Capital Controls, Monetary Policy, and Sudden Stops

Michael B. Devereux¹ Eric R. Young² Changhua Yu^3

¹University of British Columbia

 2 University of Virginia

³Peking University

AEPC Conference, San Francisco Federal Reserve November 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ (~

Macroeconomic Policy for Emerging Economies

- Capital inflows may stimulate growth, but have downside
- Booms in asset prices appreciating currency, followed by "Sudden Stops", crashes and depreciation

Macroeconomic Policy for Emerging Economies

- Capital inflows may stimulate growth, but have downside
- Booms in asset prices appreciating currency, followed by "Sudden Stops", crashes and depreciation
 - Classic Case is a) sharp fall in GDP, b) big reversal of CA,
 c) large ER depreciation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Argentina 2001 case

► Source: WDI

Experience of EME's pre and post GFC has been similar

► Source: WEO

Policy for EMEs

- Independent monetary policy and flexible exchange rates not necessarily a solution
 - Policy 'dilemma' policy effectiveness or open capital markets, not both
 - Need to supplement flexible exchange rates with capital market intervention?

Policy for EMEs

- Independent monetary policy and flexible exchange rates not necessarily a solution
 - Policy 'dilemma' policy effectiveness or open capital markets, not both
 - Need to supplement flexible exchange rates with capital market intervention?
- Complete closure of capital markets unrealistic for most EMEs
 - ▶ But selective capital controls may be needed?
 - New 'orthodoxy' calls for combination of capital controls and monetary policy

When capital flows generate financial instability and sudden stops, what can/should monetary policy do?

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
- ► Little...

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
- ► Little...
- Should monetary policy be supplemented with capital controls?

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
- ► Little...
- Should monetary policy be supplemented with capital controls?
- ► Yes..

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
- ► Little...
- Should monetary policy be supplemented with capital controls?
- ► Yes..
- Should monetary policy/capital controls be macro-prudential (lean against the wind)?

- When capital flows generate financial instability and sudden stops, what can/should monetary policy do?
- ► Little...
- Should monetary policy be supplemented with capital controls?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● の�?

- ► Yes..
- Should monetary policy/capital controls be macro-prudential (lean against the wind)?
- ► Yes

This paper

Small open-economy DSGE model

- Financial frictions
- Sudden stops associated with occasionally-binding credit constraints
- Sticky nominal prices
- Use this to conduct a normative analysis of optimal monetary policy and capital controls

Dual roles for economic policies

- Monetary policy useful due to nominal rigidities
- Capital controls fix pecuniary externalities caused by financial frictions

Dual roles for economic policies

- Monetary policy useful due to nominal rigidities
- Capital controls fix pecuniary externalities caused by financial frictions
- ► Are these policies complements or substitutes?

Dual roles for economic policies

- Monetary policy useful due to nominal rigidities
- Capital controls fix pecuniary externalities caused by financial frictions

▲□▶ ▲□▶ ▲■▶ ▲■▶ ■ のQ@

- ► Are these policies complements or substitutes?
- Should monetary policy/capital controls be macro-prudential?

- Monetary policy: Price stability in normal times, inflation during a crisis
- ► Capital controls: capital inflow tax in a crisis
 - Capital controls substitutes for an active monetary policy

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● の�?

- But, capital controls suffer from severe problem of time consistency
- ▶ No role for 'macro-prudential' policy

Related literature: Theory

- Sudden Stop Crises and Macro-prudential Policy
 - ▶ Mendoza (2010), Mendoza and Yue (2010)
 - Bianchi (2011), Bianchi and Mendoza (2013), Jeanne and Korinek (2010), Benigno et al. (2013), Stein (2012), Devereux Yu (2016, 17)
- Aggregate demand externalities, exchange rate pegs
 - Farhi and Werning (2012, 2014, 2015), Korinek and Simsek (2014)
- Monetary policy
 - Fornaro (2015), Schmitt-Grohe and Uribe (2015), Davis and Presno (2015), Ottonello (2015) Liu and Spiegel (2015)
- ► Monetary stability vs. financial stability
 - Limited interaction: i.e., Collard, Dellas, Diba and Loisel (2013)
 - Leaning against growing financial imbalances, but secondary in monetary policy, i.e., Borio and Lowe (2002); Woodford (2012)
 - Financial stability is price stability: i.e., Brunnermeier and Sannikov (2012)

The model

- ► Wholesale good production
 - ▶ Imported intermediate goods, hire labor and rent capital
- Final good production
 - Use wholesale goods to produce varieties of consumption goods (sticky prices)
- Consumption composite
 - Domestically consumed or exported
- Firm-households
 - Own all domestic firms, make consumption-saving decisions
 - Accumulate capital (in aggregate fixed supply)
 - Supply labor
 - Borrow in dollars from the rest of the world
 - Face borrowing constraints (expected value of capital is collateral)

Budget Constraint

$$P_{t}c_{t} + Q_{t}k_{t+1} + \frac{B_{t+1}}{R_{t+1}} + \frac{B_{t+1}^{*}\mathcal{E}_{t}}{R_{t+1}^{*}}(1 - \tau_{c,t})$$

$$\leq W_{t}l_{t} + k_{t}(R_{K,t} + Q_{t}) + B_{t} + B_{t}^{*}\mathcal{E}_{t} + T_{t}$$

$$+ \left[P_{M,t}M(Y_{F,t}, L_{t}, K_{t}) - (1 + \tau_{N})Y_{F,t}P_{F,t}^{*}\mathcal{E}_{t} - W_{t}L_{t} - R_{K,t}K_{t}\right] + D_{t}.$$

Collateral constraint

$$\vartheta Y_{F,t} P_{F,t}^* (1+\tau_N) - B_{t+1}^* \le \kappa_t E_t \left\{ \frac{Q_{t+1} k_{t+1}}{\mathcal{E}_{t+1}} \right\}$$

▲□▶ ▲□▶ ▲≡▶ ▲≡▶ ▲□▶ ▲□

Budget Constraint

$$P_{t}c_{t} + Q_{t}k_{t+1} + \frac{B_{t+1}}{R_{t+1}} + \frac{B_{t+1}^{*}\mathcal{E}_{t}}{R_{t+1}^{*}}(1 - \tau_{c,t})$$

$$\leq W_{t}l_{t} + k_{t}(R_{K,t} + Q_{t}) + B_{t} + B_{t}^{*}\mathcal{E}_{t} + T_{t}$$

$$+ \left[P_{M,t}M(Y_{F,t}, L_{t}, K_{t}) - (1 + \tau_{N})Y_{F,t}P_{F,t}^{*}\mathcal{E}_{t} - W_{t}L_{t} - R_{K,t}K_{t}\right] + D_{t}.$$

Collateral constraint

$$\vartheta Y_{F,t} P_{F,t}^* (1+\tau_N) - B_{t+1}^* \le \kappa_t E_t \left\{ \frac{Q_{t+1} k_{t+1}}{\mathcal{E}_{t+1}} \right\}$$

- Two kinds of borrowing
 - Inter-temporal borrowing
 - ► A-temporal working capital loans
- ► Future expected capital price limits borrowing capacity

Optimal monetary policy under discretion

- Policy maker maximizes the representative household's welfare
- ▶ Policy instrument: nominal interest rate R_{t+1}

$$V(b_t^*, Z_t) = \max_{\{\Xi\}} \left\{ U(C_t, L_t) + \beta E_t V\left(b_{t+1}^*, Z_{t+1}\right) \right\}$$

with

$$\Xi \equiv \{L_t, C_t, Y_t, Y_{F,t}, b_{t+1}^*, q_t, \mu_t, r_{K,t}, e_t, p_{M,t}, \pi_t\}$$

- subject to implementability constraints
- Key feature is no commitment government takes future policy functions as given

Theoretical results

- ► Absent collateral constraints, price stability is optimal
- Implication active monetary policy used only due to presence of financial frictions

Proposition 1

• Without working capital in the collateral constraint, $\vartheta = 0$, the optimal monetary policy strictly stabilizes inflation $\pi_t = \pi$.

Intuition: Monetary policy to correct pecuniary externalities

Planner

$$1 = \lambda_t R_{t+1}^* (1 + \kappa_t \frac{\partial (q_{t+1}/e_{t+1})}{\partial b_{t+1}^*}) + E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\}$$

Private sector

$$1 = \mu_t R_{t+1}^* + E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\},\,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Intuition: Monetary policy to correct pecuniary externalities

Planner

$$1 = \lambda_t R_{t+1}^* (1 + \kappa_t \frac{\partial (q_{t+1}/e_{t+1})}{\partial b_{t+1}^*}) + E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\}$$

Private sector

$$1 = \mu_t R_{t+1}^* + E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\},\,$$

- When $\mu > 0$, want to raise b_{t+1}^* to raise q_{t+1} .
- ▶ But without working capital cannot do this

$$-b_{t+1}^* \le \kappa_t E_t \left\{ \frac{q_{t+1}}{e_{t+1}} (b_{t+1}^*) k_{t+1} \right\}$$

Proposition 2

- When $\mu_t = 0$ (constraint not binding), monetary policy stabilizes inflation
 - ► No macro-prudential role for monetary policy

Proposition 2

- When $\mu_t = 0$ (constraint not binding), monetary policy stabilizes inflation
 - ► No macro-prudential role for monetary policy

Intuition: Planner/Household Euler equations identical

$$1 = E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\}$$

- \blacktriangleright Does not depend on $E_t \mu_{t+1}$
- ▶ Therefore, no pecuniary externality to correct

Optimal monetary and capital control policy

▶ Policy instruments: R_{t+1} and 'capital control' $\tau_{c,t}$

$$V(b_t^*, Z_t) = \max_{\{\Xi\}} \left\{ U(C_t, L_t) + \beta E_t V\left(b_{t+1}^*, Z_{t+1}\right) \right\}$$

with

$$\Xi \equiv \{L_t, C_t, Y_t, Y_{F,t}, b_{t+1}^*, q_t, \mu_t, r_{K,t}, e_t, p_{M,t}, \pi_t\}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Subject to implementability constraints
- Optimal capital control
- Omit foreign bond Euler equation from the set of constraints

When the social planner sets monetary policy and inter-temporal capital inflow tax without commitment: a) The optimal monetary policy strictly stabilizes inflation $\pi_t = \pi$, When the social planner sets monetary policy and inter-temporal capital inflow tax without commitment: a) The optimal monetary policy strictly stabilizes inflation $\pi_t = \pi$,

b) The capital inflow tax satisfies,

$$\tau_{c,t} \equiv \frac{\mu_t R_{t+1}^*}{\rho} \left[-1 + (\rho - 1)\kappa_t \frac{\partial(q_{t+1}/e_{t+1})}{\partial b_{t+1}^*} \right],$$

Impose a capital inflow tax when constraint is binding

Intuition

- ▶ Part a) depart from $\pi_t = \pi$ only to influence b_{t+1}^* through working capital
- But capital inflow tax is perfect substitute for monetary policy

Intuition

Part b) Private Euler equation

$$1 - \tau_{c,t} = E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\} + \mu_t R_{t+1}^*$$

Planner Euler equation

$$1 = E_t \left\{ \beta \frac{U_c(t+1)}{U_c(t)} \frac{e_{t+1}}{e_t} R_{t+1}^* \right\} + \lambda_t (1 + \kappa_t \frac{\partial (q_{t+1}/e_{t+1})}{\partial b_{t+1}^*})$$

► Tax corrects the pecuniary externality

Comments

- When constraint binds, planner corrects pecuniary externality through capital inflow tax - correct private sector's 'over-borrowing'
 - ▶ But welfare implications are questionable see below

Comments

- When constraint binds, planner corrects pecuniary externality through capital inflow tax - correct private sector's 'over-borrowing'
 - ▶ But welfare implications are questionable see below
- When constraint doesn't bind, no gain from capital inflow tax

Comments

- When constraint binds, planner corrects pecuniary externality through capital inflow tax - correct private sector's 'over-borrowing'
 - ▶ But welfare implications are questionable see below
- When constraint doesn't bind, no gain from capital inflow tax
- With *both* wage and price rigidities, capital controls do not fully substitute for monetary policy

Quantitative evaluation

Data sample: 26 emerging market economies during 1980-2014

Parameter		Values
Preference		
eta	Subjective discount factor	0.90
σ	Relative risk aversion	2
u	Inverse of Frisch labor supply elasticity	1
Production		
$lpha_F$	Intermediate input share in production	0.145
α_L	Labor share in production	0.57
α_K	Capital share in production	0.14
ϑ	Share of working capital	1.4
ϕ_P	Price adjustment cost	76
γ	Asymmetry of price adjustment cost	-100
$\dot{ heta}$	Elasticity of substitution among varieties	10
ρ	Trade elasticity of substitution	5
$.\\Shocks$		
ρ_A	Persistence of TFP shocks	0.60
σ_A	Standard deviation of TFP shocks	0.0295
ρ_R	Persistence of foreign interest rate shocks	0.42
σ_R	Standard deviation of foreign interest rate	0.0133
20	shocks	
$p_{H,H}$	Transitional probability of high leverage to	0.9722
,	high leverage	
$p_{L,L}$	Transitional probability of low leverage to	0.7323
_ ; _	low leverage	

Table: Parameter values

Crisis 'event': CC binds at t = 0 Policy=price stability

~ ~ ~

Optimal monetary policy

Inflation when the constraint binds

✓) Q (∿

=

Event analysis: CE vs. optimal monetary policy

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Key findings

- Outside of crises , price stability is optimal
 No macro-prudential interest rate activity
- During crisis (when $\mu_t > 0$) generate inflation
- But has only small effect on real economy
- ► Small effects on q or b^*

Now allow for capital Controls

- When $\mu_t > 0$, policy maker imposes capital inflow tax?
- ▶ In baseline calibration, this raises $E_t \frac{q_{t+1}}{e_{t+1}}$, relaxes constraint

Optimal monetary vs. monetary & capital control policies

 Capital inflow taxes reduce the fall in output during a crisis

- ▶ By reducing borrowing, relax the credit constraint
- But in a time-consistent equilibrium, borrowing turns out to be inefficiently low

Equilibrium time consistent policy functions

E 990

Equilibrium time consistent policy functions

In equilibrium, lower borrowing, and tighter borrowing

Conditional welfare gains

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Conclusion: time consistent capital controls reduce welfare

- Policymaker corrects current pecuniary externality -'overborrowing' in order to raise $E(q_{t+1})$ and relax constraint
 - But ignores the effect on q_t
- In equilibrium, lower q_t and inefficiently low debt
 - ► In equilibrium, the economy is 'underborrowing'

▶ But what taxes are optimal with commitment?

Policy under commitment: A simplified perfect foresight model

Consider a special path with

$$\mu_{t-2} = \mu_{t-1} = 0, \quad \mu_t > 0, \quad \mu_{t+1} = \mu_{t+2} = 0$$

Optimal Policy:

• Tax inflows in period t

 $\tau_{c,t} > 0$

• Subsidize inflows at period t + 1

 $\tau_{c,t+1} < 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ (~

Policy under commitment: Ad hoc capital inflow subsidies

Let's conjecture simple rule $\tau_{c,t} = -\varsigma \mu_t$ with $\varsigma = 0.2$

Policy under commitment: Ad hoc capital inflow subsidies

Figure: $\tau_{c,t} = -\varsigma \mu_t$ with $\varsigma = 0.2$

Conclusions

- Monetary policy should generate inflation during a crisis, even though it depreciates the currency
- Capital controls are welfare-reducing and should be kept out of the control of the central bank
- Arguments for prudential policymaking depend critically on nature of borrowing constraint