The Local Effects of Monetary Policy

Neville Francis Michael Owyang Tatevik Sekhposyan

UNC-Chapel Hill Federal Reserve Bank of St. Louis Bank of Canada

March 18, 2011

Motivation

Intranational business cycles are not harmonious.

December State Coincident Indexes: Three-Month Change

Motivation

Intranational business cycles are not harmonious.

For the aggregate economy the change has been 0.7 percent.

Goal

Understand the monetary policy propagation mechanism through various regions of the US economy

- establish an empirical benchmark for regional propagation
- examine why certain regions are more sensitive to monetary policy interventions compared to others

Cities

choice for geographical disaggregation - cities

Why?

Cities

choice for geographical disaggregation - cities

Why?

cities provide rich yet representative overview of the aggregate

Cities

choice for geographical disaggregation - cities

Why?

cities provide rich yet representative overview of the aggregate

- population areas with high degree of economic and social integration
- comprise 83% of population and 89% of aggregate output
- richer data set for city level characteristics

Choice of Cities: Motivated by the Literature

• monetary literature

considerable within region variations example, BEA regions in Carlino and DeFina (1998)

• economic growth literature

high degree of economic integration within cities heterogeneity in the political and social structure across cities

example, Glaeser, Scheinkman and Shleifer (1995)

urban literature

agglomeration economies lessen with distance cities are fairly unique example, human capital in Simon and Nardinelli (1996) agglomeration effects in Rosenthal and Strange (2003)

• consider the differential effects of monetary policy on city level employment

• consider the differential effects of monetary policy on city level employment

estimate a large monetary vector autoregression

• consider the differential effects of monetary policy on city level employment

estimate a large monetary vector autoregression

• use a set of covariates to explain the differences across city level responses

• consider the differential effects of monetary policy on city level employment

estimate a large monetary vector autoregression

• use a set of covariates to explain the differences across city level responses

conduct a model selection exercise

Empirical Model

Let

$$z_{t} = [\underbrace{y_{1,t}, ..., y_{i,t}, ..., y_{n,t}}_{loc'_{t}}, \underbrace{y_{t}, p_{t}, lead_{t}, r_{t}, nbr_{t}, tr_{t}, m2_{t}}_{agg'_{t}}]',$$

where

- $y_{i,t}$ employment for city *i*
- y_t real GDP
- p_t core CPI
- $lead_t$ composite index of 10 leading indicators
- *r*_t federal funds rate (effective)
- *nbr*_t non-borrowed reserves of depository institutions
- tr_t total reserves
- $m2_t$ M2 money stock

Empirical Model

Consider a structural VAR in the following form

$$Gz_t = C + \sum_{l=1}^p G_l z_{t-l} + \epsilon_t, \quad \forall t = 1, ..., T$$

where

$$z_t = \left[egin{array}{cc} \mathit{loc}_t & \mathit{agg}_t \end{array}
ight]'$$

and

 loc_t is an $n \times 1$ vector of city-level variables agg_t is an $m - n \times 1$ vector of aggregate variables

Identification Restrictions

$$z_t = \begin{bmatrix} loc_t \\ agg_t \end{bmatrix}, \quad G = \begin{bmatrix} D_n & 0_{m-n} \\ G_{21} & G_{22} \end{bmatrix}$$

Restrictions on the regional block

- regional shocks contemporaneously affect the region of origin only
- aggregate shocks affect the regional variables with a period lag

Identification Restrictions

$$z_t = \begin{bmatrix} loc_t \\ agg_t \end{bmatrix}, \quad G = \begin{bmatrix} D_n & 0_{m-n} \\ G_{21} & G_{22} \end{bmatrix}$$

Restrictions on the regional block

- regional shocks contemporaneously affect the region of origin only
- aggregate shocks affect the regional variables with a period lag

Restrictions on the aggregate block

- aggregate variables respond to the regional variables contemporaneously
- the ordering within the regional block is recursive

Estimation

Data

- 105 cities with at least 200,000 in employment by the end of 2004
- data covers 1972:I 2004:IV
- captures 63% of aggregate employment

Estimation

Data

- 105 cities with at least 200,000 in employment by the end of 2004
- data covers 1972:I 2004:IV
- captures 63% of aggregate employment

Implementation

- Mitigate the curse of dimensionality by estimating a Bayesian VAR Banbura, Giannone, and Reichlin (2008)
- operationalize it via

Gibbs sampler as in Waggoner and Zha (2003)

Results: Shock to the Federal Funds Rate

Results: Regional Employment Response to Policy

Results: Regional Employment Response to Policy

General Properties of the City Responses

	Max	Period	Total	Period 4	Period 8	Period 16
Group 1	-0.03	9.27	0.29	0.01	-0.01	-0.00
Group 2	-0.12	9.50	1.33	-0.06	-0.11	-0.08
Group 3	-0.19	9.29	2.15	-0.10	-0.18	-0.12
Group 4	-0.05	8.53	0.51	-0.03	-0.05	-0.01
Group 5	-0.07	13.00	0.67	-0.00	-0.05	-0.06
Group 6	-0.09	8.33	0.94	-0.06	-0.09	-0.04

Group 1-11%, Group 2-10%, Group 3-7%, Group 5-12%, Group 6-28%.

Geographical Location of the Cities in the Clusters

Why do Asymmetries Exist?

Cities vary with

- channels of monetary transmission short run effects
- propagation effects long run effects

Why do Asymmetries Exist?

Cities vary with

- channels of monetary transmission short run effects
- propagation effects long run effects

Approach

Consider a cross-sectional regression

$$i\mathbf{r} = \alpha + \mathbf{x}\beta + v,$$

where

ir - describes a certain property of the impulse response, i.e. depth, total cost of the recession, etc. x - is an $n \times k$ vector of k covariates for each city n

The Choice of Covariates: Methodology

$$ir = \alpha + x\beta + v, \quad v \propto N(0_n, h^{-1}I_n)$$

Priors: diffuse priors on h, α , and $\beta_r | h \propto N(0_{k_r}, h^{-1}[g_r X'_r X_r]^{-1})$

Posterior model probability: $p(M_r|ir) \propto p(ir|M_r)p(M_r)$

Simulation:

• Markov Chain Monte Carlo Model Composition (MC3) algorithm - Madigan and York (1995)

Report:

inclusion probability, posterior means and standard deviations

Covariate	Interest	Equity	Ex	Narrow	Broad	Prop
	Rate		Rate	Credit	Credit	
Demog	raphic & G	eneral So	cio-Ecor	nomic		
Population						
Population Density						\checkmark
Fr. with College Degree						\checkmark
Median Household Income		\checkmark				\checkmark
Fr. Below Poverty		\checkmark				\checkmark
Fr. No Wage/Salary						
Fr. No Interest/Dividend						
Crimes Known to Police						\checkmark

Covariate	Interest	Equity	Ex	Narrow	Broad	Prop
	Rate		Rate	Credit	Credit	
	Indu	stry Mix				
Finance, Ins, Real Estate					\checkmark	
Government						\checkmark
Manufacturing	\checkmark		\checkmark			
Services	\checkmark					\checkmark
Transport, Comm, etc.	\checkmark					\checkmark
Trade			\checkmark			
	He	ousing				
HPI						
Fr. of Owner-Occ. Housing		\checkmark				
	Ba	anking				
HHI						
Banking Market Deposits						
Small Business Loans				\checkmark		

Covariate	Interest	Equity	Ex	Narrow	Broad	Prop
	Rate		Rate	Credit	Credit	
	Industria	l Organiz	ation			
Establishment Size				\checkmark	\checkmark	
Industrial Diversity Index						\checkmark
Union Membership						\checkmark
	Fisca	l Variable	S			
Government Revenue						
Government Expenditures	\checkmark					

Covariate	Interest	Equity	Ex	Narrow	Broad	Prop
	Rate		Rate	Credit	Credit	
	Industria	l Organiz	ation			
Establishment Size						
Industrial Diversity Index						\checkmark
Union Membership						\checkmark
	Fisca	l Variable	S			
Government Revenue						
Government Expenditures	\checkmark					

Total number of models: $2^{24} = 16,777,216$.

MC3	results	-	at	Trou	gh
-----	---------	---	----	------	----

Covariate	Inclusion prob	Post. Mean	Post. St. Dev
Population	0.07	-0.00	0.0005
Population Density	1.00	0.02	0.0038
Fr. with College Degree	0.05	-0.00	0.0033
Median Household Income	0.05	0.00	0.0011
Fr. Below Poverty	0.04	-0.00	0.0035
Fr. No Wage/Salary	0.05	0.00	0.0041
Fr. No Interest/Dividend	0.04	-0.00	0.0020
Crimes Known to Police	0.06	-0.01	0.0087
Finance, Ins., Real Estate	0.10	0.02	0.0177
Government	0.90	0.23	0.0641
Manufacturing	0.10	-0.01	0.0062
Services	0.07	-0.01	0.0064
Transport, Comm, etc.	0.09	0.02	0.0187
Trade	0.05	0.00	0.0082

Covariate	Inclusion prob	Post. Mean	Post. St. Dev
HPI	0.13	0.01	0.0041
Fr. Owner-Occ. Housing	0.09	-0.00	0.0028
HHI	0.05	-0.00	0.0004
Banking Market Deposits	0.05	0.00	0.0001
Small Business Loans	0.33	-0.01	0.0019
Establishment Size	0.09	0.00	0.0028
Ind Diversity Index	0.04	-0.00	0.0010
Union Membership	0.11	0.01	0.0048
Gov Revenue	0.05	-0.00	0.0004
Gov Expenditures	0.05	-0.00	0.0004

MC3 results - at Trough

Covariate	Inclusion prob	Post. Mean	Post. St. Dev
Population	0.08	0.01	0.0062
Population Density	1.00	-0.25	0.0440
Fr. with College Degree	0.05	0.01	0.0345
Median Household Income	0.05	-0.01	0.0128
Fr. Below Poverty	0.04	-0.00	0.0422
Fr. No Wage/Salary	0.05	0.03	0.0506
Fr. No Interest/Dividend	0.04	0.00	0.0235
Crimes Known to Police	0.04	0.04	0.0750
Finance, Ins., & Real Estate	0.06	-0.13	0.1403
Government	0.58	-1.33	0.4821
Manufacturing	0.09	0.09	0.0619
Services	0.10	0.18	0.1082
Transport, Comm., etc.	0.07	-0.20	0.1842
Trade	0.05	0.04	0.0983

MC3 results - Total Cost of Recession

Covariate	Inclusion prob	Post. Mean	Post. St. Dev
HPI	0.16	-0.10	0.0552
Fr. Owner-Occ. Housing	0.08	0.03	0.0278
HHI	0.05	0.00	0.0046
Banking Market Deposits	0.04	-0.00	0.0013
Small Business Loans	0.37	0.06	0.0250
Establishment Size	0.10	-0.05	0.0346
Industrial Diversity Index	0.05	0.00	0.0124
Union Membership	0.10	-0.08	0.0547
Gov. Revenue	0.04	-0.00	0.0040
Gov. Expenditures	0.05	0.00	0.0047

MC3 results - Total Cost of Recession

Inclusion Probabilities						
Covariate	Trough	Total	Pd 4	Pd 8	Pd 16	
Population	0.07	0.08	0.06	0.06	0.18	
Population Density	1.00	1.00	1.00	1.00	1.00	
Fr. with College Degree	0.05	0.05	0.05	0.06	0.05	
Median Household Income	0.05	0.05	0.05	0.05	0.05	
Fr. Below Poverty	0.04	0.04	0.05	0.04	0.05	
Fr. No Wage/Salary	0.05	0.04	0.20	0.06	0.05	
Fr. No Interest/Dividend	0.04	0.04	0.04	0.04	0.04	
Crimes Known to Police	0.06	0.04	0.05	0.07	0.06	
Finance, Ins., & Real Estate	0.09	0.06	0.04	0.05	0.06	
Government	0.90	0.58	0.54	0.91	0.07	
Manufacturing	0.10	0.09	0.20	0.13	0.10	
Services	0.07	0.10	0.06	0.09	0.45	
Transport, Comm., etc.	0.09	0.07	0.05	0.14	0.04	
Trade	0.05	0.05	0.07	0.05	0.05	

Inclusion Probabilities						
Covariate	Max	Total	Period 4	Period 8	Period 16	
HPI	0.13	0.16	0.07	0.12	0.20	
Fr. Owner-Occ. Housing	0.09	0.08	0.28	0.05	0.05	
HHI	0.05	0.05	0.09	0.06	0.05	
Banking Market Deposits	0.05	0.05	0.06	0.05	0.06	
Small Business Loans	0.33	0.37	0.18	0.25	0.16	
Establishment Size	0.09	0.10	0.07	0.06	0.36	
Industrial Diversity Index	0.04	0.05	0.07	0.04	0.07	
Union Membership	0.11	0.10	0.05	0.05	0.77	
Gov. Revenue	0.05	0.04	0.05	0.04	0.06	
Gov. Expenditures	0.05	0.05	0.06	0.05	0.04	

. _ 1.111.1

Conclusion

- Previous literature has documented the differential responses to monetary policy on a level of large regions, i.e. BEA, state.
- We promote the *city* as a better unit of measure.
- We find cross-city variations in monetary-induces recessions, expressed mainly in the level and persistence of a response.
- Contrary to the literature the role of interest rate, credit and equity channels of monetary policy are marginalized.
- City size, government employment share appear to be the most prominent determinants of cross-city variations for monetary induced recessions.

Sims-Zha (1998) shrinkage prior Recall

$$z'_t A = C' + z'_{t-1} A_1 + \epsilon'_t$$

Consider a prior of a following form:

$$a_i \sim N(0, ar{S}_i)$$
 and $f_i | a_i \sim N(ar{P}_i a_i, ar{H}_i),$

such that
$$ar{H}_{i_{jj}}=rac{\lambda_0\lambda_1}{\sigma_jp^{\lambda_3}}$$
 and $ar{S}_{i_{jj}}$ are defined by $rac{\lambda_0}{\sigma_j}$

- prior hierarchical in nature
- shrinks the parameter space around random walk

λ_0	1	controls the overall tightness of the beliefs
λ_1	0.2	tightens the prior around a random walk
λ_3	1	rate of contraction with an increase in lag length
λ_4	1	controls the tightness of the constant

Inexact Priors: Theil (1971) mixed estimation technique

Govern the dynamics of the system as a whole

$$z'_t A = C' + z'_{t-1} A_1 + \epsilon'_t$$

Unit-Root prior

- for each variable add observations that would result from a unit-root process and assign weights to it (μ₅).
- mitigates the bias problem

Cointergration prior

• add an observations that would result if the variables were co-integrated and assign a weight to it (μ_6) .

μ_5	5	governs the prior on the order of integration
μ_{6}	5	sets the prior belief on the presence of cointegration

