in this way ensures that, if there are only a small number of biennial observations,

these observations have a limited influence on the estimated functions.

3.3 Data

To obtain an empirical counterpart of the estimator in equation (23), and to recover the marginal

utilities, we need panel data on consumption and leisure, as well as historical asset returns and

proxies for information available to individuals when making decisions. The sample must in-

clude observations recorded over a sufficiently long time interval so to identify the aggregate

risk component of the transition kernels.
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Hence the basic data requirement for the estimation of marginal utilities, discount fac-

tor and human wealth values is a sample {qit, q′it, zit, z′it, R′it, y′it, jit, j′it}i∈N,t∈τ(i), where each

vector q denotes a pair of consumption and leisure choices; the vector z includes variables

that approximate the information set of the decision makers; R is a historical real return from

deferred consumption; and j denotes age.

It turns out that the Panel Study of Income Dynamics contains much of what we need.

We use panel data from the PSID spanning the years 1967-2016. We assume that repeated

observations for the same individuals in this data set satisfy the required weak dependence

condition.

Construction of qi and q′i involves collecting earnings and consumption data. Labour earn-

ings is always observed. However, a fairly complete set of consumption expenditures is ob-

served at the household level only after 1997. Before that date only selected categories of

consumption were recorded regularly.15 For this reason we build on the approach of Attana-

sio and Pistaferri (2014) to approximate household consumption expenditure in periods when

information is incomplete. This method relies on the ever larger availability of consumption

expenditures in the PSID post-1997. The procedure effectively estimates a demand system

to impute consumption to PSID families observed in years before 1997. There are five ad-

vantages to this approach: (i) it relies on information from a single data set, making variable

linkages straightforward; (ii) one can test how closely trends in consumption inequality are

replicated by the imputation procedure using within-sample verification for the period during

which complete expenditure data are available; (iii) since the PSID stretches all the way back

to the late 1960s, this procedure delivers the longest consumption panel database currently

available for the US; (iv) average consumption per household can be scaled to replicate its

historical evolution; (v) last but not least, expenditure categories in the PSID appear to match

NIPA counterparts reasonably well.

15If one goes back all the way to 1967, only food expenditures were regularly measured.
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As a proxy for real asset returns we set R′i to be the one-year treasury constant maturity

rate minus realized annual CPI inflation, when using annual data prior to 1997. As the survey

becomes biannual after 1997, we switch to the two-year treasury constant maturity rate minus

realized CPI inflation.16

Finally, to obtain an empirical counterpart of the human wealth estimator in equation (32)

we use a set of conditioning variables that approximate the information set available to agents.

The vector zi contains (i) observable individual characteristics, such as gender, education,

industry, occupation, marital status, number of dependent children, and (ii) unobserved type,

as we discuss below.

3.4 Estimation of Unobserved Types

The data vector zi includes an unobserved type, ηi, which we allow to vary along two dimen-

sions of heterogeneity. The first dimension captures differences in life-cycle earning profiles,

identified from variation in the growth rates of earnings. The second dimension subsumes un-

observed differences in wealth, which we measure by gauging the dispersion of consumption

growth rates over the life cycle of different sample members.

To estimate heterogeneous types we use an approach similar to that of Bonhomme, Lamadon,

and Manresa (2017). That is, we employ a k-medians grouping algorithm to separate life-cycle

averages of ‘informative’ variables into clusters, where cluster membership is a type. Cluster

membership is then represented through categorical variables. The idea is that variation in

income and consumption growth paths conveys information about, respectively, permanent

heterogeneity in income and in idiosyncratic access to wealth used to smooth consumption.

To test whether our grouping procedure does a good job of estimating unobserved hetero-

geneity, and to establish the number of types used to model each dimension of heterogeneity,

we follow the reasoning of Cunha, Heckman, and Navarro (2005). These authors suggest that,

16These time series are publicly available from FRED. We also experiment with real returns for other assets.
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if agents know their own wealth and earnings type, they should act upon such information

and make choices that are consistent with their type. More generally, it should be possible

to identify heterogeneity due to ex-ante types because individuals respond to this information

and act on it. If unobserved types’ heterogeneity contributes to idiosyncratic earnings growth

and life-cycle consumption changes, then the latter should be helpful in predicting observable

long term choices.

Following Cunha et al., we illustrate this point using the decision to attend college. Let

Si denote the college decision of individual i, taking value one if the individual completes

college and zero otherwise. To the extent that heterogeneity ηi affects earnings growth, one

would expect that E(Si|ηi) 6= 0. Given the relationship between unobserved types and eco-

nomic outcomes (such as earnings and consumption), schooling choices should be related

with the (ex-post) level of earnings growth, or with the idiosyncratic dispersion of consump-

tion growth rates. By the same token, if one could control directly for the underlying type ηi,

the expectation of college completion should no longer respond to these observable measures

of ex-post earnings or consumption. This line of reasoning offers a natural way to test whether

our grouping procedure identifies the relevant “type” variation.

If the grouping algorithm successfully captures the relevant heterogeneity, the type indica-

tor should crowd out the statistical effect of earnings profiles (and, similarly, of consumption

dispersion) on college status. We find that allowing for three types to represent earnings het-

erogeneity is sufficient to remove any direct effect of earnings growth on the expectation of

college completion. In the case of wealth heterogeneity we only need two types for the condi-

tional expectation of college completion to be independent of consumption growth dispersion.

Having established the cardinality of the types’ sets, we also corroborate our clustering by ver-

ifying that adding further types does not result in significant drops in within-type variances.
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3.5 Human Wealth in the Survey of Consumer Finances

The PSID provides a long panel data set with sufficient information to carry out our human

wealth estimation exercise. For a wider analysis of inequality, however, we rely on the Survey

of Consumer Finances (SCF), which provides much more detail on both the value and compo-

sition of households’ wealth, going back to 1989. By design, the SCF also captures the upper

tail of the wealth distribution far better than the PSID.

While the SCF is valuable for the measurement of wealth portfolios, we cannot estimate

human wealth valuations from it because of its lack of a panel dimension. However, since

we have recovered the entire function Θ(z), we can directly evaluate equation (32) at any

data point z. For this reason we are able to obtain point estimates of human wealth in any

data set where an appropriate counterpart of the vector z is available. Unfortunately not every

variable in the data vector z is observed in the SCF. In particular, unobserved types η cannot be

estimated from repeated cross-sections of data. In addition, some variables are only observed

for the household head (for example education attainment and age). To deal with this problem

we impute the full distribution of the missing variables estimated from the PSID. It is important

to impute the distributions of missing variables, rather than use their conditional expectations,

because the latter would average out heterogeneity and lead to underestimates of inequality.

Set Imputation. We perform this ‘set imputation’ by first partitioning the data vector Z

into observed variables Z+ and unobserved variables Z−. We then define the conditional

distribution function Π(Z−|Z+). Because Z− takes discretely many values, this distribution

can be viewed as a probability mass function Π(Z−|Z+) = {π1(Z+), π2(Z
+), . . . , πM(Z+)},

where M is the number of points in the support set of Z−. In turn, each πm(Z
+) can be

estimated using the Nadaraya-Watson kernel estimator using PSID data.

Next, we expand the SCF data set so that it replicates the cross-sectional variation of

Z−. We do this by creating M versions of the extended SCF sample, one for each of the
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M points in the support set of Z−. Hence, each such version imputes a different point in

the support of Z−. The sample weight for observation i in version m ∈ M of the data is

rescaled by πm(Z+
i ). Finally, we stack these subsamples into a single data set. Each original

SCF observation appears M times in the expanded data set, but the total weight of these M

replications is rescaled to equal the sample weight of the original (individual) observation.

Human wealth can then be computed for each observation in the new expanded sample, and

analysis can proceed by using the adjusted sample weights.

4 Estimation Results

Using the methods described above we obtain a set of estimates for the overall lifetime wealth

of households in the SCF sample, in conjunction with a detailed decomposition of the relative

composition of each household’s wealth portfolio at a point in time.

4.1 Estimates of Marginal Utility and Human Wealth

Non-parametric estimates of the marginal utility of consumption are plotted in Figure 1. Con-

sistent with theory, marginal utility is highly non-linear at low expenditure levels and flattens

out at high expenditures.

Human wealth estimates: PSID sample. One can use the estimated marginal utility

function and the human wealth valuation function (in equation 38) to stochastically discount

earnings and assign a pecuniary value to the human capital held by different households in the

PSID sample.

The left panel of Figure 2 plots the average value of human wealth at different ages, and

contrasts it to the value estimated using a constant discount factor. The constant discount

factor is set equal to the average of all realizations of the stochastic discount factor used in

estimating the marginal utility function, and hence is equivalent to the theoretical price of a
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Figure 1: Marginal utility as a function of consumption expenditures.
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one-period risk free bond. The figure indicates that fixed discounting results in a significant

overestimation of human wealth, with the largest discrepancy largest around the time when

human wealth peaks. This confirms simulation-based results in Huggett and Kaplan (2016).

Figure 2: Average human wealth over the life cycle. Values in 2016 dollars.
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Human wealth exhibits a hump-shape, with a steep drop after age 50 as retirement ap-

proaches. Under state-dependent discounting the average value peaks at around $800K. This

average is based on a wide sample of individuals, including some who do not work. Non-

employment risk is explicitly accounted for in our estimation, which considers periods of null

earnings as one of the possible outcomes of a worker’s job employment history. The right

panel of Figure 2 plots the value of human wealth by education group. As one might expect,

there are large differences in both scale and shape. At the peak, college graduates hold more

than twice as much human wealth as high-school graduates, and more than three times as

much human wealth as high-school drop-outs. Human wealth differentials become progres-

sively smaller as retirement gets closer and the pecuniary value of human capital converges

towards very low values.

Two interesting observations can be made at this stage. First, younger households hold

most of their wealth in a very illiquid asset, which exposes them to significant risks. For ex-
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ample, health shocks might affect their labor supply and reduce the present value of human

capital. Second, the early peak in human wealth also suggests that the direct (that is, unmedi-

ated by assets) contribution of human wealth to overall inequality must occur at relatively

younger ages, when human wealth still accounts for a high proportion of wealth portfolios.

We revisit some of these issues in the context of our SCF sample.

Figure 3: Estimation error due to constant discounting of human capital, by education group.
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Figure (3) reports the ratio of our estimates under fixed and flexible discounting for dif-

ferent education groups. The approximation error is much larger for higher education levels,

especially at younger ages when seveal educated households may suffer for liquidity con-

straints. Finally, in Figure 4 we report the evolution of average human wealth over the life

cycle for different latent type clusters. The left panel in Figure 4 reports the human wealth

for the three earnings’ types, while the right panel reports estimates for the two clusters iden-

tified using consumption dispersion. Differences are fairly large and persistent. Unobserved

heterogeneity identified through earnings growth induces a near doubling of human wealth at

the peak. This gap is remarkable because it suggests the presence of a strong latent source of
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within group wealth heterogeneity among observationally similar households.

Figure 4: Average human wealth over the life cycle by latent type. Values in 2016 dollars.
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Human wealth estimates: SCF sample. Using the valuation function in equation (38)

we recover an estimate of human wealth for each household in the SCF sample.17 This allows

us to quantify the relative size of human wealth in their wealth portfolio. In the left panel of

Figure 5 we report the life-cycle evolution of average human wealth. Both shape and scale of

average human wealth closely track those estimated from PSID data and plotted in Figure 2.

The right panel of Figure 5 also plots the standard deviation of human wealth, which is

roughly half the size of the average human wealth at any given age. For example, average hu-

man wealth peaks at just below $800,000 (per household), when the standard deviation stands

at roughly $350,000. This means that two standard deviations below the average corresponds

to a value close to zero, while adding two standard deviations doubles the average value. Inter-

estingly, dispersion remains fairly high until age 50. Hence, the contribution of human wealth

to overall inequality is largest between ages 35 and 55. The fact that dispersion remains ele-

vated long after average human wealth has started its decline indicates that some workers are

17As we discussed, this requires linking the full distribution of unobservable types to each observation in the
SCF.
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exiting full time employment relatively young: low employment and non-employment risks

are explicitly accounted for by our estimation, which considers periods of null or low earnings

as possible outcomes of each worker’s history.

Figure 5: Mean and standard deviation of human wealth over the life cycle (SCF sample,
values in 2016 dollars).
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(b) Standard Deviation of human wealth by age

4.2 The Relative Smoothness of Lifetime Wealth

Figure 6 reports the average value of human and non-human wealth components, as well as of

total wealth, for all households in our sample.18 It is apparent that total wealth is remarkably

stable over the life cycle, and certainly more so than its individual components. Young house-

holds’ portfolios are heavily skewed towards human wealth, which makes shocks impacting

labor supply or health very costly for them. In fact, any shocks are likely to be poorly insured

among young adults because their net worth (non-human wealth) tends to be low.

The value of human wealth peaks early in life, around age 30. This is well before the

peak age for earnings and draws attention to two key aspects: first, the expected length of

remaining working life is important when putting a price tag on a stream of labor earnings;

second, earlier investments in human capital carry a higher return while its depreciation may

18One could easily disaggregate non human wealth in its different components.
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Figure 6: Average human wealth, net worth and total wealth (the sum of human wealth and
net worth) over the lifecycle. Values in 2016 dollars.
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become more severe with age. These observations suggest that using current earnings as a

measure of cross-sectional inequality is problematic, something that we revisit below.

The changing composition of wealth over the life-cycle. The contrast between human and

non-human wealth is striking. Assets net worth peaks around age 60 and effectively accounts

for all wealth after age 70. Yet, net worth accounts for a relatively small fraction of total wealth

until age 40. Given these patterns, total wealth peaks early (around age 30) and, while declin-

ing to roughly 1/3 of its peak value by age 80, it exhibits less extreme proportional variation

than its individual components over the course of the life cycle. This relative ‘smoothness’ of

total wealth over the life cycle is consistent with the finding that a large chunk of total wealth

is determined early in life in the form of human wealth. Then, over time, total wealth changes

shape, shifting from illiquid human wealth to more liquid net worth. In this sense, the process

of aging mostly changes the composition of wealth, while its total value varies less. It is also

interesting that the peak in total wealth occurs later in life for people who already own some

assets when young. This will become apparent below, where we examine the evolution of life
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cycle wealth for different percentiles of the wealth distribution.

Figure 7: Average human wealth, net worth and total wealth over the lifecycle, by percentile
of total wealth. Values in 2016 dollars.
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Wealth over the life cycle: rich and poor households. Figure 5 documents significant

dispersion in the distribution of human wealth at any given age. This dispersion captures

permanent differences in the value of discounted earnings. To gauge possible differences in

the evolution of wealth holdings over the life cycle we contrast wealth patterns for households

at the 25th, 50th, 90th and 95th percentile of total wealth at each given age. The results are

plotted in Figure 7 and confirm the presence of significant heterogeneity in wealth portfolios

over the life cycle.

Households at the lower end of the total wealth distribution hold little asset wealth at any

age, while richer households exhibit larger net worth at relatively early ages. Interestingly,

we observe that human wealth plays a quantitatively large role even at the top end of the

wealth distribution, representing a significant share of the aggregate at early ages. As we
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anticipated, total wealth peaks early among poorer households. These households do not

appear to convert their human wealth in equivalent amounts of net worth later in life. In turn

this is due to the fact that households with relatively lower earnings often behave as hand-to-

mouth consumers so that their lifetime wealth profile is almost always downward sloping and

significantly less smooth. The message does not change at all if we condition on the percentiles

of each individual variable separately, instead of conditioning on percentiles of total wealth,

as shown in the Appendix Figure 11. This confirms that the ranking of total wealth broadly

lines up with the rankings of human wealth early in life and with the ranking of asset wealth

at later ages.

Results disaggregated by percentile also offer two useful insights into the fanning out of

wealth inequality over the life cycle. First, inequality is mostly due to human wealth in the

first twenty years of working life. Second, because inequality in human wealth is smaller than

inequality in asset wealth at almost all ages, the relative share of asset wealth in households’

portfolios must play a key role in the evolution of permanent income.

5 Wealth and Permanent Income Concentration over Time

We next use our extended SCF data to measure concentration of net worth, as in Bricker,

Henriques, Krimmel et al. (2016), and we contrast it to measures of concentration for human

wealth, total wealth and permanent income. To facilitate comparison with existing studies,

and to provide a simple summary of changes in inequality over time, we begin by plotting

measures of wealth concentrations for different variables in different years.

5.1 Permanent Income vs Asset Wealth

In the two panels of Figure 8 we report the share of, respectively, net worth, permanent income

and human wealth held by the top 1% (left panel) and the top 10% (right panel) of households
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in the distributions of the respective variables. Of course, the households at the top of each

distribution may be different.

Figure 8: Concentration of net worth (assets), permanent income, and human wealth.
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Accounting for human wealth fundamentally changes our view of inequality and its evo-

lution. First, permanent income is much less concentrated than assets (real/financial wealth).

The share of permanent income held by the top 1% is on average 15% of the total. This is

roughly half of the share of net worth held by the top 1%, which is well over 30% of total

assets. This suggests that lifetime wealth and permanent income are significantly less con-

centrated than net worth. Similar patterns can be observed when looking at concentration

measures for the richest top 10% of households. The share of permanent income held by the

richest 10% of households is roughly half the share of assets wealth held by households at the

top of the net worth distribution.

However, Figure 8 also shows that the growth of permanent income concentration has been

strong over the past 35 years. Both human wealth and net worth have become significantly

more concentrated between 1989 and 2016, but the increase for permanent income concentra-

tion has far outpaced that for net worth. This is remarkable for three reasons: first, the share

of permanent income is almost twice as large in 2016 as it was in 1989; second, in the face of
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the heated debated on wealth inequality, since 1989 the speed at which permanent income has

concentrated in the hands of the richest households is almost twice as large as the well-known

increase in the share of real/financial wealth; third, human wealth concentration is unlikely to

account for the speedy growth in permanent income.

Comparing measures of concentration. For a more nuanced view of the changing concen-

tration of economic resources, Tables 1 and 2 report shares of different variables held by the

top 10% of households. Table 1 reports the share of each variable held by the top 10% of

households in the distribution of that variable, while Table 2 reports the share of each variable

held by the top 10% of households in the distribution of net worth (real/financial assets).

year Net Worth Human Wealth Lifetime Wealth Earnings Permanent Income
(1) (2) (3) (4) (5)

1989 0.668 0.369 0.392 0.386 0.414

1992 0.667 0.371 0.387 0.392 0.408

1995 0.677 0.374 0.400 0.403 0.426

1998 0.683 0.367 0.415 0.377 0.434

2001 0.693 0.371 0.437 0.413 0.468

2004 0.691 0.379 0.445 0.417 0.481

2007 0.712 0.381 0.469 0.439 0.506

2010 0.741 0.387 0.462 0.460 0.513

2013 0.747 0.400 0.478 0.460 0.528

2016 0.768 0.404 0.519 0.499 0.569

Table 1: This table reports the share of variable “X” in the hands of the households in the top 10% of
the distribution of that same variable “X”. For example, the share of earnings held by the households
in the top 10% of the distribution of earnings.

Human wealth exhibits significantly lower concentration at the top than earnings. This

suggests that a significant component of earnings concentration is due to transitory shocks.

In fact, human wealth has the lowest concentration among all variables, as permanent hetero-

geneity is mitigated by relatively short working lives and the presence of idiosyncratic shocks
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year Net Worth Human Wealth Lifetime Wealth Earnings Permanent Income
(1) (2) (3) (4) (5)

1989 0.668 0.120 0.320 0.224 0.368

1992 0.667 0.115 0.299 0.222 0.353

1995 0.677 0.122 0.318 0.239 0.369

1998 0.683 0.122 0.348 0.238 0.390

2001 0.693 0.125 0.388 0.279 0.436

2004 0.691 0.118 0.396 0.272 0.453

2007 0.712 0.116 0.424 0.291 0.474

2010 0.741 0.115 0.420 0.305 0.487

2013 0.747 0.120 0.429 0.305 0.495

2016 0.768 0.118 0.487 0.339 0.550

Table 2: This table reports the share of variable “X” in the hands of the households in the top 10%
of the distribution of Net Worth. For example, the share of earnings held by the households in the top
10% of the distribution of net worth.

that may depreciate human capital and limit the extent of excess-returns from skills (see for

example Gallipoli and Turner, 2011).

Looking at trends, concentration has risen for both earnings and human wealth. However,

the top 10% share of earnings appears to have grown more, confirming that the relative disper-

sion of transitory shocks has become larger (Gottschalk, Moffitt, Katz et al., 1994; Heathcote,

Perri, and Violante, 2010). Restricting attention only to households at the top of the distri-

bution of asset wealth (Table 2), only earnings exhibit increasing concentration while human

wealth concentration is effectively unchanged. This suggests that the share of human wealth

held by asset-rich households has not grown over the past decades, and that the growth in their

earnings’ share is largely due to low-persistence income shocks. Hence, increasing wealth

concentration in the hands of asset-rich households does not appear to derive from better labor

market returns.

These observations illustrate why looking at earning flows (rather than human wealth

stocks) would be misleading, whether studying levels or trends. They also reveal useful in-
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formation about the composition of households at the top of different wealth distributions.

Human wealth has become more concentrated (Table 1), yet the share of human wealth be-

longing to households at the top of the net worth distribution has not changed (Table 2). Thus,

large increases in the top share of permanent income imply that the contribution of net worth

to household portfolios has risen significantly over time. Put simply, asset-rich households

have not become more likely to be at the top of the human wealth distribution. rather, hu-

man wealth has, over time, become a less important determinant of inequality in permanent

income. Being rich in human wealth is less important for permanent income in 2016 than it

was in 1989.

year Net Worth Human Wealth Lifetime Wealth Earnings Permanent Income
(1) (2) (3) (4) (5)

1989 0.296 0.057 0.117 0.104 0.149

1992 0.299 0.057 0.110 0.104 0.147

1995 0.347 0.059 0.133 0.118 0.173

1998 0.336 0.057 0.145 0.113 0.172

2001 0.319 0.059 0.158 0.152 0.189

2004 0.330 0.059 0.169 0.136 0.200

2007 0.333 0.060 0.181 0.157 0.219

2010 0.339 0.061 0.172 0.156 0.228

2013 0.352 0.063 0.181 0.151 0.243

2016 0.384 0.067 0.225 0.199 0.266

Table 3: This table reports the share of variable “X” in the hands of the households in the top 1% of
the distribution of that same variable “X”. For example, the share of earnings held by the households
in the top 1% of the distribution of earnings.

Tables 3 and 4 report similar information for the top 1% of households. Our findings

broadly confirm those for the top 10% of households. The top shares of all variables are

rising; yet, there is no evidence that asset-rich households are holding a larger share of human

wealth. The fact that their share of human wealth does not rise, while their share of permanent

income increases significantly, indicates the growing role of real/financial wealth as a share of
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year Net Worth Human Wealth Lifetime Wealth Earnings Permanent Income
(1) (2) (3) (4) (5)

1989 0.296 0.010 0.115 0.043 0.146

1992 0.299 0.012 0.108 0.048 0.143

1995 0.347 0.013 0.131 0.061 0.165

1998 0.336 0.015 0.144 0.061 0.166

2001 0.319 0.015 0.156 0.071 0.176

2004 0.330 0.015 0.168 0.078 0.186

2007 0.333 0.015 0.180 0.077 0.204

2010 0.339 0.013 0.172 0.067 0.203

2013 0.352 0.013 0.180 0.069 0.236

2016 0.384 0.017 0.225 0.114 0.256

Table 4: This table reports the share of variable “X” in the hands of the households in the top 1% of
the distribution of net worth. For example, the share of earnings held by the households in the top 1%
of the distribution of net worth.

permanent income. Permanent income inequality appears to be the byproduct of the changing

composition of wealth, rather than of increasing dispersion in human wealth.

A caveat is in order. All these results are static and one must consider the possibility that

rising human wealth concentration early in life generates rising asset wealth inequality later

in life. In the following section we revisit some of these issues.

Lifetime consumption, post-tax human wealth and human endowment values. In Table

5 we explore three alternative ways to gauge changes in the concentration of resources and

contrast them to previous results about the concentration of human wealth and permanent

income. For comparison, columns (1) and (2) in Table 5 reproduce results from Table 1 above.

In our baseline estimation we assume that human wealth is a function of the possible paths

of life-cycle labor supply observed in the data. This approach implicitly values realized, rather

than potential, earnings. To account for the value of the total endowment of human wealth (in-

cluding the opportunity cost of time) we re-estimate human wealth under the assumption that
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every available hour is valued at its market value. This assumes out the effect of differences

in lifetime labor supply. Column (3) in Table 5 shows that the resulting variable, denoted ‘hu-

man endowment value’, exhibits slightly lower concentration than our baseline human wealth

measure. This is not unexpected: our human wealth estimates account for differences in the

concentration of hours worked while the human endowment value ignores variation in hours

worked. Nonetheless, the change in concentration over time closely tracks baseline estimates

for human wealth, suggesting that wages rather than hours worked are responsible for the

growing concentration of human capital.

In column (4) we report estimates of the concentration of post-tax human wealth. These

estimates are obtained from the distribution of earnings after taxes and transfers.19 This ad-

justed measure of human wealth appears only slightly less concentrated than our baseline

human wealth estimates. Moreover it exhibits an almost identical pattern over time.

In the last column of the same table we also report a proxy of permanent income con-

centration based on lifetime consumption expenditures. This measure is obtained from the

present value of life-cycle consumption and is estimated exactly like the human wealth value,

computing the value of the flow of consumption expenditures rather than earnings. In this

way we are able to contrast our measures of lifetime wealth to the distribution of resources

as reflected in expenditures on non-durable consumption. Lifetime non-durable consumption

appears less concentrated in levels than permanent income, and exhibits only a small increase

between 1989 and 2016. While we know that the mapping from expendable income to actual

consumption is mediated by a variety of taxes and formal and informal transfers, the cross-

sectional distribution of lifetime consumption across households is also less concentrated than

that of post-tax human wealth. This suggests that households only consume a fixed amount

of their permanent income. Moreover, the amount of non-durable consumption accounts for

a progressively smaller share for households at the top of the wealth distribution. Of course,
19To approximate post-tax earnings we use a power function adjustment whose properties are described in

Guner, Kaygusuz, and Ventura (2014).
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our measure of consumption is far from perfect and conveys little information about durable

expenditures. Hence, we consider these results as a lower bound of the concentration of total

expenditures. Even so, the difference in magnitudes is significant enough to suggest the pres-

ence of: (i) informal insurance channels that induce a significant amount of redistribution; and

(ii) motives that induce households to save large amounts of their lifetime wealth. In fact, the

discrepancy between permanent income and consumption concentration clearly indicates that,

even at older ages, a large share of resources is being saved.

year Human Wealth Perm. Income Human Endowm. Human Wealth Lifetime Cons.
Value (post tax and transfers)

(1) (2) (3) (4) (5)

1989 0.369 0.414 0.345 0.360 0.300

1992 0.371 0.408 0.351 0.362 0.300

1995 0.374 0.426 0.353 0.365 0.302

1998 0.367 0.434 0.346 0.358 0.296

2001 0.371 0.468 0.352 0.361 0.298

2004 0.379 0.481 0.358 0.369 0.304

2007 0.381 0.506 0.360 0.372 0.304

2010 0.387 0.513 0.365 0.378 0.307

2013 0.400 0.528 0.376 0.391 0.314

2016 0.404 0.569 0.384 0.395 0.319

Table 5: This table reports the share of variable “X” in the hands of the households in the top 10% of
the distribution of that same variable “X”. For example, the share of earnings held by the households
in the top 10% of the distribution of earnings.

5.2 The Mechanics of Increasing Inequality

The preceding analysis provides a portrayal of the historical patterns of US wealth concen-

tration over the past few decades. Next we explore some related questions about the specific

mechanisms at work. Has the composition of households’ wealth changed over the past 30

years? How do young and old households in 2016 compare to their counterparts in 1989? Has
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demographic change contributed to growth in permanent income inequality? And which other

factors played a role?

While it is clear that households in the top of the net worth distribution have been steadily

increasing their share of assets, an offsetting effect might come from rising concentration of

human wealth in the hands of a different set of households at the top of the human wealth

distribution. In contrast, having the same subset of households sit at the top of both distribu-

tions would compound and exacerbate the concentration of permanent income. Hence, a key

question is whether the joint probability of being near the top of both the human and asset

wealth distributions has changed over time.

To answer these questions we perform several checks: (i) first, we directly measure how

much of the stock of total wealth in different years is accounted for by asset wealth; (ii) we

characterize the role of a changing age composition over the past few decades; (iii) we provide

a way to account for the joint evolution of the distribution of asset wealth and human wealth.

The changing importance of assets in households’ portfolios. So far we have provided

indirect evidence that the relative size of asset wealth as a share of total wealth may have

increased in the recent past. This has wide ranging implications for the nature and extent of

wealth inequality. A larger share of liquid assets would imply a better ability on the side of

households to respond to shocks like disability, unemployment and displacement; however, a

diminished role for human wealth may indicate that asset accumulation is driven by factors

other than hard work and higher early-life earnings. To assess the relative importance of

asset wealth we use our SCF extended sample and calculate, for each year in the sample, the

ratio of average asset wealth to total wealth across all households. The time series of this

ratio is plotted in Figure 9. It is apparent that asset wealth has become progressively more

important in households’ portfolios. Starting from a value of around 60% in the early 1990s,

asset wealth accounted in 2016 for almost 70% of total wealth. The only exceptions to this

systematic growth pattern occurred during the recession of the late 2000s, when asset prices
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and valuations were temporarily reduced. This phenomenon might partly due to the changing

age composition in the United States. We consider this possibility below.

Figure 9: Asset wealth as a share of total household wealth (average by year).
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The role of demographic change. One might hypothesize that the trend towards an older

population is responsible for part of the dynamics of inequality. To examine this possibility

we carry out a re-weighting exercise in the spirit of DiNardo, Fortin, and Lemieux (1996)

that allows us to verify how inequality in the variables we observe would have changed had

the age distribution stayed the same as in 1989. For each year we fit probit regressions with

a full set of age dummy variables, then we use the predicted probabilities to transform the

SCF sample weights into a new set of weights that forces the age distribution to be constant.

Figure 10 illustrates how the age distribution changed between 1989 and 2016, and how our

counterfactual weights reshape the 2016 age distribution.

Using the age correction described above we produce counterfactual versions of the con-

centration tables. Table 6 reproduces the top 10% shares of each variable under the counter-

factual re-weighting. Interestingly this counterfactual analysis indicates almost no change in

human wealth concentration, in contrast to the five percentage point increase we observe in
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Figure 10: Actual age distributions in 1989 and 2016 (left) and re-weighted counterfactual age
distribution in 2016 with actual age distribution in 1989 (right).
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the unadjusted baseline analysis. This discrepancy illustrates that the rising concentration of

human wealth follows from the fact that, in 2016, a much smaller segment of the population

is at their peak of human wealth. Hence fewer households outside the top 10% have large hu-

man wealth stocks in 2016 than in 1989. This mechanically accounts for the run-up in human

wealth concentration.

Finally, in our counterfactual age-adjusted analysis the concentration of lifetime wealth

and permanent income grows higher but not as high as in the baseline. This implies that asset

wealth has become increasingly important as a component of overall inequality.

Who got richer? Some inequality accounting. Very Preliminary In this section we

address the question of which type of households accounts for the increasing concentration of

permanent income (PI). By definition, the share of PI held by the households in the top 10%

of the PI distribution in period t can be written as

s10PI (t) =
PI10 (t)

PI10 (t) + PI90 (t)
,

where PIx (t) is the aggregate value of permanent income held by households in the top x% of

the distrbution of PI in year t. The share s10PI (t) can be split between the net worth component
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Year Net Worth Human Wealth Earnings Lifetime Wealth Perm. Income
(1) (2) (3) (4) (5)

1989 0.668 0.305 0.408 0.337 0.360
1992 0.669 0.298 0.397 0.322 0.339
1995 0.683 0.303 0.404 0.335 0.355
1998 0.690 0.299 0.405 0.353 0.375
2001 0.706 0.313 0.424 0.378 0.407
2004 0.703 0.314 0.415 0.378 0.411
2007 0.720 0.316 0.437 0.404 0.441
2010 0.759 0.306 0.444 0.379 0.419
2013 0.764 0.307 0.441 0.393 0.433

Table 6: This table reports the counterfactual share of variable “X” in the hands of the house-
holds in the top 10% of the distribution of that same variable “X”. For example, the share of
earnings held by the households in the top 10% of the distribution of earnings. These counter-
factuals hold that age distribution constant as it was in 1989.

and the human wealth component as follows

s10PI (t) =
NW 10 (t) +HW 10 (t)

NW 10 (t) +NW 90 (t) +HW 10 (t) +HW 90 (t)
.

Here NW n denotes the aggregate net worth value held by the top n% of the PI marginal dis-

tribution and HW n denotes the aggregate human wealth held by the same set of households.

We define the wedge δx (t) as the value of variable x that, if redistributed from the top 10%

to the bottom 90% of households, would make their relative share of x in year t identical to

that observed in 1989. That is, we define δx (t) as the value such that

x10 (t)− δx (t)
x90 (t) + δx (t)

=
x10 (1989)

x90 (1989)
.

The wedge δx (t) allows us to compute counterfactual inequality values for the distribution of

48



a variable x, which can be used to account for changes in the concentration of x over time.20

For instance, if the relative distribution of net worth had not changed between 1989 and

year t, the counterfactual share of permanent income (PI) held by households in the top 10%

of the PI distribution in period t would be

s̃10PI (t, δNW ) =
NW 10 (t) +HW 10 (t)− δNW (t)

NW 10 (t) +NW 90 (t) +HW 10 (t) +HW 90 (t)
,

an expression that features the net worth wedge δNW (t) only at the numerator.

Similar reasoning suggests that, absent changes in the distribution of human wealth after

1989, the counterfactual share of permanent income held by the the top 10% of households in

the PI distribution would be

s̃PI
10 (t, δHW ) =

NW 10 (t) +HW 10 (t)− δHW (t)

NW 10 (t) +NW 90 (t) +HW 10 (t) +HW 90 (t)
.

By definition, any change in the observed value of the share s10PI that is not accounted

for by δNW and δHW must be due to changes in the relative importance of net worth and

human capital in the composition of permanent income. Therefore the difference ∆NW =

s10PI (t)− s̃10PI (t, δNW ) measures how much of s10PI (t) is due to increasing concentration of net

worth in the hands of the top 10% of households. Similarly, the difference ∆HW = s10PI (t)−

s̃10PI (t, δHW ) quantifies the role of human wealth hoarding by the top households. Finally,

the difference ∆resid = (s10PI (t)− s10PI (1989)−∆NW −∆HW ) identifies how much of the

change in PI concentration is due to a shift in the composition of PI towards NW or HW ,

rather a change in the marginal distributions of NW or HW .

We use this decomposition to make sense of changes in PI concentration between 1989

20It can be shown that

δx (t) = x10 (t) ·
[

x90 (1989)

x10 (1989) + x90 (1989)

]
− x90 (t) ·

[
x10 (1989)

x10 (1989) + x90 (1989)

]
.
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and 2013. As shown in Table 2 the share of permanent income in the hands of the top 10%

of households (ranked according to their net worth) went up from 0.283 to .395. That is, in

2013 the the top 10% of households by net worth managed to lay claims on an extra 11% of

total resources in the economy. Out of this 11% gain, roughly 3.6% was due to higher con-

centration in the marginal distribution of net worth, while only 0.2% can be attributed to more

concentration in the marginal distribution of human wealth. The remaining change (roughly

7.4% out of 11%) can be attributed to (i) a change in the composition of permanent income

that puts more weight on net worth and less on human wealth, and/or (ii) to an increase in the

share of households that sit at the top of both the net worth and human wealth distribution.

However, the share of households who belong to the top 10% of both marginal distributions

(of net worth and human wealth) actually decreased slightly from 16.6% in 1989 to 15.1% in

2013. This implies that the higher concentration of permanent income is mostly due to the

increasing importance of real/financial net worth as a component of permanent income.

While different families populate the top of the distributions of net worth and human

wealth, the role of asset wealth has a driver of permanent income appears to have increased

significantly between 1989 and 2013, and this largely explains the higher concentration of

permanent income in the hands of high net worth households.

6 Conclusions

Accounting for heterogeneity in wealth and lifetime resources is key to provide a broader as-

sessment of cross-sectional inequality and of its evolution. In this paper we outline a new

approach that allows to quantify the value of human capital (human wealth) held by differ-

ent households. Our analysis brings together different data sources and delivers estimates of

households’ wealth and permanent income. These estimates do not require strong assump-

tions about preferences or income processes as they rely on novel results on non-parametric
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identification. Our estimates contain new and valuable information about heterogeneity along

a variety of wealth and income measures. This information is especially useful when account-

ing for the changing patterns of wealth inequality over the past three decades.

We show that human wealth is less concentrated than net worth. Hence, inequality in

permanent income is actually lower than inferred from popular measures of inequality that

only focus on asset wealth. However, it is also apparent that richer households have accrued

a growing share of permanent income. In fact, concentration of permanent income has grown

much faster than concentration of net worth. As a consequence, effective inequality has grown

more than previously thought, albeit from a lower initial level.

We document that changes in the marginal distributions of net worth and human wealth

only account for a small part of the significant increase in permanent income concentration.

Through simple accounting exercises we show that the increasing concentration of permanent

income is mostly due to the mounting importance of asset wealth as a share of total wealth.

We also find that the share of households who sit at the top of both net worth and human

wealth distributions has actually decreased between 1989 and 2013, indicating that increased

concentration of permanent income cannot be explained by a small set of households hoarding

all types of wealth. Instead, the key driver of permanent income concentration seems to be the

expansive growth of real/financial assets as share of the wealth portfolios of rich households.

High net worth households, rather than high human wealth households, account for a larger

share of total permanent income in 2016 than they did in 1989, suggesting that changes in

wealth composition may be key to understand recent inequality patterns.
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A Derivation of the Pricing Equation

We derive an individual’s valuation of his/her own human capital by determining the shadow

price of an asset that exactly replicates that individual’s state-contingent labor market out-

comes. To accomplish this we introduce a hypothetical asset that pays dividends per share

equal to individual i’s yearly labor income, but also requires the individual to commit to their

state-contingent labor supply plan. 21 Because of this commitment we replace withit from the

problems described above with yit, with the understanding that yit is state-contingent earnings

under the optimal labor supply plans of problems (1) and (4) above.22

Human Capital Valuations of Married Individuals. We begin by valuing individual i’s

human capital when i is married. The number of shares of the hypothetical asset that i’s

household owns at time t is eit, and the price of this asset is θit. We could also introduce an

asset based on j’s human capital, but that is not necessary to value i’s human capital, hence

we suppress that notation for now. When the hypothetical asset eit is introduced, the budget

constraint for a married household becomes:

∑
κ∈k

aκ(ij)t+1 + c(ij)t + θiteit+1 ≤ θiteit + (1 + eit)yit + yjt (39)

+
∑
κ∈k

Rκ
t a

κ
(ij)t − Tt

(
a(ij)t, yit, yjt

)
.

Furthermore, we include eit as an additional state variable in the household planner’s problem

in equation (4), as well as in the definition of an individual’s utility from marriage in (3). Given

21Of course, in reality no one would be willing to buy this asset from i because of the inherent commitment
problem. Hence, the valuation we derive is truly a shadow price representing what human capital is worth to its
owners. As discussed at length by Benzoni and Chyruk (2015), it is not normally possible to enforce contracts
written against future labor services and ownership of human capital is not transferable (that is, human capital is
a non-traded asset).

22As noted by Huggett and Kaplan (2016), this approach to valuing non-traded assets was first introduced by
Lucas Jr (1978). Huggett and Kaplan (2016) also adopt this approach.
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these adjustments we can rewrite the household planner’s problem in a recursive manner as:

V M
(ij)(a(ij)t, eit, Xit, Xjt, ηi, ηj, Ω

t) = (40)

max
b(ij)t

{
λ(ij)u (cit, `it) + (1− λ(ij))u (cjt, `jt)

+ λ(ij)β(1− µ̃(ij)t)E{Ωt+1,ait+1}
[
V S
i (ait+1, eit+1, Xit+1, ηi, Ω

t+1)|a(ij)t+1

]
+ (1− λ(ij))β(1− µ̃(ij)t)E{Ωt+1,ajt+1}

[
V S
j (ajt+1, Xjt+1, ηj, Ω

t+1)|a(ij)t+1

]
+ βµ̃(ij)tE{Ωt+1}

[
V M
(ij)(a(ij)t+1, eit+1, Xit+1, Xjt+1, ηi, ηj, Ω

t+1)
] }
,

where the decision vector b(ij)t now includes eit+1. After using the budget constraint in (39) to

substitute cit out of the problem in (40), we can easily derive the following first-order condition

for the optimal choice of eit+1:

uc(cit, `it)ϑθit = (41)

β(1− µ̃(ij)t)
∂

∂eit+1

E{Ωt+1,ait+1}
[
V S
i (ait+1, eit+1, Xit+1, ηi, Ω

t+1)|a(ij)t+1

]
+

1

λ(ij)
βµ̃(ij)t

∂

∂eit+1

E{Ωt+1}
[
V M
(ij)(a(ij)t+1, eit+1, Xit+1, Xjt+1, ηi, ηj, Ω

t+1)
]
.

To proceed we must calculate the derivatives of the married and single continuation values

using envelope conditions. For the married continuation value this involves straightforward

differentiation of equation (40) with respect to eit, noting that the cit has been replaced by the

budget constraint. The result is,

∂

∂eit+1

V M
(ij)(a(ij)t+1, eit+1, Xit+1, Xjt+1, ηi, ηj, Ω

t+1) = (42)

λ(ij)uc(c
M
it+1, `

M
it+1)ϑ

(
θMit+1 + yMit+1

)
,

57



where the superscript M indicates quantities that arise during marriage. To obtain the deriva-

tive of a single person’s value function we must first be explicit about the problem they solve

when single. Extending equation (1) to include the hypothetical asset eit+1 results in the fol-

lowing problem:

V S
i (ait, eit, Xit, ηi, Ω

t) = (43)

max
cit,`it,hit,ait+1

{
u (cit, `it) + β (1− µit)E{Ωt+1}

[
V S
i (ait+1, eit+1, Xit+1, ηi, Ω

t+1)
]

+ βµitE{Ωt+1,Xjt+1,ηj ,ajt+1}
[
V M
i (a(ij)t+1, eit+1, Xit+1, Xjt+1, ηi, ηj, Ω

t+1)
] }
.

The maximization in (43) is subject to the usual time allocation and borrowing constraints, as

well the extended budget constraint,

∑
κ∈k

aκit+1 + cit + θiteit+1 ≤ θiteit + (1 + eit)yit (44)

+
∑
κ∈k

Rκ
t a

κ
it − Tt (ait, wit, hit) .

The derivative of the value function in (43) can thus be derived by replacing cit with the

extended budget constraint, resulting in:

∂

∂eit+1

V S
i (ait+1, eit+1, Xit+1, ηi, Ω

t+1) = uc(c
S
it+1, `

S
it+1)

(
θSit+1 + ySit+1

)
. (45)

Finally, using equations (42) and (45), one can re-arrange the first order condition for optimal

eit+1 chosen by a married household (equation 41) into an expression describing the valuation
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of i’s human capital θMit (the purchase price per share of eit+1):

θMit =β(1− µ̃(ij)t)
1

ϑ
E{Ωt+1,ait+1}

[
uc(c

S
it+1, `

S
it+1)

uc(cit, `it)

(
ySit+1 + θSit+1

)]
(46)

+ βµ̃(ij)tE{Ωt+1}

[
uc(c

M
it+1, `

M
it+1)

uc(cit, `it)

(
yMit+1 + θMit+1

)]
.

The result that stochastic discount factors are a component of the value of human capital in

this model is related to general asset pricing formulations found in the literature following

the seminal work of Lucas (1978). The probability of a change in marital status, and the

surplus generated by marriage (through the economies of scale parameter ϑ) also factor into

our valuation results.

Human Capital Valuations for Single Individuals. We derive the human capital valuation

equations of an unmarried individual by considering their first-order condition for the optimal

choice of eit+1 in problem (43):

uc(cit, `it)θit = (47)

β(1− µit)
∂

∂eit+1

E{Ωt+1,ait+1}
[
V S
i (ait+1, eit+1, Xit+1, ηi, Ω

t+1)|a(ij)t+1

]
+ βµit

∂

∂eit+1

E{Ωt+1,Xjt+1,ηj ,ajt+1}
[
V M
i (a(ij)t+1, eit+1, Xit+1, Xjt+1, ηi, ηj, Ω

t+1)
]
.

As was the case when deriving valuations for married individuals, we need to substitute out

the derivatives of continuation values. For the derivative of V S
i (·) this is straightforward, and

in fact we have the expression in equation (45) already. However, the derivative of V M
i (·)

proves more difficult because we cannot resort to a standard envelope condition. This is the

case because V M
i (·) is not an indirect utility function, or in other words is not the solution to

an individual optimization problem. Rather, V M
i (·) is a component of the objective function

maximized by the household planner. To compute the necessary derivative here we must first
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characterize the effect of pre-marital investments on the utility allocated to the spouse making

those investments, which requires us to make assumptions about how the Pareto weight λ(ij)

is determined in the event that i gets married. Indeed, valuation of pre-marital human capital

investments is inextricably linked to the household bargaining process upon marriage.

As anticipated above, we assume symmetric Nash Bargaining over the surplus generated

by marriage. Under this assumption we can derive a relationship pinning down how the marital

utility of person i changes if they make pre-marital investments. Symmetric Nash Bargaining

implies that i’s utility in marriage must increase by at least as much as their outside option

(utility from being single), plus half of any surplus generated by pre-marital investment.

Specifically we assume that a married household’s Pareto weight solves

max
{VM

i ,VM
j }

(
V M
i − V S

i

) (
V M
j − V S

j

)
, (48)

where we have suppressed the state variables within the value functions for clarity. Let

G(V M
i , V M

j ) = 0 be the Pareto frontier of household allocations, in which case the Nash

Bargaining solution must satisfy

(
V M
i − V S

i

)
=
G2

G1

(
V M
j − V S

j

)
. (49)

To translate this condition into something empirically useful, note that an equivalent formula-

tion of the household planning problem in equation (40) is:

max
{
λ(ij)V

M
i + (1− λ(ij))V M

j

}
subject to

G(V M
i , V M

j ) = 0.

Combining the first-order conditions from this problem with those from the underlying Nash
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Bargaining problem results in:

(
V M
i − V S

i

)
=

1− λ(ij)
λ(ij)

(
V M
j − V S

j

)
. (50)

The equivalence of equations (49) and (50) is due to the fact that λ(ij) is the Pareto weight that

implicitly solves the Nash Bargaining problem in equation (48).

Next, we examine equation (49) evaluated at the point at which person i brings exactly

zero units of eit to the marriage, as this is the solution we observe in the data. Computing the

total differential of this equation with respect to eit results in

∂V M
i

∂eit
− ∂V S

i

∂eit
=

(
G2

G1

)
∂V M

j

∂eit
+

1

G1

(
∂G2

∂eit

(
V M
j − V S

j

)
− ∂G1

∂eit

(
V M
i − V S

i

))
. (51)

While this expression may seem intractable, one can easily show that at the optimal solution

to the household planner’s problem

(
∂G2

∂eit
/
∂G1

∂eit

)
=
uc(cit, `it)

uc(cjt, `jt)
=

λ(ij)
1− λ(ij)

. (52)

Therefore, the last term of equation (51) equals zero when evaluated at the solution to the

bargaining problem. Thus, a final simplified relationship between the derivatives of individual

utilities, evaluated at the solution to the bargaining problem, is

∂V M
i

∂eit
− ∂V S

i

∂eit
=

1− λ(ij)
λ(ij)

∂V M
j

∂eit
. (53)

Intuitively, the extent to which i’s utility in marriage will increase in excess of their outside

option depends on their ex-post Pareto weight and how valuable the hypothetical asset would

be to their spouse.

To utilize equation (53), first note that the definition of the household planner’s optimiza-
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tion objective in (4) implies that the envelope condition in (42) can be re-written as:

λ(ij)
∂V M

it+1

∂eit+1

+ (1− λ(ij))
∂V M

jt+1

∂eit+1

= λ(ij)uc(c
M
it+1, `

M
it+1)ϑ

(
θMit+1 + yMit+1

)
. (54)

Combining this with the Nash Bargaining implication in (53), we obtain an extremely useful

result characterizing the effect of pre-marital investments on the utility within marriage:

∂V M
it+1(·)
∂eit+1

=
1

2
uc(c

M
it+1, `

M
it+1)

1

ϑ

(
θMit+1 + yMit+1

)
+

1

2

∂V S
it+1(·)
∂eit+1

. (55)

The intuition for this equation relates to how much of the return on the hypothetical asset will

be allocated to individual i by the household planner. A lower bound is the change in their

utility if they exercise their outside option, which is captured by ∂V S
it+1/∂eit+1. An upper

bound is the marginal change in their utility if the entire return on the asset, including surplus

due to economies of scale, is allocated to i. With symmetric bargaining exactly one half of the

component pertaining to the return that exceeds the effect on i’s outside option is paid to i.

Equation (55) is useful because we now have an expression to substitute into equation (41),

which was our objective when we set out to analyze the bargaining problem. Doing this, and

substituting the envelope condition for single households in equation (45), allows us to derive

the following valuation formula for the human capital of a currently unmarried person i:

θSit =β(1−
µit
2
)E{Ωt+1}

[
uc(c

S
it+1, `

S
it+1)

u′(cit, `it)

(
ySit+1 + θSit+1

)]
(56)

+ β
µit
2
E{Ωt+1,Xjt+1,ηj ,ajt+1}

[
uc(c

M
it+1, `

M
it+1)

u′(cit, `it)

1

ϑ

(
yMit+1 + θMit+1

)]
.

While this expression is similar to canonical asset pricing formulations, it makes clear that

the correct pricing relationship involves a biased expectation of future returns to human capi-

tal, where the bias derives from the implicit extra weight single households place on outcomes

in the event of remaining single. The above equation is also informative as to how one would
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test the robustness of the symmetric bargaining assumption: asymmetric bargaining weights

would result in factors other than 1/2 (but still on the unit interval) being used to re-weight

single and married outcomes.

We can subsume all sources of uncertainty into a single expectation operator Eit, which

also accounts for the re-weighting of unmarried future outcomes (as opposed to an unweighted

expectation Eit). Having done this we can summarize the value of human capital for any

individual as

θit =Eit
[
β
uc(cit+1, `it+1)

uc(cit, `it)
(yit+1 + θit+1)

]
, (57)

where future variables implicitly depend on marital status. Clearly, valuations of one’s own

human capital depend on stochastic discount factors. Thus, state-contingent realizations of

individual consumption matter for valuing state-contingent human capital payoffs. The last

step in our analysis is to evaluate equation (57) at the point eit = 0 so that the equation is

analogous to real-world valuations where human capital assets are not traded. Then, given

some estimate of the distribution of state-contingent consumption realizations and appropriate

weighting of future outcomes, human capital valuations can be estimated.
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B Supplementary Figures

Figure 11: Average human wealth, net worth and total wealth over the lifecycle, across their
respective percentiles. Values in 2016 dollars.
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