Near-Rationality and Inflation in Two Monetary Regimes

by Laurence Ball

San Francisco Fed/Stanford Institute for Economic Policy Research Conference **Structural Change and Monetary Policy** March 3–4, 2000

Comments by Jeff Fuhrer

Federal Reserve Bank of Boston

Overview

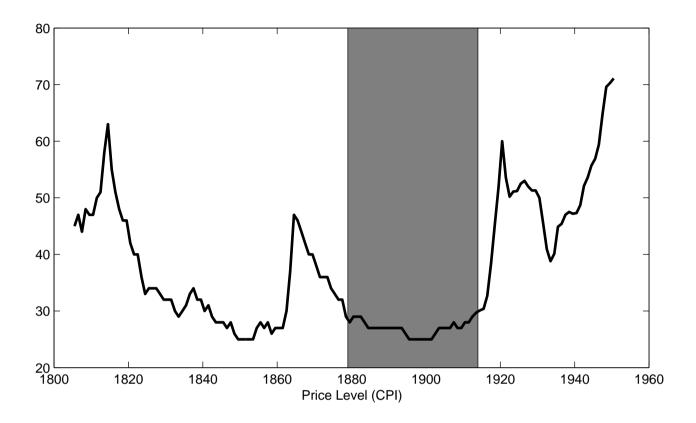
- This paper addresses **A Big Question** for macro today: What puts the persistence in inflation?
- A few candidates:
 - Wage and price-setting "machinery" (e.g. contracts)
 - Sluggish expectations
 - Monetary policy shifts, imperfect credibility
 - Learning?
 - Some interaction among these
- This paper makes a contribution to this debate, focusing on expectations (or the interaction of expectations and monetary regime)
- Ball's paper boiled down: use the lags of inflation as expectations in an expectations-augmented Phillips curve → it fits!

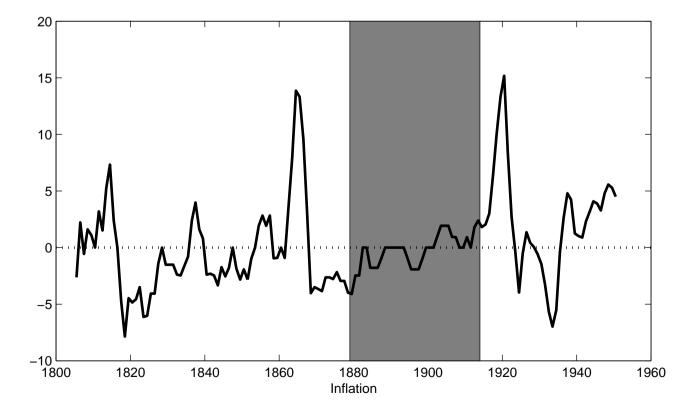
Nits on Terminology

- Distinguish "Backward-Looking" (BL) from "Naive" $(\pi_t^e = \pi_{t-1})$ from "Random Walk" $(\pi_t = \pi_{t-1} + \epsilon_t)$ from "Multivariate Backward-Looking" (as in VARs) from "Restricted Multivariate Backward-Looking" (i.e. restricted linear structural models, RE or otherwise)
- Ball: if Fed adopts price-level targeting, inflation has negative serial correlation, so "firms with BL expectations" would make big errors → BL not "nearrational".
- Looking backwards in that case could still be OK, but it would depend on *how* you look backwards. Wouldn't want to use the AR coefficients from the inflation-targeting regime.
- Similar argument for early vs. late period

Stationarity of inflation and nominal interest rates

- Post-1960 period: "policy has accommodated shocks to inflation, leading the shocks to have permanent effects."
- Really? Inflation today is ≈ 2%. Inflation in 1980 averaged almost 14%; by 1984 it averaged 4%. This doesn't look permanent.
- If inflation stationary, then nominal rates also stationary (barring permanent and large shifts in equilibrium real rate).


How Representative is the Early Period? (Persistence is common)


- Look at longer stretch of price series (chart 1)
- 1879-1914 is a very quiet period for prices—more of an aberration?
- Inflation persistence is a feature for *many* periods of history that differ with regard to M-policy—not just post-1945.
- If I estimate simple univariate models on earlier or later periods, I get:

Period	Sum of AR Coeffs. (<i>p</i> -value)
1846-1960	.51 (.000)
1918-1940	.54 (.004)
1860-1879	.58 (.008)
1810-1840	.31 (.09)

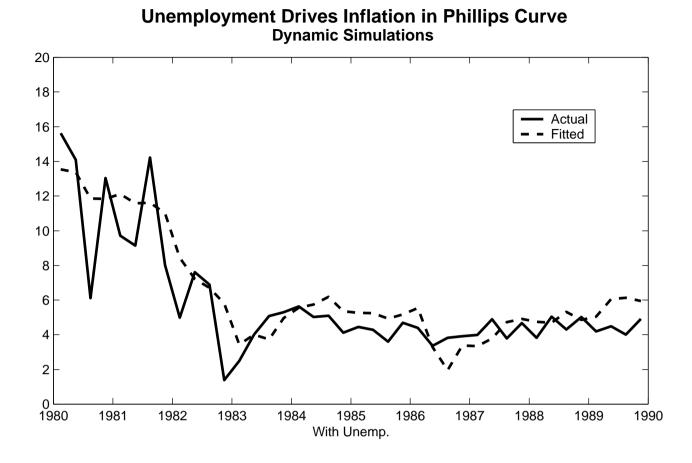
• Need to explain why persistence is so common, across other monetary regimes, wars, Great Depression, etc.

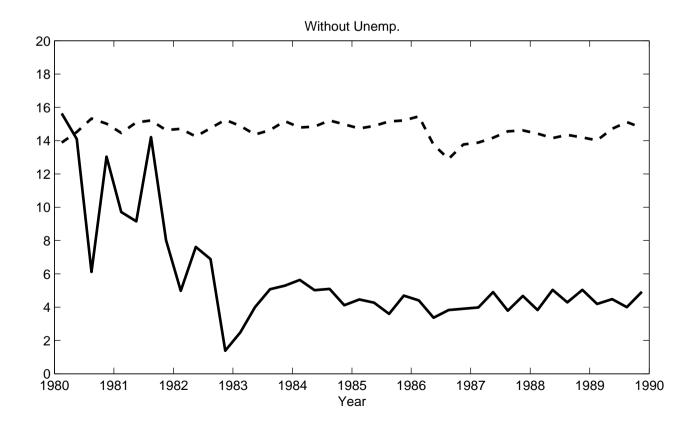
Testing and Impulse Responses

• Take the model that comprises equations (7) and the output equation (ignore constants)

$$\begin{aligned} \pi_t &= b_1 \pi_{t-1} + b_2 \pi_{t-2} + (1-w) v / w y_t + v d_1 y_{t-1} + v d_2 y_{t-2} \\ y_t &= d_1 y_{t-1} + d_2 y_{t-2} \end{aligned}$$

• The restricted reduced-form is


$$\begin{aligned} \pi_t &= b_1 \pi_{t-1} + b_2 \pi_{t-2} + (v/w) d_1 y_{t-1} + (v/w) d_2 y_{t-2} \\ y_t &= d_1 y_{t-1} + d_2 y_{t-2} \end{aligned}$$


- Compared to the VAR, this equation imposes 7 constraints: the VAR has 12 free parameters, the structural model has 5 (v/w, b₁, b₂, d₁, d₂).
- Ball tests only the inflation equation, taking OLS estimates of *b*'s and *d*'s as given.
- Should estimate these jointly (à la Sargent, Flavin).
- Why is the interest rate in the VAR? No role for it anywhere in the structural model, so falsely adds "restrictions" to the structural model.

- My tests of the restrictions imposed by Ball's model show (for post 1960 quarterly data only):
 - With funds rate in RF equations: p-value= 3.6×10^{-5} .
 - Imposing OLS estimates of lag coefficients: p-value = 1.4×10^{-5} (matters little)
 - Excluding funds rate from RF: No rejections at 10% level or worse.
- So test results depend on method you use, and whether you include the funds rate in the VAR.
- Impulse responses: to compare with VAR, should use the restricted reduced-form above, ordered, orthogonalized, and shocked to put on comparable grounds with VAR.

How Important is Multivariate Information?

- Ball's result is interesting: forecast errors reduced, but not greatly, by inclusion of information other than lagged inflation. (This has been observed in traditional Phillips curves for decades.)
- Still, effect of output (or unemployment) on inflation is statistically very strong: for quarterly data, 1960-1999, (controlling for lagged inflation and oil prices), *p*-value for output gap is 1 × 10⁻⁵, unemp. 5 × 10⁻¹⁰. Stock and Watson also document this correlation. (Chart 2) *Something* important there.
- Are errors in univariate equations relatively larger during, say "Great Disinflation" or the "Great Inflation" period, as compared with tranquil mid-1980s through 1990s?
- Some evidence bearing on this question might be a nice addition to the paper.

Haven't We Been Here Before? and, The Lucas Critique

- MANY models used to use these simple univariate expectations proxies.
- We abandoned them, as Larry points out, because of fear of the Lucas critique. They always "fit" fairly well. Stability?
- But since the RE models haven't worked so well of late, we go back to them.
- Larry's results support Lucas critique: using the same univariate expectations model across different regimes would lead to breakdown of model.
- Paper should test stability of the "near-rational" models, to see if they are subject to the LC.
- Shameless Self-Promotion: Estrella-Fuhrer (2000) paper does this.

What Hath Ball Wrought?

- In different historical episodes, the univariate process for inflation can be quite different.
- But the question is why? Ball's results don't allow us to discriminate among explanations. A model with RE would imply a different univariate process for inflation under different monetary regimes, such as gold standard versus modern policy.
- If we plug a good univariate time-series model for inflation into an inflation equation like

 $\pi_t = \pi_t^e + \gamma y_t$

we get a pretty good fit for inflation. Hmmm. Shocking? Looks just like old-style Phillips curves.

• So what does this tell us about expectations formation? Or the source of inflation persistence?

To Sum Up: What have we learned?

- Univariate models of inflation forecast pretty well.
- Univariate models of inflation differ across periods.
- But this doesn't explain *why* inflation behaves differently in different periods. Or why it's persistent or not in any period.
- Persistence (or lack of) could arise because: inflation expectations differ, monetary policy regimes differ, mix of shocks differs, fiscal policy regimes differ, or all of these and more (all are consistent with Larry's results).
- If differences arise because of differences in monetary policy regime, then **The Lucas critique applies in full force.**
- In fact, Ball's paper provides a great demonstration of the LC: you'd do very poorly to use the same univariate process for inflation expectations across different monetary regimes.

- If agents **knew** the best univariate model in each era, they might form reasonable expectations.
- But apparently the best model shifts over time.
- How do they get to know the new best model? Sounds like **LEARNING**.
- Maybe learning is a key avenue for this research.
- **Identification:** Ball's exercises are a promising start, but haven't yet identified anything about expectations behavior, or sources of persistence.