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Abstract 
 
 
 

This paper explores ways to integrate model uncertainty into policy evaluation.  We first 
describe a general framework for the incorporation of model uncertainty into standard 
econometric calculations.  This framework employs Bayesian model averaging methods that 
have begun to appear in a range of economic studies. Second, we illustrate these general ideas in 
the context of assessment of simple monetary policy rules for some standard New Keynesian 
specifications. The specifications vary in their treatment of expectations as well as in the 
dynamics of output and inflation.  We conclude that the Taylor rule has good robustness 
properties, but may reasonably be challenged in overall quality with respect to stabilization by 
alternative simple rules that also condition on lagged interest rates, even though these rules 
employ parameters that are set without accounting for model uncertainty. 
 
 

 
 

William A. Brock 
Department of Economics 

University of Wisconsin 
1180 Observatory Drive 

Madison, WI 53706-1393 
wbrock@ssc.wisc.edu 

 
Steven N. Durlauf 

Department of Economics 
University of Wisconsin 
1180 Observatory Drive 

Madison, WI 53706-1393 
sdurlauf@sc.wisc.edu 

 
Kenneth D. West 

Department of Economics 
University of Wisconsin 
1180 Observatory Drive 

Madison, WI 53706-1393 
kdwest@wisc.edu 

 



The number of separate variables which in any particular social 
phenomenon will determine the result of a given change will as a rule be 
far too large for any human mind to master and manipulate them 
effectively.  In consequence, our knowledge of the principle by which 
these phenomena are produced will rarely if ever enable us to predict the 
precise result of any concrete situation.  While we can explain the 
principle on which certain phenomena are produced and can from this 
knowledge exclude the possibility of certain results…our knowledge will 
in a sense only be negative, i.e. it… will not enable us to narrow the range 
of possibilities sufficiently so that only one remains. 

 
Friedrich von Hayek1  

 
 

 

I. Introduction 

 

This paper explores issues related to the analysis of government policies in the 

presence of model uncertainty.  Within macroeconomics, increasing attention is being 

given to the positive and normative implications of model uncertainty.  One major 

direction of this work has been initiated by the seminal contributions of Hansen and 

Sargent (2001a,b,2002,2003) on robustness in policy analysis.  Examples of contributions 

to this research program include Giannoni (2002), Marcellino and Salmon (2002), 

Onatksi and Stock (2002) and Tetlow and von zur Muehlen (2001) and our own Brock 

and Durlauf (2004a,b) and Brock, Durlauf and West (2003).2  In this approach, model 

uncertainty is defined relative to a given baseline model; specifically, a space of possible 

models is constructed by considering all models that lie within some distance ε  of the 

baseline.  In evaluating policies, the loss associated with a given policy is determined 

relative to the least favorable model in the model space, i.e. preferences are assumed to 

follow a minimax rule with respect to model uncertainty. As such, this program follows 

the approach to decisionmaking initiated by Wald (1950). 

                                                 
1von Hayek (1942, p.290). 
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2A number of the ideas in this literature originally appear in an unpublished working 
paper by Peter von zur Muehlen, reprinted in von zur Muehlen (2001). 
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Our approach to model uncertainty analyzes model spaces that are non-local in 

the sense that we do not require that the different models are close to each other 

according to some metric.  For many macroeconomic contexts, it seems clear that model 

uncertainty is sufficiently severe that very disparate models should be regarded as 

potential candidates for the true or best model.  In the context of monetary policy, there 

has been no resolution of the role of expectations in determining the effects of policies on 

macroeconomic outcomes; some authors favor backward looking models which eschew 

any role for expectations (e.g. Rudebusch and Svensson (1999)) while some prefer 

forward looking models, (e.g. Woodford (2003)) and some advocate hybrid models with 

both forward and backwards looking features (e.g. Galí and Gertler (1999)).  Model 

uncertainty also exists within these classes. For the classes of models that employ 

expectations, one finds differences with respect to how they are formulated, with 

disagreement about the use of rational expectations versus survey-based measures, for 

example. Yet another source of differences concerns the dynamic specification of a 

model in terms of lag length structure. 

Formally, we treat uncertainty with respect to the true model in a fashion that is 

symmetric to other forms of uncertainty.  From this perspective, the analysis of policies 

based upon a single model may be thought of as producing conditional probability 

statements in which one of the conditioning elements is the model.  This approach to 

understanding how models effect policy evaluation leads to the use of model averaging 

methods, in which one first evaluates the conditional probability of some unknown object 

of interest given data and a choice of model and second eliminates this conditioning on a 

model by integrating out the model “variable.”  Eliminating this dependence amounts to 

taking weighted averages of the model-specific probabilities, where the weights 

correspond to the probabilities of each model being the correct one.  Model averaging 

represents an important recent development in the statistics literature; major contributions 

include Draper (1995) and Raftery, Madigan and Hoeting (1997).  Model averaging 

methods require the specification of probabilities across models in order to compute 

posterior probabilities concerning parameters or other unknowns (such as forecasts) of 

interest.  
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Within the economics literature, these model averaging methods are achieving 

increasing prominence. Areas of application include economic growth (Brock and 

Durlauf (2001), Brock, Durlauf and West (2003), Doppelhoffer, Miller and Sala-i-Martin 

(2000) and Fernandez, Ley, and Steel (2001)), finance (Avramov (2002)), and forecasting 

(Garratt, Lee, Pesaran and Shin (2003) and Wright (2003a,b))  Some initial work on 

applications to monetary policy evaluation appears in Brock, Durlauf and West (2003). 

While model averaging is a powerful tool in addressing model uncertainty, one 

can imagine contexts in which a policymaker will want more information than simply a 

summary statistic of the effects of a policy on outcomes where model dependence has 

been integrated out. For example, a policymaker may be interested in policies whose 

effects are relatively insensitive to which model is the correct one. Alternatively, a 

policymaker may wish to engage in model selection, and would like to know how this 

selection affects the likely efficacy of the policy.  One reason for this is that a 

policymaker may not wish to adjust policies in response to the updating of model 

probabilities. For this reason, we believe that proper reporting of the effects of model 

uncertainty should also include descriptions of how model choice affects the form of a 

policy rule and the payoffs associated with that rule. This dependence leads us to 

calculate statistics that measure the degree of outcome dispersion, which characterizes 

how the losses associated with a model-specific optimal policy rule depends on the 

model, and action dispersion, which measures how the optimal policy differs across 

alternative models in a model space.   

Our work is most closely related to Levin and Williams (2003). This analysis 

compares policy rules under theoretically distinct models; models are averaged by 

assigning equal weights to each model; this approach differs from Bayesian averaging as 

their weights do not represent posterior model probabilities. Nevertheless, this paper is 

important as it is the first extensive analysis of model averaging methods as applied to 

monetary policy.  A significant virtue of Levin and Williams over our paper is that they 

are able to work with a much richer theory set than we do, in particular they include a 

model-consistent forward-looking model in their model space. On the other hand, they do 

not address the implications of model uncertainty that arise because of dynamics.  Our 
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work is complementary to Cogley and Sargent (2004) who consider US monetary policy 

but with a positive rather than a normative focus. Cogley and Sargent consider 

adjustments to US monetary policy generated by changes in the weights assigned by the 

Federal Reserve to different models of inflation, showing that such model uncertainty 

helps explain the dynamics of inflation after 1970.   

Our major concern in the empirical work in this paper is with the appropriate way 

to present the results of policy evaluation exercises.  One obvious way to think about this 

problem is simply to compute expected losses under different policies where the 

expectation calculations account for model uncertainty. This approach requires the 

specification of prior probabilities on the space of possible models. Alternatively, one can 

apply a minimax criterion even though the model space we study is non-local.  As argued 

in Brock, Durlauf, and West (2003), one may interpret Leamer’s (1983) extreme bounds 

analysis as doing this.  However, our purpose is not to defend a particular way in which 

decisions respond to model uncertainty but rather to describe ways to report predictions 

concerning policy effects in a way that communicates how model uncertainty affects 

these predictions. We will therefore emphasize some informal quantitative and visual 

tools to communicate how model uncertainty enters policy evaluation.  

We apply our general analysis to some standard questions on monetary 

economics. In our empirical analysis, we consider two classes of standard New 

Keynesian models.  Models in each class include three equations: a dynamic IS curve 

relating output to a real interest rate; a dynamic Phillips curve relating inflation to output 

and expected inflation; and a monetary policy (Taylor) rule relating the interest rate to 

output, inflation and a lagged interest rate.  The two classes differ in their treatment of 

expectations.  Our backwards class, which builds on Rudebusch and Svensson (1999), 

treats expected inflation as a distributed lag on past inflation.  Our hybrid class, which 

builds on Rudebusch (2002), uses survey data on expected inflation in estimation but 

assumes model-consistent expectations in evaluation of alternative monetary policies.  

Within a given class, models vary only in terms of the number of lags included on the 

right hand sides of the IS and Phillips curves.  We consider the effects of alternative 

monetary policy rules using a loss function based on a weighted average of variances of 
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output, inflation and interest rates; we refer to the losses incurred under this specification 

as risk. Our analysis of the model space reveals that the hybrid models possess a posterior 

probability that is an order of magnitude higher than that of the backwards looking 

models.  So while we do average within classes, we do not average across the model 

classes, and rather report results for each class separately.  We do so because our model 

classes are defined around models that themselves were data mined for distinct model 

spaces.  We regard the question of how to construct model spaces around data mined 

models to be an important outstanding research question. 

We conduct three different empirical analyses. First, we consider the behavior of 

the losses associated with the classic Taylor (1993) rule when model uncertainty is 

present. Our findings suggest that risk estimates for the Taylor rule are quite robust in the 

sense that our risk estimates show relatively little variation across models.  Second, we 

compare the performance of the Taylor rule with the performance of an interest rate rule 

that sets current rates as a function of the lagged rate, current inflation, and current 

output.  We choose the parameters of the rule such that the parameters are optimal for the 

model with the maximum posterior probability in each of our classes. We find that for the 

backwards models, the optimized rule systematically dominates the Taylor rule, except 

for a small (in posterior probability sense) set of models where the optimized rule induces 

instability in the system.  For the hybrid class, the optimized rule uniformly dominates 

the Taylor rule.  Our final exercise considers how optimal three-variable interest rate 

rules vary across models. In this exercise, we compute optimal rules and associated risks 

for each model in the two model classes.  Our analysis of outcome and action dispersion 

is largely visual as it consists of the presentation of dispersion figures. As such, it is 

somewhat hard to identify simple messages from the exercise. One conclusion we do 

draw is that there appears to be some systematic relationship between the coefficients in 

the model-specific optimal rules and model complexity. 

The paper is organized as follows.  Section II of this paper describes our basic 

framework. Section III contains our various empirical exercises.  Section IV provides 

some interpretation of the findings in the context of a general dynamic linear model.  

Section V provides conclusions. 



 

 

II. Incorporating model uncertainty into statistical analyses  

 

Our basic argument concerning the analysis of policy in the presence of model 

uncertainty is that such uncertainty should be explicitly incorporated in the calculation of 

the effects of a policy.  In other words, we argue that from a decision-theoretic 

perspective, model uncertainty is not a property that should, via model selection 

exercises, be resolved prior to the evaluation of a policy rule, but rather is a component of 

that evaluation. To see why this is so, we follow the discussion in Brock, Durlauf, and 

West (2003); other analyses that advocate an explicit decision-theoretic approach to the 

analysis of data in economics include Chamberlain (2001) and Sims (2002).  This 

analysis is a straightforward application of standard statistical decision theory arguments, 

cf. Berger (1987).  

 

i. general framework 

 

Suppose that a policymaker wishes to evaluate the effect of a policy rule p on an 

outcome θ .  We assume that the policymaker’s assessment of the outcome depends only 

on the outcome so that one can separate the preferences of the policymaker from the 

probability measure characterizing θ  given the policy.  In assessing policies, the question 

of model uncertainty arises in the context of specifying the information set on which the 

assessment is conditioned. Typically, one begins with a specification of the data 

generating process, i.e.  

 

 ( ), ,mm pθ β η=  (1) 
 

where m denotes a model, p is a policy, mβ  is a vector of parameters that indexes the 

model and η  is a set of  unobservable shocks that affect θ .  It may be assumed, without 

loss of generality, that when evaluating policies, the data generating process and 
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probability measure for the innovation, ηµ  are known even though the realizations of the 

shocks are not, so that policies are evaluated based on the conditional probability measure 

  

 ( ), , mp mµ θ β  (2) 
 

This formulation indicates the first level at which the effects of policies are uncertain. 

Even if the data generating process and associated parameters are known, there is 

uncertainty due to the unobservability of η .  

Eq. (2) implies that a policymaker possesses a great deal of information about the 

data generating process. Such information is typically not available to the researcher, and 

its absence must be accounted for to provide appropriate statements about the effects of a 

policy.  The relaxation of the information implicitly assumed in (2) may be done in two 

steps. First, assuming that the model is known, there is typically uncertainty about the 

values of the model parameters mβ .  Operationally, this means that one computes  

 

 ( ), ,p m dµ θ  (3) 
 

The difference between (2) and (3) is that in (3) one is implicitly using the available data 

 to construct estimates of the model parameters. For macroeconomic problems, this is 

generally regarded as a second-order; exceptions to this include Giannoni (2001) and 

Onatski and Williams (2003). While we do not address parameter uncertainty in our 

empirical examples, we note that the lack of importance of parameter uncertainty has by 

no means been established as an empirical matter and is in fact contradicted by 

Gianonni’s and Onatski and Williams’s findings; this is a topic that warrants further 

research. 

d

For our purposes, the key issue of interest is how to move beyond (3) to account 

for uncertainty in the specification of the data generating process, which we will refer to 

as model uncertainty.  This level of uncertainty captures that of strong knowledge 

concerning economic theories, functional form specification (including threshold effects, 

switching regimes, etc.) and heterogeneity in the data generating processes for individual 
 7



observations. Brock, Durlauf and West (2003) provide a typology of forms of model 

uncertainty along these lines.  One goal of a policy evaluation may be the calculation of  

 

 ( ), .p dµ θ  (4) 
 

In other words, one way a policymaker can deal with model uncertainty is to treat it as 

another type of unobservable similar to η  and mβ  and evaluate policies in a way that 

accounts for this. 

As recognized originally in Leamer (1978) and developed in subsequent work 

such as Draper (1995), this idea may be operationalized using standard probability 

arguments to eliminate the conditioning on m that is present in (3).  To do this, suppose 

that an analyst is working with a space M of possible data generating processes.  We will 

implicitly assume that the true model is an element of this space when discussing how we 

interpret empirical findings; none of the empirical findings we present are themselves 

dependent on that assumption.3 Without loss of generality, we take the space to be 

countable.  

 Standard application of conditional probability arguments implies that the 

( , )p dµ θ  may be characterized as follows: 

 

 ( ) ( ) ( ), , ,
m

p d p m dµ θ µ θ µ= m d∑  (5) 

 

In this expression, (m dµ )  is known as the posterior probability of model m given data 

d.  From the perspective of (5), model uncertainty is treated in a fashion that is symmetric 

to any other source of uncertainty in θ .   

Eq. (5) reveals how the incorporation of model uncertainty into policy analysis 

requires the calculation of a class of objects, posterior model probabilities, which simply 

do not appear when one evaluates policies after engaging in model selection. To 
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understand what these probabilities mean, by Bayes’ rule, these probabilities are the 

product of two terms, i.e.  

 

 ( ) ( ) ( )m d d m mµ µ µ∝  (6) 

 

where (d mµ )  is the likelihood of the data given model m and  is a prior 

probability assigned to model m. This derivation illustrates two features concerning the 

role of model uncertainty in policy evaluation.   

( )mµ

First, if one starts with a space of possible models which is constructed without 

knowledge of which models fit particularly well, then model averaging can ameliorate 

problems associated with data mining.  Eq. (5) indicates how probability calculations can 

employ all models in the model space, incorporating the relatively greater likelihood of 

some models versus others via the ( )d mµ  terms.  Hence, the standard problem of data 

mining, drawing inferences about a model without accounting for its selection, does not 

arise. This observation requires two caveats. First, it is important in constructing the 

(d mµ )

                                                                                                                                                

 terms to avoid overweighting more complex models simply because of their 

superior goodness of fit. As we shall see below, model complexity penalties (in our case, 

based on the BIC) are needed when calculating posterior model probabilities. Second, in 

some cases it may not be possible or practical to analyze the set of all possible models. 

Hence, data mining problems may occur because of limits in the analysis that exist in the 

model space in the way we have described.  

Second, the issue of model selection does not arise when one takes the averaging 

perspective.  Heuristically, one may understand model selection exercises as choosing a 

model based on its relative goodness of fit (adjusted for model complexity). In the 

context of our approach, model selection of this type is equivalent to placing a posterior 

probability of 1 on the model with the highest posterior probability. Thought of this way, 

it is easy to see why model selection can lead to very misleading assessments of policy 
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assumptions as to whether the true model is in the space.  
3Bernardo and Smith (1994) discuss the interpretation of model spaces under alternative 



efficacy.  For example, model uncertainty calculations avoid situations where one model 

may far outstrip others by a selection criterion, yet the posterior model probability is 

small relative to the space as a whole.   

Third, any analysis of model uncertainty will be dependent on a researcher’s prior 

beliefs about the relative plausibility of different models, as quantified through the prior 

probabilities .   Very little work has been done on the question of appropriately 

formulating priors over model spaces.  Most papers assign a uniform prior across the 

model space.  One alternative, suggested by Doppelhofer, Miller, and Sala-i-Martin 

(2000) penalizes complex models by assigning relatively lower prior weights to them.  

Brock, Durlauf, and West (2003) discuss ways to use economic information to structure 

priors that reflect theoretical, specification, and parameter heterogeneity differences 

between models.  However, this is a question that needs much more research.  

( )mµ

 Calculations of this type make clear how model uncertainty affects policy 

evaluation. Suppose that a policy maker evaluates policies according to a risk function4 

( )R θ  and that the policymaker evaluates a policy rule based on the expected loss it 

generates.  Standard policy analyses calculate 

 

 ( )( ) ( ) ( ), , , , dE R p m d R p m dθ θ µ θ θ
Θ

= ∫  (7) 

 

whereas an analysis that allows for model uncertainty should calculate  

 

 ( )( ) ( ) ( ),E R p d R p d, dθ θ µ θ θ
Θ

= ∫  (8) 

 

In contexts such as stabilization policy, one usually is interested in the first two moments 

of ( , )p dµ θ .  These moments were originally computed by Leamer (1978) and are 

discussed in great detail in Draper (1995):  

 10

                                                 
4We refer to a risk function rather than a loss function in order to use language that is 
standard in the monetary policy literature. 



 

 ( ) ( ) ( ),
m

E p d m d E p m dθ µ θ= , ,∑  (9) 

 

and  

 

 
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

22

2

, , ,

, , , , ,
m M m M

var p d E p d E p d

m d var p m d m d E p m d E p d

θ θ θ

µ θ µ θ θ
∈ ∈

= − =

+ −∑ ∑
 (10) 

 

ii. model uncertainty and ambiguity aversion 

 

Our discussion has so far treated model uncertainty in a way that is equivalent to 

innovation uncertainty (i.e. lack of knowledge of η ) and parameter uncertainty.  There 

are reasons to believe that one may not want to assume this equivalence.  One of these 

reasons derives from the body of experimental work that is associated with the Ellsberg 

paradox. Consider two scenarios: in scenario A, a bet may placed on the color of a ball 

drawn from an urn when the distribution of colors is known to be 50/50 between black 

and red whereas in scenario B a bet may be placed on the color of a ball drawn from an 

urn where the distribution between black and red is not known, but where the subject can 

choose the color. The Ellsberg paradox refers to the observation that in various 

experiments, subjects place a higher value on the former bet; the paradox occurs since by 

symmetry, the fact that one can choose which color ball to bet on makes it impossible to 

differentiate the second bet from the first bet in an expected value sense.  Such 

observations have led to a recent literature on ambiguity aversion, exemplified by Gilboa 

and Schmeidler (1989) and Epstein and Wang (1994).  Following Epstein and Wang 

(1994), ambiguity aversion can be introduced by considering the modified expected loss 

function 

 

 ( ) ( ) ( ) ( )( )(1 ) d sup , dm Me l d e l m dθ µ θ θ θ µ θ θ∈Θ Θ
− +∫ ∫  (11) 
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This loss function places an additional weight on the least favorable model in the model 

ace beyond that which is done in a standard expected loss calculation.5 This function sp

nests the expected loss approach ( 0e = ) and the minimax approach ( 1e = ) that is 

employed in the macroeconomics robustness literature, cf. Hansen and Sargent 

(2001a,b,2002,2003).  

 

iii. model uncertainty and stabilization policy 

 analysis of stabilization policies.  To do 

is, we consider the scalar case where the policymaker is interested in stabilizing output 

lative

limiting effect , specifically the policymaker’s loss function is 

 

 

 

 We now specialize these formulas for the

th

re  to trend, ty . We assume that a policymaker evaluates rules according to their 

∞y

( ),var y p d∞  (12) 

 

This loss function is timeless in the sense of Woodford (2003) and thus avoids problems 

f time inconsistency.  We assume that the policy cannot affect the long-run mean of the o

series, so that 

 

 ( ), 0 E y p d p∞ = ∀  (13) 

 

This is a substantive economic assumption and one

acroeconomics models, for example to reflect a long run Phillips curve.  Under this 

 that is frequently built into 

m

assumption  

 

 ( ) ( ) ( ), ,
m M

var y p d m d var y p m dµ∞ ∞
∈

= ,∑  (14) 

                                                 
5A remarkable early formulation of this type appears in Hurwicz (1951). 
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Relative to (10), the second term on the right hand side (RHS)

holds.   

In the context of analyzing stabilization policies, one can further observe that the 

 disappears when (13) 

overall variance associated with a given policy, ( ),Var y p d , may be contrasted with ∞

two other calculations which are suggested by our discussion:  

 

( ), , mVar y p m β∞  = overall within-model variance due to unobserved innovations; this 

vel of variance is irreducible in the sense that it is present even if a model and 

associated parame

 

le

ters are known 

( ), ,Var y p m d∞  = overall within-model variance due to parameter uncertainty given a 

model 

 

As one moves from uncertainty due to innovations and parameters to uncertainty that also 

 lack of knowledge of the true model, one moves from conventional model 

xercises to the approach we advocate.  Put differently, if one engages in model selection, 

reflects

e

one typically computes ( ), , mVar y p m β∞  or ( ), ,Var y p m d∞ whereas we would argue 

the correct object for study in policy analysis is ( ),Var y p d∞ . 

 Finally, we consi uate ut the variance we have 

policy.  While a mean/variance loss function 

der how to eval uncertainty abo

described; we focus specifically on the “variance of the variance” associated with a given 

is not affected by this calculation, other 

preferences structures are.  To perform these second order variance calculations, notice 

that by (13), ( ) ( )2, ,Var y p d E y p d∞ ∞=   We can thus use formulas (9) and (10) to 

calculate ( )2 ,Var y p d∞ .  Since ( )2 ,E y p d∞  is, unlike ( ),E y p d∞ , dependent on p , one 

has 

 



 
( )

( ) ( ) ( ) ( ) ( )( )22 2 2, , , , ,
m M m M

var y

m d var y p m d m d E y p m d E y p dµ µ

∞

∞ ∞ ∞
∈ ∈

+ −∑ ∑
 (15) 

 

The second term on the RHS of (15) captures the distinct role that model un

plays in assessing the payoff associated with a policy.  The first term represents the 

This decomposition into a within-model and 

2 ,p d =

certainty 

uncertainty contribution given the models. 

across-model uncertainty corresponds to the analysis in Gustafson and Clarke (2004).  

Notice that the only reason why ( ) ( )2 2, , ,E y p d m E y p d∞ ∞−  is nonzero is variability 

across models.  

 These calculations lead to a hierarchical view of policy assessment. As we have 

claimed above, conventional policy evaluation exercises calculate either 
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( , , mVar y p m )β∞  or ( ), ,Var y p m d∞  where the model m is chosen by some criterion 

compute 

that trades goodness of fit against model complexity.  Such calculations are of course 

important.  What we argue is that in addition to such calculations, one should also 

( ),p d es the consequences of the same policy without the 

assumption that the model selection exercise has identified the correct model.  The 

discrepancy between these two measures will provide a metric for the economic 

significan uncertainty.  Notice that there is no necessary ordering between 

Var y∞ , which describ

ce of model 

( ), , , mVar y p d m β∞ , ( ), ,Var y p d m∞  and ( ),Var y p d∞  as model uncertainty may 

lower the variance associated with a policy if the policy works better for those parameters 

that have not been assumed or for a different model.  It is possible for the introduction of 

 re .  

iv. implementation issues 

 

a. priors and the reporting of results 

model uncertainty to verse the relative rankings of models
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The calculations we have described require the specification of prior probabilities 

.  The construction of priors continues to be a 

 in Bayesian statistics.  One difficulty in the construction of priors derives 

om th

r se. As we have argued, assumptions 

                                                

 

for the elements of the model space M

knotty problem

fr e difficulties inherent in translating vague prior beliefs possessed by a researcher 

into probabilities.  This difficulty has led to a large literature on Bayesian probability 

elicitation, an approach that has not been pursued in the model uncertainty context.  Most 

studies of model uncertainty and model averaging assume that all elements in M possess 

equal prior probabilities, a standard assumption when one wants to employ a 

noninformative prior, i.e one that expresses ignorance.6  Other authors have modified the 

equal probability assumption either by assuming the model probabilities are themselves 

random, which in essence makes the prior a mixture distribution (Brown, Vannucci, and 

Fearn (1998)) or by assigning higher prior probabilities to simpler models (Doppelhofer, 

Miller, and Sala-i-Martin (2000)).  None of these approaches use social science reasoning 

to construct priors. Brock, Durlauf, and West (2003) argue that priors should possess a 

hierarchical structure that reflects the differences between theory uncertainty and 

specification uncertainty conditional on a theory. It is unclear that these different 

approaches are of major importance operationally. 

 An alternative perspective is that the goal of a policy evaluation analysis is to 

communicate to a policymaker the effects of a policy under alternative assumptions 

rather than to perform expected loss calculations pe

about the theoretical basis and specification of the model of the phenomenon of interest 

are of primary importance in this respect.  To the extent this is true, and recognizing the 

possibility that ambiguity aversion means that a policymaker may react to model 

uncertainty differently from parameter uncertainty, for example, then the averaging 

approach may not be sufficiently informative.  A policymaker may want to know if there 

are outlier models in the sense that a policy works particularly poorly when they are 

correct. Notice that this is not the same thing as asking whether certain models are 

outliers in terms of certain parameter values, overall goodness of fit, etc.  For this reason, 

 
6There are many conceptual problems in defining what it means for a prior to be 
uninformative; these issues are not germane to our discussion. 



we argue that a significant part of a policy evaluation exercise is the presentation of 

different perspectives on how model uncertainty affects one’s conclusions. We are 

therefore concerned to identify useful statistics and visual representations of policy 

effects as they vary across models. 

 

b. Bayesian versus frequentist 
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Our discussion has been explicitly Bayesian in that our analysis has focused on 

easures on the unknowns 

 

the construction of probability m θ  given observed data and 

rior information, i.e. p ( )dµ θ .  These calculations, in turn, employed Bayesian within-

model posterior probabilities ( ),d mµ θ .  That being said, the logic of our model 

averaging arguments really only depend on the use of posterior model probabilities 

( )m dµ .  If one can identify an interpretable way of constructing these model 

probabilities, then one can integrate these with frequentist objects in order to address 

intereste

model uncertainty without fully committing to Bayesian methods.  For example, if one is 

d in constructing an estimate θ̂  which is not model-dependent, this can be done 

via 

 

 ( )ˆ
m̂ m dθ θ µ=

m M∈
∑  (16) 

 
 

Doppelhofer, Miller, and Sala-i-Martin (2000), who

ontext of OLS regression parameters when there is uncertainty about the choice of 

ontrols, call this approach Bayesian averaging of classical estimates (BACE); Brock, 

 perform such calculations in the 

c

c

Durlauf, and West (2003) refer the general approach of averaging frequentist objects 

using model weights as a pseudo-frequentist procedure. What is important, of course, is 

not the terminology, but the idea that incorporation of model uncertainty into a data 

exercise can provide interpretable results.  This is extremely important since frequentist 
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ion and action dispersion 

uncertainty in 

olicy assessment, we believe it is useful to think about two concepts: outcome 

dispers

licy, so the model space 

traces 

I. Model uncertainty and assessment of simple monetary policy rules 

methods dominate policy evaluation analysis.  We employ this pseudo-frequentist 

approach in the empirical section of this paper. 

 

vi. beyond model averaging: outcome dispers

 

As suggested in the Introduction, in evaluating the role of model 

p

ion and action dispersion.  Outcome dispersion captures the variation in loss that 

occurs when one considers different models.  When working with a fixed policy, the 

variation of losses under the policy traces out the range of the loss function, where the 

latter is interpreted as a function of the policy.  Averaging calculations can thus be treated 

as data reductions of the support of the loss function; a data reduction in which a 

(posterior probability) weighted sum of the range is computed.  

When a policy is allowed to depend on a model, one can define an analogous 

notion of action dispersion.  Each model induces a distinct po

out a range of policies.  For example, one can compute how the parameters of a 

simple monetary policy rule, say one that maps last period’s Federal Funds rate, the 

current inflation level and the current output level into this period’s Federal Funds rate, 

varies across models.  Why might such information be of use to a policymaker?  One 

reason is that calculations of action dispersion can reveal how sensitive a policy rule is to 

model choice. To the extent that a policymaker decides to condition policies on a model, 

action dispersion can reveal the extent to which this matters. In turn, one can argue that a 

desideratum of a policy rule is that its formulation is relatively insensitive to certain 

details of the economic environment in which it is applied.  Giannoni and Woodford 

(2002) make this idea precise in a theoretical context; our calculations of action 

dispersion provide an empirical representation to their ideas.   

 

 

II

 



 18

ssion using a 

mple empirical example; the example extends work in Brock, Durlauf, and West 

(2003).

ork 

ppose that a monetary policymaker is contemplating the choice of 

arameters in a simple monetary policy rule.  This class of rule is studied in many papers, 

a thoro

In this section, we provide an illustration of the methodological discu

si

   

 

i. framew

 

We su

p

ugh example is Levin, Wieland and Williams (1998). Denoting the output gap as 

ty , inflation as tπ  and the nominal interest rate on 1-period government bonds as ti , we 

assume that the policymaker employs a nominal interest rate rule 

 1t t y t i ti g g y g iπ

 

π −= + +  (17) 

Following standard assumptions and terminology in th

re calculated via a risk function R, defined as  

 

e monetary rules literature, losses 

a

 

 ( ) ( ) ( )y iR var varπ λ y var iλ∞ ∞ ∞+ ∆  (18) 
 

In our sk calculations, we will always assume

= +

 1.0yλ =ri  and 0.1iλ = .   This choice of 

weights is arbitrary but is in the range assumed by earlier literature using similar loss 

lar representations we employ are taken from 

Rudebu

 

functions, e.g. Levin and Williams (2003). 

Our alternative models represent examples of the New Keynesian model 

exposited in Woodford (2003).  The particu

sch and Svensson (1999) and Rudebusch (2002). These models may be 

understood as two equation systems. The first component of the system is an IS curve 

that relates output to real interest rates and an unobservable disturbance ,IS tu : 

 

( )
4⎡ ⎤

1 1 1 1 3 ,
2

t y t r t t t yj t j IS t
j

y y i E y uα α π α− − − + −
=

= + − + +⎢ ⎥
⎣ ⎦
∑  (19) 
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where 
3

0

1
4t t j

j

i i −
=

= ∑ , 
3

0

1
4t t

j
jπ π −

=

= ∑  and  is an unobservable disturbance. The second 

ent is a Phi ps curve that  in

lagged output and an unobservable disturbance 

,IS tu

compon lli relates flation to expected inflation, lagged inflation, 

,PC tu . The weights on inflation are 

constrained to sum to unity in order to ensure that the curve is vertical in the long run. 

 

( ) ( )

( )

4 4⎡ ⎤
0 1 3 0 1 1 1 1 0 ,

2 2

4

0 0
1

1 1

subject to 1 1

t t t t y t j t j yj t j PC t
j j

j
j

E y y uπ π

π

π β π β β π β β β π β

β β β

− + − − − −
= =

=

= + − + + − + +⎢ ⎥
⎣ ⎦

+ − =

∑ ∑

∑
(20) 

 

In eq. (20) and throughout, we suppress inessential constants for expositional simplicity; 

ese were included in all our empirical work. 

inty as it relates to the way in which 

expecta

th

Model uncertainty exists at two levels in our framework.  The first level 

corresponds to our notion of theory uncerta

tions are formed by agents.  First, backwards looking and hybrid models are 

differentiated by treatment of 1 3t tE π− + . For backwards looking models, 

 

 ( )5E π π π π+ + +  1 3 1 2 3 4.2t t t t t tπ− + − − − −= (21) 

 

whereas for hybrid models.  

 

 1 3t tE survey data on 1-year ahead inflationπ− + =  (22) 

The backwards looking modeling follows Rudebusch and Svensso

ybrid modeling follows Rudebusch (2002). As well, the backwards model sets the 

 

n (1999) whereas the 

h

coefficient on expected inflation in the Phillips curve to 0 (i.e. 0 0β = ).  We refer to the 

backwards and hybrid cases as our two classes of models. 
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e one

t to the terms in brackets in 

s curves to solve the model and compute values of the 

 Second, there is specification uncertainty that exists onc  has conditioned a 

given theory.  This uncertainty is modeled with respec

equations (19) and (20).  Different lag structures correspond to alternative ways of 

capturing output and inflation dynamics; these dynamics are not constrained by economic 

theory but rather are included in order to capture serial correlation in the model errors.  In 

each class of models, we estimate 4 different IS curves, with one, two, three and four lags 

of output on the RHS. We estimate 16 different Phillips curves, with one to four lags of 

output and one to four lags of inflation in the RHS.  Thus within each class of models 

there are 64 4 16= ×  specifications; each specification corresponds to a specific set of lag 

structures for the IS/PC system. 

 Under the assumption that policy is deterministic, we use estimated values for the 

parameters of the IS and Phillip

loss function under alternative policy parameters.  Our analysis assumes that the IS and 

Phillips curves are structurally stable over the 1970-2002 sample. We are aware of 

evidence to the contrary, but leave this complication to future work.  We also do not 

allow for one class of models to represent a better approximation of the underlying data 

generating process in some periods but not others.7  Our simplifications are made to 

facilitate the exposition of how one might incorporate model uncertainty in evaluating the 

losses associated with alternative policies.   For each model and a given set of policy 

preference parameters yλ  and πλ , we use a grid search procedure to solve for the values 

of gπ , yg , and ig  that minimize the loss function  (18).  

 We calculate losses as follows. For a given model m, let ˆ
mR  denote model risk, 

when uncertainty associated with estimated parameters is ignored.  Let  denote the  ˆ
mL

BIC-adjusted likelihood for the model.  For a given set of models, the expected risk 

R̂ associated with model uncertainty is 

 

                                                 
7See Brock and Hommes (1997) for a theoretical discussion of modeling epoch-
dependent expectations formation in which individual agents make correlated investment 
decisions in information that collectively vary at different points in time and Pesaran, 
Pettenuzzo, and Timmermann (2004) for methods to identify different epochs. 



 21

 ( )ˆ ˆ
m

m M
R R m dµ=

∈
∑  (23) 

  

We assume that all models within a model class have equal prior probability. 

While we would prefer to assign priors in ways that are s

asoning, we have yet to develop a natural way to do so in this context.  We also see no 

reason 

uggested by economic 

re

why more complicated models warrant smaller (or larger) priors than simpler 

ones. Our uniform prior assumption implies that ( )m dµ  is proportional to ˆ
mL  so that  

 

 
ˆ ˆ

ˆ
ˆ

m M
m m

m
m M

R L
R

L
∈=

∈

∑
∑

 (24) 

 

e consider a number of ways to com

uncertainty in policy choice. In addition to various averaging calculations, we quantify 

ur notions of outcome and action dispersion. Dispersion is measured in several ways, 

includi

W municate the importance of model 

o

ng support width (absolute value of the difference between the maximum and 

minimum values of the object of interest as it varies across models), standard deviation 

and interquartile range of risk across models.  In reporting outcome dispersion, we 

acknowledge that one would like to consider outcome dispersion with respect to a range 

of policy preference structures but do not do so here.  Finally, note that action dispersion 

is measured by dispersion in 
1 i

gg
g
π

π = −
 and 

1
y

y
i

g
g

g
=

−
 and ig .  We employ the 

normalizations gπ  and yg  in order to evaluate variation in the long-run effects of income 

and inflation on interest rates resp

space, we will sociat each model with a number. This relationship is described in 

Appendix 1.  

ectively.  

As part of our goal is to report visual descriptions of the properties of the model 

as e 

   

ii. data 
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0:1 used to provide lags.  Apart from survey data, this is the same data 

, Durlauf, and West (2003).  Inflation 

 All estimation is done using quarterly data from 1970:2 to 2002:4, with data from 

1969:2 to 197

tπstudied in Brock  is measured as the annualized 

n the GDP deflator.  The output gap  is computed as the difference between 

al GDP and the Congressional Budget Office’s estimate of potential GDP.  The interest 

 is the quarterly 

tychange i

re

rate t average Federal Funds rate.  We constructed the survey 

expectations measure of 

i

1 3t tE π− +  from the median price expectations of the Survey of 

Professional Forecasters.  Let e
t tP  denote the period t survey expectation of the GDP 

deflator (GNP deflator prior to 1992) in the current quarter and 4
e

t tP+ denote the 

expectation of the deflator four quarters (one year) from t.  We set  

( )1 3 3 1100 log /e e
t t t tE Pπ− + + −= × .  For two quarters (1970:3 and 1974:3), 1 1t tP− − 4

e
t tP+  was 

missing; we substituted an extrapolation of the three-quarter-ahead expectation 3
e

t tP+ . 

 

iii. basic properties of the model space 

results for the backward and hybrid specifications with the highest posterior pr bil

 

We first consider some properties of the model space.  Table 1 presents regression 

oba ity.  

hese are the models that would be selected if one were using the BIC criterion to choose 

lts are consistent with those for the backward 

specification of Rudebusch and Svensson (1999) and the hybrid specification of 

Rudebu

T

one model within each class.  The resu

sch (2002).  In the IS curve, the BIC-adjusted likelihood chooses three lags of 

output in the backwards specification, two lags in the hybrid specification.  The sum of 

regression coefficients and the interest rate elasticity are similar in both specifications.  In 

the Phillips curve, both specifications choose one lag of output.  The backward 

specification uses three lags of inflation, while the hybrid combines the survey 

expectation with a single lag.  (Recall that by construction, the sum of the lags (and lead, 
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 the backward looking model (not reported in the 

table). 

for the hybrid specification) on inflation is 1.)  The hybrid specification puts substantial 

weight on the survey expectation, with 0
ˆ 0.32β = . 

The maximum posterior probability hybrid model involves two fewer parameters 

than does this backwards model.  For this reason, as well as some other quantitatively 

less important ones, the BIC-adjusted bivariate likelihood for the hybrid model is two 

orders of magnitude higher than that of

  We do not interpret the relative BIC-adjusted likelihoods as arguing for great 

posterior weight on hybrid versus backwards models.  We came to this specification only 

after experimenting with various model consistent measures of expectations (not 

reported), and by choosing the very best fitting specification in Rudebusch (2002).   For 

example, we do not include terms on forward looking output in the IS equation, because 

Rudebusch (2002) found these to not be significant.   We return to this point below when 

we combine backward and hybrid models. 

How do model probabilities differ across the model space? Table 2 presents 

summary statistics on the distribution of the posterior model probabilities across the 64 

models in each of the two classes. To do this, we focus on the relative likelihoods of each 

model m  within a class, defined as 

 

 
ˆ

ˆ
m

m
m

LP
L

=

m C∈
∑

 (25) 

 

where the sum in the denominator runs over the 64 models in a given class (backward or 

hybrid).  By construction,  and 0 1mP< < 1m
m C

P
∈

=∑ . In each class, the relative likelihood 

is clustered around a handful of models.  Row (6) in Table 2 indicates that only 8 

te e will designate this group of m

possessing “high” likelihoods or “high” posteriors in our subsequent discussion.  The 

(backward) or 13 (hybrid) models have likelihood as much as 1/20 of the likelihood of 

the model with the highest pos rior. W odels as 

factor of 1/20 is made to facilitate highlighting those models most consistent with the 

data and follows ideas that have appeared elsewhere in the model averaging literature, 
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ce considers the effects of model uncertainty 

n evaluation of the risk associated with the original Taylor (1993) rule8: 

 1.5 t

e.g. Gustafson and Clarke (2004); minor changes in the definition of what is meant by a 

posterior probability would not change any qualitative features of our discussion.  Row 8 

of Table 2 indicates that in each class of models the 16 models with highest posterior 

probability dominate the relative likelihood. 

 

iv. the original Taylor rule revisited 

 

 Our first analysis using the model spa

o

 

0.5t ti yπ= +  (26) 

 Relative to our 

arlier discussion, action dispersion is by definition 0 since the rule is constant across 

specifications. Outcome dispersion is described in T

 which the risk associated with the original Taylor rule varies across the model space.  

                                                

 

This rule may be evaluated with respect to outcome and action dispersion.

e

able 3, which characterizes the way 

in

Overall, for the class of backwards looking models, the risk values appear to be relatively 

stable. When one concentrates on relatively likely backwards models, the risk estimates 

are all in the range of 19.1 to 23.2; the same exercise for hybrid models yields the 

somewhat broader range of approximately 15.2 to 31.9.  There do exist outlier models 

with very different risk values: the support for Taylor rule risk for the backwards models 

is appropriately 17.5 to 51.6 and the support for the hybrid models is 12.5 to 44.7.  Row 8 

of the Table provides the model averaging calculations, in which the model specific risk 

of the Taylor rule is averaged using posterior model probabilities according to (24).  It is 

interesting to compare our model averaged risk estimates, 22.0 for the backwards class 

and 23.6 for the hybrid class, with the respective risks that occur for the maximum 

posterior probability models in each class, 23.2 and 24.1 respectively.  The averaged 

numbers are lower, indicating that the Taylor rule works better for at least some models 

that would be ignored if one simply focused on the maximum posterior models.  

 
8We report the demeaned version of the rule but used constants in the empirical work.  



 This exercise suggests that the Taylor rule generally has good outcome robustness 

properties.  

 

v. comparing simple rules 
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second exercise, we consider the relative performance of the original Taylor 

le against an optimized three-variable rule of the form (17). To do this, we calculate 

 

 As a 

ru

values of gπ , yg  and ig  which minimize the risk function (18) using the weights 

escribed below the equation for the backward model with the highest posterior 

 policies are more aggressive than the original (1993) Taylor rule.   

Our objective is to compare the performance of these rules with the Taylor rule.  

The optimized rules will of course outperform the Taylor rule when the posterior 

ith the highest probability in a model space is the true one; what we wish to ascertain is 

sence of model 

uncerta

d

probability and hybrid model with the highest posterior probability.  As described in the 

next section, we found these parameters by a grid search.  The results of the grid search 

are: 

 

backwards: 3.2,  2.1,  0.2;  hybrid: 3.2,  4.7,  0.55y i y ig g g g g gπ π= = = = = =  (27) 

 

Both

model 

w

how this comparison is affected when one accounts for the pre

inty. In order to do these comparisons, we perform two sets of exercises. First, we 

compare the Taylor rule to the model-specific three-variable rule where the rule is 

computed for the same class on which the comparison is done.  These comparisons mean 

that the policymaker is confident that his given choice of model class is the correct one, 

and is concerned only with misspecification within that class.  Second, we do the same 

comparisons when the policymaker has chosen the wrong class. This means we compare 

the Taylor and three-variable rule optimized for the higher posterior backwards model on 

the class of hybrid models and vice versa. This exercise will be of interest to a 

policymaker who has tentatively chosen a model class but wishes to understand the costs 

if the other class in fact better captures salient features of the economy.  
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epict those cases 

where t

 the 

lative

interesting a icates that the failure to condition on lagged interest rates is a serious 

Figure 1 presents a graph of the relative risks of the optimized 3-variable and 

Taylor rules across the model space for both our exercises. Models are reported using the 

numbering described in Appendix 1. All relative risks are the ratios of the risk using the 

optimized rule to the risk using the Taylor (1993) rule, eq. (26).  We d

he hybrid rule produced instability, which happened to occur for some backwards 

but no hybrid models, with a solid line truncated at 1.8; this is done for readability.    

 Figure 1 yields several interesting findings.  We first focus on the two graphs in 

the first row, in which the policymaker is confident a given class of models is the correct 

one.  As the Figure indicates, for the hybrid models, the optimized rule uniformly 

dominates the Taylor rule across the model space.  Second, for the backwards models,

re  risk of the optimized 3-variable rule is either 40% smaller than the Taylor rule or 

greater than 1. An examination of the specific models for which the Taylor rule 

outperforms the optimized rule explains why this is happening. For this subset of models, 

the optimized rule produces instability in at least one of the state variables, thereby 

producing infinite risk. The possibility that a rule that is optimal for one model produces 

instability in another is, as a theoretical matter, not surprising, and has been recognized 

by other authors, cf. Levin and Williams (2003, pg. 953). How serious a problem is this? 

The posterior probability for the set of models for which the optimized rule produces 

instability is .003.9  Hence, the probability of instability appears to be quite small.  

Because of the loss function that is assumed, if any of these models receives a positive 

weight in the expected loss calculation, the case that the Taylor rule will be preferred.  

This is an example where we believe the visual presentation of evidence is of particular 

value to a policymaker since the assessment of large (in this case, infinite) risk with small 

probabilities is something that may be poorly captured by simply reporting model 

averaged risk numbers.  

 When the policymaker has chosen the wrong theory, one again finds that for the 

hybrid case, the model-specific optimized rule strictly dominates the Taylor rule.  This is 

s it ind
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or which the optimal rule induces instability, these are of course 

risk ratio and ratios 

of mod

            

deficiency of the Taylor for the hybrid case.  For backwards models, one once again finds 

that there are 4 models f

different from those found when the optimized rule is conditioned on the correct theory; 

the total posterior probability of these rules is .002.10  In addition, one finds that there are 

some models for which the Taylor rule outperforms the optimized rule even though the 

latter produces stability.   There are 8 models of this type with posterior probability .08.11 

Interestingly, the models are generally those with longer lag lengths. 

We next consider model averaging exercises that can reduce the information 

contained in Figure 1 down to a set of simple statistics. Table 4 reports risk ratios for 

model averaged risks.  As noted above, the optimized rule produced instability for some 

backwards models, which would imply a value of infinity for the risk under the rule and 

would mean under an averaging calculation that the model averaged 

el averaged risk are both infinite. In order to produce nontrivial averaging 

calculations, for any model with infinite risk under the optimized rule we use risk values 

that produce a model-specific risk ratio of 5 and 20.  Some authors do propose assigning 

a finite risk to unstable models (e.g. Del Negro and Schorfeide (2004) who suggest the 

risk ratio 5 as a benchmark) while others assign infinite risk, (e.g. Levin and Williams 

(2003)). We also report (in column 5) the replacement values that will produce overall 

risk comparisons that render one indifferent between the Taylor and optimized rules; we 

remind the reader that this is only relevant for backwards models since the hybrid models 

are never unstable.   

Our model averaging exercises uniformly provide support for the optimized rule 

over the Taylor rule.  Interestingly, the optimized rule outperforms the Taylor rule even 

when the policymaker has erred in terms of choice of model class.  This illustrates the 

value of allowing an interest rate rule to depend on lagged interest rates. We would also 

                                                                                                                                     
 ( ), ,i j k  denote the model specification with i income lags in the IS equation, j 

income and k inflation lags in the Phillips curve equation, the models in which instability 

9Letting

occurs are (1,1,1), (2,1,1), (3,1,1) and (4,1,1).

11The models where the Taylor rule outperforms the model-specific optimized rule are 
(4,1,3), (4,1,4), (4,2,3), (4,2,4), (4,3,3), (4,3,4), (4,4,3) and (4,4,4). 

10The models which are unstable in this exercise are (1,2,4), (2,1,1), (3,4,4), and (4,1,1). 
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 produces 

stabil

ducing model instability and otherwise 

n for optimal 3-variable rules 

le rules to 

odel choice. The idea in this work is to understand how the specification and associated 

risk of 

steps of 0.02 was used because initially there was almost no variation across models to 

note that one needs to assign model-specific risk ratios of about 65 for unstable models in 

order to conclude that the Taylor rule performed as well as the optimized rule.  

 Table 5 reports some summary statistics for our two exercises when the Taylor 

rule/optimized rule comparisons are restricted to models in which neither rule

in ity.  Similar results hold for the cases for rules optimized on the highest posterior 

model in the correct class of models and rules optimized on the wrong class. One 

important feature of the Table is its demonstration that the relative risk between the two 

rules is extremely stable across the model specifications.  As might have been expected 

given the findings in Table 4, this applies whether or not the rule is compared to the class 

whose maximum probability model was the basis of the rule.  This implies, given our 

analysis of outcome dispersion for the Taylor rule, that the theory and model-specific 

optimized rule, modulo models where instability is induced, also has good properties in 

terms of producing stable (across models) outcome dispersion. In addition, it appears that 

assuming the backwards theory is true when it is not has low costs to a policymaker, at 

least in terms of comparisons to the Taylor rule.  

 These findings lead to the conclusion that virtues of the Taylor rule relative to an 

optimized rule derive from its ability to avoid pro

that the optimized rules are uniformly better. 

 

vi. outcome dispersion and action dispersio

 

In our third exercise, we explore the sensitivity of optimal 3-variab

m

an optimal rule varies about specifications. Unlike the previous exercises, we do 

not specify a single rule and look at its behavior across models; each model is associated 

with its specific optimal rule.  Table 6 presents information on the distribution of policy 

parameters and risk across models.  The parameters were found with a grid search, with 

step size of 0.1, except for ig  for hybrid models in which a secondary grid search with 

the first decimal place.  Note that each column presents statistics across all 64 models.  



To interpret the table, consider, for example, in the class of backward looking models, the 

minimum values presented in line (3).  The minimum value of gπ  of 2.9 need not have 

been found in the same specification that yielded the minimum value of yg of 1.5, and 

neither of these specifications need have yielded the minimum value of risk R of 8.8.  

We first consider the median values presented in line (5) of panel A.  Consistent 

with previous literature such as Levin and Williams (2003), the hybrid model, which was 

solved treating expectations as model-consistent and thus forward looking, yields a 

lagged interest rate weight ig  that is higher than that for the backward model.  In other 

respects the parameters are also congruent with earlier research.  For example, in results 

not reported in the table we found that increasing iλ  shifts the distribution (across 

models) of the associated optimal ig  upwards; increasing yλ  also shifts the distribution 

of the associated optimal g

We have argued that there is relatively little outcome dispersion within a given 

class of models, at least if we focus on models with high posteriors.  Table 7 illustrates 

that the same conclusion applies when we combine models from the two classes.  We 

combine using a simple arithmetic aver

y  upwards. 

age, as in Levin and W s e do not 

weight 

Results for this approach are given in panel B.  The weight on the backwards model is 

illiam  (2003).  W

by likelihood, as in much of the model averaging literature as well as our previous 

work (Brock, Durlauf, and West (2003) because, as noted above, the hybrid model 

explicitly was derived after a larger than usual amount of data mining.   Panel A in Table 

7 asks about outcome dispersion if we simply hold fixed the parameters at the values that 

are optimal for the likeliest backwards model (columns (1)-(3) in panel A) or likeliest 

hybrid model (columns (4)-(6)).  Outcome dispersion is very small in columns (1)-(3); 

that is, a policy maker who is committed to using the parameters that are optimal for the 

likeliest backwards model is unlikely to be perturbed if he suddenly contemplates the 

possibility that hybrid model has a large element of truth as well.  Outcome dispersion is, 

however, perceptible in columns (4)-(6).   

The asymmetrical outcome results from the way we treated the two model classes.  

One could instead solve for parameters that are optimal given weights to each model.  
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denoted θ ; results for 0θ =  and 1θ =  repeat results in Table 5.C and are given for 

reference. As one would expect, the policy parameters move smoothly as θ  is varied.  

Unsurprisingly, action dispersion is small for gπ  and moderate for yg  and ig . 

 These tables may be complemented visually by graphs of the distributions of 

outcomes and actions across models.  This is done in the set of pictures contained in 

Figure  2  As occurs in t portin objects such as impulse response functions from 

vector autoregressions, the visual reporting of outcome and action dispersion can suffer 

from a surfeit of information. We now turn to some suggestions on w the e f

. he re g of 

ho s igures can 

be used by policymakers to inform decisions. 

 We first discuss action variance. Figure 2.A reports the different values of gπ , yg  

and ig  that appear across the model-specific optimal rules in the backwards class.  The 

panels depict visually the information on dispersion summarized in Table 6:  there is a 

reasonable degree of dispersion across models with respect to gπ  (in the sense of a 
12support width of 1.0) , large dispersion with respect to yg  (support width of 1. a

moderate dispersion for ig  (support width of .4).  This implicitly means that the width of 

the support of the nonnormalized parameter g

8) nd 

π  is about half that of the nonnormalized 

parameter yg .  Hence, policymakers can conclude that gπ  is re tively insensitive to 

model specification.  Within this variation, ig  is almost always greater than 0.  This helps 

explain why the Taylor rule was generally inferior to three variable rules even when the 

latter was optimized on the wrong model.  W en one turns to the posterior weighted 

supports of the parameters shrink when one focuses on t se models whose posterior 

likelihoods are within 1/20 of the maximum osterior model.  When one concentrates on 

these relatively likely models, one finds much smaller variation in g

la

re 2.B, the m in modification ese conclusions is that in some cases the 

 p

h

results, Figu a  of th

ho

π  and yg  (measured 

by support width) than appears in Panel A.  Interestingly, there is relatively less 
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12We focus on support width in our discussion of dispersion, information on standard 
deviations and interquartile ranges are available in Table 6 and yield qualitatively similar 
conclusions.  
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diminution of the support width of ig  for the relatively likely models.  However, for the 

relatively likely models, ig  is always at least .1.  

Similar results obtain for the hybrid model. Figure 2.C indicates that r this class, 

there is a larger support for the gπ  and yg  parameters than in the backwards case (with 

support widths of 1.0 and 2.2 respectively).  Compared with the backwards case, the 

variation in ig  is quite s ll, with a support widma th .1.  When one turns to the posterior 

weight

.  

to lag length specification whereas in other 

context

r who 

believe

For the hybrid class, risk dispersion is very narrow in comparison to the 

ed results in Figure 2.D, one finds little reduction in support width when attention 

is restricted to the relatively likely models

What conclusions might a policymaker draw? One conclusion is that conditioning 

on lagged interest rates is a robust feature of optimal policies. A second conclusion is that 

if one conditions policy on the hybrid class, the interest rate parameter in a three-variable 

interest rule of the form (17) is insensitive 

s, the optimal rule parameters can vary substantially across specifications.   

We next consider the dispersion of risk for the backwards models and the hybrids 

and compare.  An examination of dispersion in risk across all the models for backwards 

and we see clustering at around 10, 15, and 25 whereas for hybrids risk is essentially 

clumped around 6 or 7 (lower right panels of Figures 2.A and 2.C).   A policymake

d strongly in a backward looking world will want to proceed cautiously and look 

closely at what is generating this dispersion in risk.   Perhaps most of the models 

generating the wide dispersion have low posterior probability.  If one then examines the 

posterior weighted dispersion plot in the lower right hand panel of Figure 2,B it is evident 

that the risk clumping around 15 and 25 is generated by models with very low posterior 

probability.   The policymaker may now be quite relieved and simply concentrate on 

managing the cluster of models whose risk clumps around 10.   Further information is 

provided by focusing on relatively likely models.  This restriction would lead a 

policymaker to concentrate attention on managing in a world dominated by the four 

models that clearly stand out on the plot as having the bulk of the posterior probability.    

backwards looking models.  Whatever dispersion is observed is reduced further when 

computed with posterior weights and clumps around about 7.4 when one focuses on the 
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policym

 by models that have extremely small probabilities either in a posterior sense or 

in som

trong patterns emerge when one considers IS curve 

omplexity (the number of lags in eq. (18)) and with Phillips curve complexity (the 

 in (19)). For backward looking models, the magnitude of  decreases in 

 complexity but increases in PC complexity.  The magnitude of  is decreasing with 

t to bo

that increases in IS complexity.  The  parameter is increasing in both IS and PC 

                         

relatively likely models.  This indicates substantial robustness for the optimal rules for 

hybrids. 

This type of discussion, in which one compares the plots of unweighted and 

posterior weighted results, with further attention to the relatively likely models, enables a

aker to get a good overview of the risk dispersion it must face and whether it is 

caused by models that are supported by the data in the sense that their posterior weights 

are relatively high.  As such, this discussion suggests potential ways of dealing with 

critiques of the minimax criterion as being too fragile in the sense that it is influenced far 

too much

e judgmental sense.   The performance of the minimax criterion might be 

improved by applying it to a data determined “trimmed” subset of the possible models, 

e.g. the subset consisting of the 1/20 of the likeliest that we have employed.   This same 

argument might be applied with profit to any criterion that can be unduly influenced by 

models with small “believability” whether believability is measured by posterior 

probability or some other method. 

 

vii. patterns13

 

 We finally note that there exists an interesting pattern that relates model 

complexity (in our context, length of lags) and the policy parameters. As indicated in 

Figure 3, while there is weak association between the total complexity of a model and the 

associated parameters, relatively s

c

ignumber of lags

IS  yg

respec th IS and PC complexity.   

Different patterns emerge for the hybrid models.  For this model class, one finds 

ig yg

                        
13Giacomo Rondina has greatly helped us in identifying these patterns. 
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complexity.  These patterns are the opposite of what holds for the backwards-looking 

model. 

 These systematic pattern relationships for backwards-looking and hybrid models 

suggest some interesting avenues for future research.  One quest n is whether these 

patterns are sensitive to the choices of iλ  and yλ . A second broader question concerns 

the existence of patterns for more complex versions of the policy rule, such as rules 

which allow for policy lags beyond a single period.  Brock and Durlauf (2004b) shows 

how, when control is costless, as the number of lags in the policy rule is allowed to 

become arbitrarily long, the variation in the state variables of a system is reduced to the 

variation of the i.i.d. drivers of the system.  We conjecture that this also holds when the 

cost of control is small, i.e. iλ  is much smaller than yλ  in the current context. Hence a 

system in which the number of control p rameters is highly restricted will not be able to 

achieve the Brock and Durlauf (2004b) reduction to fundamental i.i.d. shocks.  The more 

complex the state equation, the greater the implicit restrictions on a simple rule such as 

(17) and hence the greater the “strain” on the rule to achieve this limit.  We conjecture 

that there is something analogous to a Le Chatelier principle that produces a relationship 

between the Taylor parameters as the complexity of the state equation increases. 

 

 

IV. Interpretation  

  

In this section we consider some interpretations of our results in the context of an 

abstract dynamic system.  We consider the backwards-looking class of models. This 

system is one dimensional, unlike the system we have studied empirically; we employ a 

one dimensional system as closed forms solutions are straightforward to develop

a

 for this 

ase whereas for higher dimensional cases they are far more complicated and lead to a 

ss of intuition.  Let 

c

tx  denote the state of the system and  denote the scalar control 

The state evolves according to 

 

tulo

available to the policymaker.  

 
( ) ( )1 1t t tx a L x b L u tξ− −= + +  (28) 



 34

 

where the Wold representation of tξ  is denoted 

 

 ( )t tw Lξ ν=  (29) 
 

We assume that ( )w L   invertible. A policymaker has access to linear feedback rules of 

the form 

is

 
( )1 1t tu g L x− −= −  (30) 

 

2

 

 

and chooses a feedback rule in order to minimize

 

  (31) 2Ex Euλ+
 

We now consider a special case of this model: 0λ = ,  and ( ) 1w L = .  For this class of 

( ) ( )*g L g L= will fulfmodels, the optimal choice14 of ill 

 

( ) ( ) ( ) ( )* a L
d L+  (32) 

 

q. (32) is useful because it illustrates the basic Taylor principle for stabilization policy.  

o see this, consider the special case 

1g L
b L

= =

 

E

( ) ( )0,1a L a= ∈  and , so that ( )b L b=

( )* 1 1

T

a b
b
−g L d= + = + . Relative to the model in Section III, one can equate tx  with 

flation and  with the nominal interest rate.  The Taylor principle is , so that 

inflation innovations get greater weight than output innovations.  By analogy, we have 

                                                

tu yg gπ >in

 
14This finding is standard; we refer the reader to Brock and Durlauf (2004b) for a 
rigorous development of necessity and sufficiency arguments for models of this type. 
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the same tendency to react relatively strongly to inflation.

magnitude of the feedback from last period’s inflation to today’s nominal interest rate is 

 For our special case, the 

a b
b
− .  If 0a b

b
−

>  the feedback is more than one to one.  This seems an empirically 

ng and variabl is interp

suggesting that the feedb

plausible case given the high persistence in the inflation series. One could also argue that 

Friedman’s classic (1948) concern about lo e lags retable as 

ack polynomial ( )b L  is not that persistent. 

action dispersion we have described in Section III.vi.  In doing this, nore 

parameter uncertainty.  We first consider the case where the optimal policy is not 

constrained in terms of numbers of lags.  Let the model space 

 This model may be used to illus  the concepts of outcome dispersion and 

 we will ig

trate

M  be defined as  

 

 ( ) ( ){ , , , }M a L m b L m=  (33) 

 

Where ( ),a L m  and ( ),b L m  denote model-specific lag polynomials.  In our analysis, we 

considered a set of 64 different model r the model space (3s fo 3).  Each model is 

associated with a distinct fundamental driver ,m tν  with variance 2
mvσ .  

 If ( ) 1w L = , outcome dispersion is generated by cross-section variation in 2
mvσ , 

recalling our assumption that the lag length for the policy rule is not constrained.  The 

model-specific optimal rule eliminates all dependence in the s te.  Action dispta ersi

this case r riance of , the coefficient associated with  in . For 

model m, which is a joint specification of 

on in 

efers to the va  *
jg jL ( )*g L

( ),a L m  and ( ),b L m , there will is an 

ed *g enceassociat )L , h  may vary across models even if the outcome dispersion 

does not.  The variance of *
jg  can be written as  

 

(  *
jg

 ( ) ( )( )*var var 1 ,j j
g d L m= +  ) 

 

(34



In this expression ( )( ) jj
r L r= . 

 These calculations assume that a policymaker may choose any lag length for the 

feedback rule.  One may ask similar questions about outcome and action dispersion when 

policymakers are required to choose rules with restrictions on lag length; in fact many of 

Taylor rule is a leading example, in fact do

the “simple” rules that have been considered in recent monetary research, of which the 

 this.  From the perspective of model 

ncertainty in lag structure, these simple rules run the risk of being unable to counter 

longer-run feedbacks.  

To understand the costs of overly simple rules, we consider the case  and  

at the true m del is one where the lag structure for  contains N 

u

( ) 1w L =

( )a L1b = .  Suppose th o

lags.  If one were to consider a sequence of optimal rules, in which the k’th rule is 

constrained to only have k lags, then it is easy to see that the value of 2Ex  obtainable 

with a k -lag rule is decreasing (in k) and will, when k N=  equal 2
νσ .  This simple logic 

is suggestive of the factors that will determine the outcome dispersion for a model space 

of the form ( ){ , , }M a L m b= .  If the set of possible policy rules allows for lags lengths 

up to N, then the minimum outcome dispersion may be obtained for every model in M. 

 

model uncertainty: outcome dispersion will decline to 0 as the number of lags in the 

 rule space increases.  

his pr

This basic argument has an important implication for outcome dispersion and 

policy Conversely, if one defines a complexity gap as the difference 

between the number of lags in the state equation and the number of lags in the policy 

rule, one would expect the estimated risk to be increasing in this gap. The dispersion 

plots for minimum risk in Figure 2 appear to possess t operty.  This is so because we 

optimized over parameters for the single-lag structure where the total number of lags in 

the behavioral equations increases from 3 to 12 as we move across the model space.   

 

 

V. Conclusions 
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ata 

nalysis. We have applied these ideas to some monetary policy exercises.  These 

xercises suggest that the Taylor rule has good robustness properties.  These analyses 

e ways to visualize the role of model uncertainty which may facilitate 

 with policymakers.  

em. It might well also be the case that the choice of 

 In this paper, we have attempted to outline some basic principles for incorporating 

model uncertainty into the reporting of policy evaluation exercises.  We have argued that 

the policy analysis should not be done conditional on a specific model but rather should 

reflect model uncertainty.  This leads to model averaging methods that treat model 

specification as an unobservable in a way parallel to any other type of unknown in d

a

e

also suggest som

communication

 To be clear, our analysis really only scratches the surface of the many questions 

that arise when model uncertainty is incorporated into policy exercises.  One important 

question is how to operationalize our approach to richer model spaces, such as spaces 

which incorporate various types of learning and nonlinearity.  Another question concerns 

the appropriate specification of prior probabilities on model spaces for macroeconomic 

contexts such as monetary policy evaluation.  Perhaps most important, our analysis 

describes uncertainty for a fixed model space.  Since progress in economic research 

should have the effect of expanding the space over time, this expansion should be 

incorporated into any decision probl

rules should reflect the implications of a rule for how information about a model space is 

produced. All of these questions suggest that model uncertainty research should prove an 

active area of study. 



Table 1 
 

Parameter Estimates for Models with Highest Posterior 
 

A. IS curve 
 
 αy1 

 
αy2 αy3 αr  2R  D.W. s.e. 

Backward 1.12 
(0.09) 

 

-0.04 
(0.13) 

-0.20 
(0.08) 

0.07 
(0.03) 

 0.89 2.03 0.78 

Hybrid 1.10 
(0.09) 

-0.21 
(0.08) 

n.a. 0.13 
(0.03) 

 0.89 2.06 0.77 

 
 

B. Phillips curve 
 
 βy1 

 
βπ1 βπ2 βπ3 β0

2R  D.W. s.e. 

Backward 0.16 
(0.04) 

 

0.69 
(0.08) 

0.01 
(0.10) 

0.30 
(0.08) 

n.a. 0.83 2.09 1.07 

Hybrid 0.14 
(0.04) 

1.00 n.a. n.a. 0.32 
(0.07) 

0.83 2.11 1.07 

 
 
Notes: 
 
1. Panel A presents estimates of equation (19), panel B estimates of (20).  Constant terms 
were included in all regressions.  The backward and hybrid models differ in their 
treatment of expected inflation, as explained in the text. 
 
2.  In panel A, the output gap is the dependent variable, αyj is the coefficient on output 
gap at lag j, αr the coefficient on the annual real interest rate.  In panel B, inflation is the 
dependent variable, βy1 is the coefficient on yt-1, βπj the coefficient on inflation at lag j, β0 
the coefficient on a survey measure of expected annual inflation. 
 
3. The data are quarterly.  The sample of 131 observations is 1970:2-2002:4.  Inflation is 
the annualized change in the GDP deflator; the output gap is computed from real GDP 
and the CBO estimate of potential GDP; the interest rate is the average Federal funds 
rate. 
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Table 2 
 

Relative Likelihood  P 
 
 Backward Hybrid  
(1)Minimum P 1×10-7 2×10-6  
(2)Q1 P 2×10-5 2×10-4  
(3)Median P 3×10-4 1×10-3  
(4)Q3 P 2×10-3 9×10-3  
(5)Maximum P 0.30 0.30  
(6)No. models with P > (max P)/20 8 13  
(7)Sum of P for models with  
P> (max P)/20 

0.92 0.89  

(8)Sum of P for models in top quartile 0.98 0.93  
(9)Sum of P 1.0 1.0  
 
Notes: 
 
1.   Let  be the BIC-adjusted likelihood for model m.  Then ˆ

mL
ˆ

ˆ
m

m
m

m C

LP
L

∈

=
∑

 

where the summation runs over the 64 models in a given class (backwards or hybrid).  As 
indicated in line (9), by construction ΣmRm=1.  
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Table 3 
Risk and Model Uncertainty for Original Taylor Rule 

  
Taylor Rule: gπ=1.5, gy=0.5, gi=0 

 
A. All Models 

 Backwards Hybrids 
(1)Mean 30.0 25.6 
(2)Std. Dev. 10.9 7.1 
(3)Minimum 17.5 12.5 
(4)Q1 20.2 20.1 
(5)Median 26.3 26.0 
(6)Q3 36.5 30.8 
(7)Maximum 51.6 44.7 
(8)Post. Weighted Av. 22.0 23.6 
 

B. Models with High Posterior Probability 
 

(1)Minimum                  19.1    15.2 
(2)Maximum                  23.2     31.9 
 
Notes: 
 
1. This table presents information on the distribution across the 64 models in a given class 
(backward looking or hybrid) of risk R when monetary policy follows Taylor (1993) rule given 
in the header of the table. 
 
2. The risk function is given in (18), R = var(π∞) + λyvar(y∞) + λivar(∆i∞), for λy=1.0 and λi=0.1.  
 
3. In panel B, “high” posterior probability is defined as having a BIC adjusted likelihood at least 
1/20 of the model with the highest BIC adjusted likelihood. 
 
 
 
 



 
 

Table 4  
 

Ratio of Risk from Taylor (1993) Rule to Risk from Optimized Rules 
 
 

 (1) (2) (3) (4) 
Class of models 

(Optimal 3 Variable 
Rule used) 

Omitting 
Unstable 
Models 

 

Ratios for 
Unstable = 5.0 

Ratios for 
Unstable = 20.0 

Equivalent 
Ratio for 
Unstable 

(1) Backward 
(Optimal Backward) 

0.55 0.56 0.61 135 

(2) Backward 
(Optimal Hybrid) 

0.75 0.77 0.80 107 

(3) Hybrid 
(Optimal Hybrid) 

0.32 0.32 0.32 n.a. 

(4) Hybrid 
(Optimal Backward) 

0.38 0.38 0.38 n.a. 

 
Notes:  
 
1. This table presents the posterior weighted average ratios of risk R when monetary policy 
follows the Taylor (1993) rule to risk when monetary policy follows certain optimized rules. 
These optimized rules set the interest rate i as in (17), it = gππt + gyyt + giit-1. The parameters  gπ, 
gy and gi are chosen to minimize risk R given the estimates of the IS and Phillips curves 
presented in Table 1 above. Denote risk from Taylor (1993) rule as R̂ T and risk from an 
optimized rule as R̂ O, then the posterior weighted average ratio is: 

Σm∈CPm ( R̂ O/ R̂ T ) 
 

2. Lines (1) and (2) report the average ratio for the backward models using the optimized rule for 
the likeliest backward model (in line (1)) and the optimized rule for the likeliest hybrid model (in 
line (2)). Similarly, lines (3) and (4) report the average ratio for the hybrid models using the 
optimized rule for the likeliest hybrid model (in line (3)) and the optimized rule for the likeliest 
backward model (in line (4)). 
 
3. Column (1) reports average ratios when unstable models are omitted from the calculation. 
Column (2) and (3) report average ratio when the risk assigned to unstable models is so that their 
ratio to Taylor (1993) is 5.0 (column (2)) and 20.0 (column (3)). 
 
4. Column (4) reports the ratios that have to be assigned to unstable models in order to obtain an 
average ratio equal to 1.0, meaning that the Taylor (1993) rule is equivalent to the optimized rule 
when considering posterior weighted averages. 
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Figure 1 
Ratios of Risk for Optimal Policy Rules over Original Taylor Rule 

                  A. Backward Models    B. Hybrid Models  
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(4) Optimal Backward Rule (3) Optimal Hybrid Rule 

(2) Optimal Hybrid Rule (1) Optimal Backward Rule  

Notes:  
 
1. This figure presents the ratio of risk R when monetary policy follows the Taylor (1993) rule to 
risk when monetary policy follows certain optimized rules. These optimized rules set the interest 
rate i as in (17), it = gππt + gyyt + giit-1. The parameters  gπ, gy and gi are chosen to minimize risk 
R given the estimates of the IS and Phillips curves presented in Table 1 above. 
 
2. The policy rules are: 

Original Taylor Rule: gπ=1.5, gy=0.5, gi=0 
Optimized 3 Variable Backward: gπ=3.2, gy=2.1, gi=0.2 
Optimized 3 Variable Hybrid: gπ=3.2, gy=4.7, gi=0.55. 

 
3. In panels A the denominator is the risk R obtained applying Taylor (1993) rule to backward 
models: in (1) the numerator is the risk obtained using the optimized rule for the likeliest 
backward model; in (3) the numerator is the risk obtained using the optimized rule for the 
likeliest hybrid model.  
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In the panels B the denominator is the risk R obtained applying Taylor (1993) rule to hybrid 
models: in  panel (2) the numerator is the risk obtained using the optimized rule for the likeliest 
backward model; in (4) the numerator is the risk obtained using the optimized rule for the 
likeliest hybrid model. In either case, the ratios are computed using the IS and Phillips curve 
estimates of 64 models in each class. See Appendix 1 for a mapping of the model numbers to 
details of specification of IS and Phillips curves. 
 
4. A ratio less than one means that the optimized rule delivers less risk than did the original 
(1993) Taylor rule. If the optimized rule led to instability, the ratio is truncated at 1.8. The 
original Taylor rule did not lead to instability in any models. 
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Table 5 
 

Risk Distributions Across Models: 
 

 A. All Models 
 Backward 

 
Hybrid 

 Risk 
Original 
Taylor 

 

Risk 
Optimized 3 

Variable 

Ratio 
(Optimized 

over 
Original) 

Risk 
Original 
Taylor 

Risk 
Optimized 3 

Variable 

Ratio 
(Optimized 

over 
Original) 

(1)Mean 30.0 16.0 0.55 25.6 6.7 0.28 
(2)Std. Dev. 10.9 5.7 0.022 7.1 0.5 0.073 
(3)Minimum 17.5 9.2 0.51 12.5 5.7 0.15 
(4)Q1 20.2 11.2 0.54 20.1 6.2 0.22 
(5)Median 26.3 13.1 0.55 26.0 6.7 0.27 
(6)Q3 36.5 18.7 0.56 30.9 6.9 0.33 
(7)Maximum 51.6 28.1 0.61 44.7 7.6 0.46 
  

B. Models with High Posterior Probability 
 Backward (8 models) Hybrid (13 models) 
(1)Minimum 19.1 10.3 0.53 15.2 6.3 0.23 
(2)Maximum 23.2 13.1 0.59 31.9 7.6 0.42 
 
  

C. Model with Highest Posterior Probability 
 Backward  Hybrid  
(1) 23.2  12.9 0.55 24.1  7.6 0.32 
 
 
 Notes: 
1. The policy rules are: 

Original Taylor Rule: gπ=1.5, gy=0.5, gi=0 
Optimized 3 Variable Backward: gπ=3.2, gy=2.1, gi=0.2 
Optimized 3 Variable Hybrid: gπ=3.2, gy=4.7, gi=0.55. 

 
2. The assumed monetary policy rule is given in (17), it = gππt + gyyt + giit-1.  The risk function is 
given in (18), R = var(π∞) + λyvar(y∞) + λivar(∆i∞), for λy=1.0 and λi=0.1.  
 
3. In panel B, “high” posterior probability is defined as having a BIC adjusted likelihood at least 
1/20 of the model with the highest BIC adjusted likelihood. 
 
4. The regression estimates for models with the highest probabilities are given in Table 1. 
 
 
 

 



 45

 Table 6 
 

Distribution of Optimal Policy Parameters and Risks Across Models 
 

A. All Models 
 
 Backward  Hybrid 
 gπ/(1-gi) gy/(1-gi) gi R  gπ/(1-gi) gy/(1-gi) gi R 
(1)Mean 3.4 2.4 0.2 16.3  3.2 5.0 0.56 6.6 
(2)Std. Dev. 0.3 0.5 0.1 5.9  0.4 0.6 0.03 0.6 
(3)Minimum 2.9 1.5 0.0 8.8  2.3 3.7 0.51 5.5 
(4)Q1 3.2 2.0 0.1 11.3  2.7 4.6 0.53 6.2 
(5)Median 3.4 2.3 0.2 14.6  3.0 5.0 0.57 6.8 
(6)Q3 3.6 2.7 0.3 20.2  3.1 5.5 0.57 7.0 
(7)Maximum 3.9 3.3 0.4 27.3  3.3 5.9 0.59 7.7 
 
 

B. Models with High Posterior Probability 
 
 Backward (8 models) Hybrid (13 models) 
(1)Minimum 3.0 2.0 0.1 10.2  2.6 3.7 0.51 6.2 
(2)Maximum 3.5 2.6 0.3 13.1  3.8 5.7 0.59 7.8 
 
 

C. Model with Highest Posterior Probability 
 

 Backward Hybrid 
(1) 3.2 2.1 0.2 12.9  3.2 4.7 0.55 7.6 
 
 
 
 
Notes: 
 
1. This table presents information on the distribution across the 64 models in a given class 
(backward looking or hybrid) of monetary policy parameters  gπ, gy and gi that yielded minimum 
risk R.  The values were found by grid search over gπ, gy and gi. 
 
2. The assumed monetary policy rule is given in (17), it = gππt + gyyt + giit-1.  The risk function is 
given in (18), R = var(π∞) + λyvar(y∞) + λivar(∆i∞), for λy=1.0 and λi=0.1.  
 
3. In panel B, “high” posterior probability is defined as having a BIC adjusted likelihood at least 
1/20 of the model with the highest BIC adjusted likelihood. 
 
4.  The regression estimates for models with the highest probabilities are given in Table 1.
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Table 7 
 

Optimal Policy When Combining Hybrid and Backwards Models 
 

A. Policy parameters are held fixed at levels optimal for likeliest model in a given class 
 

(1) (2) (3)  (4) (5) (6) 
Held fixed at backwards level  Held fixed at hybrid level 

R*
b Rh .5R*

b +.5Rh   Rb R*
h .5Rb +.5R*

h
12.9 9.0 11.0  18.3 7.6 12.9 

 
 
 
 
 

B. Optimization over a weighted average of a single backwards and single hybrid model 
 

(1) (2) (3) (4)  (5) (6) (7) 
Backwards 
Weight (θ) 

gπ/(1-gi) gy/(1-gi) gi  Rb Rh θRb+(1-θ)Rh

0 3.2 4.7 0.55  18.3 7.6 7.6 
0.25 3.1 3.2 0.41  13.9 7.9 9.4 
0.5 3.2 2.7 0.31  13.2 8.3 10.7 
0.75 3.2 2.3 0.25  12.9 8.7 11.8 
1.0 3.2 2.1 0.2  12.9 9.0 12.9 

 
 
 
 
Notes: 
 
1. Let R*

b =12.9 and R*
h =7.6 denote risk that obtains when the model that is likeliest 

within a given class of models is used, see Table 6.C.  In column (2) of panel A, Rh 
denotes the risk that obtains for the likeliest hybrid model (parameter estimates in Table 
1) when the policy parameters are held fixed at the values that lead to R*

b.  By 
construction, Rh is at least as large as R*

h.   In column (4) of panel A, Rb is similarly 
computed, using backwards model estimates presented in Table 1 and hybrid policy 
parameters presented in Table 6.C. 
 
2. Panel B present parameters that are optimal when the risk function is the indicated 
arithmetic average of backwards and hybrid models.  Risk for θ=0 and θ=1.0 corresponds 
to what is called R*

h and R*
b  in panel A. 

 



 
Figure 2  Outcome and Action Dispersion 

Parameters Results for Backward Models 
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Notes: The two top panels and the left bottom panel report the value of the optimal policy parameter for each model (indexed by model’s number, see Appendix 
1). The right bottom panel reports the values of the minimum risk for each model corresponding to the optimal parameters found. Risk R is calculated using 
preference values: λy = 1.0 and λi = 0.1, where R = var(π∞) + λyvar(y∞) + λivar(∆i∞). 
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B.Posterior Weighted Results 
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Notes: Panels B report the same results as Panels A concerning the parameter values and the minimum risk. This time they are plotted against the relative BIC 
adjusted relative likelihood of each model. The light shaded dots refer to models having a BIC adjusted likelihood at least 1/20 of the model with the highest BIC 
adjusted likelihood. 
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Parameters Results for Hybrid Models 

C. Non-Weighted Results 
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D. Posterior Weighted Results 
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Appendix I 

This appendix maps the model numbers used in Figure 1 and 2 into details of 

specifications of the IS and Phillips curves. For each model number running from 1 to 64, 

three numbers are presented. These are: number of lags of y in IS curve; number of lags 

of y in Phillips curve; number of lags of π in Phillips curve. For example, model 25 had 2 

lags of y in the IS curve, along with 3 lags of y and 1 lag of π in the Phillips curve. 

Index for Model Space 
Model  
Number 

Specification 
y lags in IS, 
y lags and π lags in PC 
 

 

1 1 1 1 17 2 1 1 33 3 1 1 49 4 1 1 
2 1 1 2 18 2 1 2 34 3 1 2 50 4 1 2 
3 1 1 3 19 2 1 3 35 3 1 3 51 4 1 3 
4 1 1 4 20 2 1 4 36 3 1 4 52 4 1 4 
5 1 2 1 21 2 2 1 37 3 2 1 53 4 2 1 
6 1 2 2 22 2 2 2 38 3 2 2 54 4 2 2 
7 1 2 3 23 2 2 3 39 3 2 3 55 4 2 3 
8 1 2 4 24 2 2 4 40 3 2 4 56 4 2 4 
9 1 3 1 25 2 3 1 41 3 3 1 57 4 3 1 

10 1 3 2 26 2 3 2 42 3 3 2 58 4 3 2 
11 1 3 3 27 2 3 3 43 3 3 3 59 4 3 3 
12 1 3 4 28 2 3 4 44 3 3 4 60 4 3 4 
13 1 4 1 29 2 4 1 45 3 4 1 61 4 4 1 
14 1 4 2 30 2 4 2 46 3 4 2 62 4 4 2 
15 1 4 3 31 2 4 3 47 3 4 3 63 4 4 3 
16 1 4 4 32 2 4 4 48 3 4 4 64 4 4 4 
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