Interstate Banking Deregulation and Bank Loan Commitments FRBSF/BEJM Conference on Empirical Macroeconomics Using Geographical Data

Ki Young Park

School of Economics Yonsei University

March 18, 2011

Road Map

- Background, Motivation, and Main Finding
- A Simple Model
- Impirical Analysis
 - Data
 - Empirical specification
 - Results
 - Robustness check
- Summary

3

Loan Commitments

- A formal contract by a bank to lend to a specific borrower up to a certain amount at prespecified terms
 - A bank charges interest rates and fees
 - interest rates = market interest rates (LIBOR) + fixed markup
- Option-like exercise: firms draw down more in response to negative shocks (Morgan (1998), Sufi (2008), Jimenez et al (2009), Ivashina and Scharfstein (2010))
- Just like demand deposit, a bank should prepare for unexpected take-down ⇒ liquidity management problem (Kashyap et al (2002))

Branching and Interstate Banking Regulation

- Long time ago, the United States Constitution prevented the states from issuing fiat money and from taxing interstate commerce
- In an attempt to raise revenue, states started selling bank charters and prohibited interstate banking
- Legislature also restricted intrastate expansion \Rightarrow branching regulation
- Prior to the 1970s, most states had laws restricting within-state branching, and all states forbade interstate branching

Deregulation Begins.....

- Since the 1970s, deregulation on intrastate branching started through banking holding companies (BHCs) or M&A
- Relaxing restrictions on bank expansion led to larger banks operating across a wider geographical area
- Banking industry becomes more competitive and consolidated ⇒ larger banks finance funds more cheaply and BHC-member banks can use internal capital markets
- Staggering timing of each state's deregulation \Rightarrow cross-sectional and time-series variations

Bank Loan Commitments: Getting More Popular

• Figure 1:

• As of early 2011, the share of C&I loans made under commitment amounts to 80 percent of total C&I loans made

It Might Be Important for the Real Economy

• Figure 2:

• Until Sep 2008, C&I loans have not declined. Why?

3 🕨 🖌 3

Years of Interstate Banking Deregulation

• Figure 3: increased capital mobility across states

Years of Branching Deregulation

• Figure 4: increased capital mobility within states

Loan Commitments Before/After Interstate Banking

- Figure 5: COM = total unused loan commitments/total loans
- Kernel density of the state-level average values of (loan commitments/total loans) shifted to the right after deregulation.

Before Interstate Banking Deregulation

• Figure 6: COM = total unused loan commitments/total loans

► < Ξ > <</p>

After Interstate Banking Deregulation

• Figure 6: COM = total unused loan commitments/total loans

-

Question and Conjecture

- Given this popularity and role, we ask "what makes a bank issue more loan commitments (C*)?"
- Liquidity management because of its option-like exercise ⇒ agency cost (α) would matter for C*
 - \blacktriangleright Large and BHC-member banks with lower α issue more loan commitments
 - Table 1
- \bullet However, we need more exogenous change in α to see the sign of $\partial {\it C}^*/\partial \alpha$

- Is there any exogenous change in agency cost (α)? ⇒ interstate banking and branching deregulation
 - State-level deregulation is more exogenous than size or BHC-membership
 - Staggering timing across states gives much more variations
 - Relatively free from survivorship bias of individual banks
- We test $\partial C^* / \partial \alpha < 0$ using the deregulation process as a natural experiment for a change in α
- Alternatively, can we explain figure 6 with figure 3 and 4?

Main Finding

- Use of bank loan commitments has increased *after* interstate banking deregulation, which increased capital mobility (integration *across* state lines)
- The effect of branching deregulation is weak or non-existent (integration *within* a state)
- Agency cost or access to external/internal capital markets is important for issuing loan commitments
- Bank deregulation affects bank on- and off-balance sheets

- More importantly, we find one link b/w deregulation and the real economy
- Recent studies ask *if* banking deregulation affects the real economy
 - Morgan et al (2004), Demyanyk (2007), and Hoffmann (forthcoming) say "Yes" in terms of income and consumption
- Studies by Jimenez et al (2009), Ivanshina and Scharfstein (2010), and Park and Lee (2010) show that loan commitments may have real effects especially in economic downturns
- Given this, this study can suggest one link between deregulation and the real economy: loan commitments can be one candidate

Model

- Analogy of "newsboy" problem
- It focuses on liquidity management problem and a bank's options to deal with increased take-down
- When the amount of liquidity held inside falls short of the realized take-down from loan commitments, options open to a bank are:
 - to get uninsured funds through external financing
 - to reduce the amount of term loans to be issued (recalling and/or denying roll-over)
- We assume that a bank uses the first option

- One-period model (period 0 and 1)
 - endowed with deposit D at period 0
 - ▶ needs to decide term loans (N), loan commitments (C), and liquidity held inside (S₀) in preparation for take-down shock (z), realized between period 0 and 1
 - needs to borrow when $zC > S_0$
- Liquidity management problem
 - too much liquidity inside \Rightarrow opportunity cost of making loans
 - \blacktriangleright too small liquidity inside \Rightarrow penalty of expensive external financing

• A bank maximizes its expected profit:

$$\max_{C,S_0} E[r_N N + f(C)C + r_C zC - H(B)]$$

subject to

$$N+S_0=D$$
 (time-0 constraint)
 $N+zC+S_1=D+B$ (time-1 constraint)

and

$$S_1 = max\{S_0 - zC, 0\}$$

• External financing cost function:

 $H(B) = \alpha B$ where $B = max\{zC - S_0, 0\}$ and $\alpha > r_N$

• Take-down shock: $z \sim uniform[a, b]$ where $0 \le a < b \le 1$

• External financing is necessary only when $zC > S_0$. Thus expected cost of external financing is

$$E[H(B)] = \alpha \int_{S_0/C}^{b} (zC - S_0) dF(z)$$

• Reformulating the maximization problem gives:

$$\max_{C,S_0} E[r_N(D-S_0) + (j-hC)C + r_C zC] - \int_{S_0/C}^{b} (zC-S_0)dF(z)$$

FOCs are:

$$[C]: r_C \mu_z + j - 2hC^* = \frac{\alpha}{2} (b^2 - \frac{S_0^{*2}}{C^{*2}})$$
$$[S_0]: r_N = \alpha (b - \frac{S_0^*}{C^*})$$

where μ_z is the mean value of z

Comparative Statics and Testable Implication

• Solving for C^* and S_0^* , we obtain:

$$C^* = \frac{1}{2h} \left[\frac{r_N^2}{2\alpha} - r_N b + r_C \mu_z + j \right]$$

$$S_0^* = \frac{\alpha b - r_N}{\alpha} C^*$$

• Lower α bank issues more loan commitments:

$$\frac{\partial C^*}{\partial \alpha} = -\frac{r_N^2}{4h\alpha^2} < 0$$

• Uncertain loan take-down discourages using loan commitments (one rationale for usage fees):

$$rac{\partial \mathcal{C}^*}{\partial arepsilon} = -rac{r_N}{2h} < 0, \quad ext{letting } b \equiv b' + arepsilon ext{ and } a \equiv a' - arepsilon$$

• However, effect of α on S_0^* is indeterminate:

$$\frac{\partial S_0^*}{\partial \alpha} = (1 - \frac{r_N}{\alpha})\frac{\partial C^*}{\partial \alpha} + \frac{r_N}{\alpha^2}C^* \leq 0$$

with

$$\lim_{\alpha\to\infty}S_0^*=bC^*$$

- A bank with less severe adverse selection problem in capital markets or with cheaper sources of external funds will issue more loan commitments: $\partial C^* / \partial \alpha < 0$
- We use banking deregulation as an exogenous change in α :

lower α after deregulation $\Rightarrow C^*$ increases

Data

- "Call report"
- Sample period: 1984:II-1999:IV
- 812,970 bank-quarter observations (92% of original data) after applying exclusion criteria such as
 - bank-quarter observations involved in mergers
 - (unused commitment/total loans) > 4
 - (nonperforming loans/total loans) > 0.5
- Aggregated to state level
 - can avoid survivorship bias
 - important for control for Delaware

Empirical Specification

• Fixed effects panel regression:

 $COM_{it} = c + \alpha_I D_{it}^I + \alpha_B D_{it}^B + (\text{control for industry structure})_{it} + (\text{control for bank B/S structure})_{it} + (\text{time fixed effect}) + \alpha_i + u_{it}$

where COM = (loan commitments/total loans) and D^{j} is a dummy for interstate banking (1) and branching deregulation (B)

- Differences-in-differences (DD) estimation: we test if
 - ∧ α_I > 0
 - $\alpha_I \gtrless \alpha_B$

Results: Table 2

 $COM_{it} = c + \alpha_I D^I_{it} + \alpha_B D^B_{it} + (\text{control for industry structure})$ (control for bank B/S variables) + (time fixed effect) + $\alpha_i + u_{it}$

	Dependent variable: COM					
	(1)	(2)	(3)	(4)	(5)	
After interstate banking	0.10^{**}	0.04^{**}	0.04^{**}	0.05^{**}	0.03**	
deregulation (α_I)	(16.73)	(6.01)	(5.64)	(5.21)	(3.09)	
After branching	0.05^{**}	0.02^{**}	0.01^{*}	-0.00	-0.01*	
deregulation (α_B)	(8.62)	(3.32)	(1.71)	(-0.19)	(-1.70)	
log(asset)			0.11^{**}	0.11^{**}	0.11^{**}	
			(9.23)	(8.47)	(6.76)	
Share of liquid assets			-0.16**	-0.15^{**}	-0.11	
			(-2.97)	(-2.50)	(-1.62)	
Share of nonperforming loans			-0.17	-0.09	-0.47*	
			(-0.97)	(-0.54)	(-1.93)	
Equity/assets			2.20^{**}	1.91^{**}	2.12^{**}	
			(5.99)	(4.39)	(4.21)	
Transaction deposits/assets			-0.46**	-0.48**	-0.62**	
			(-4.78)	(-4.57)	(-4.95)	
Industry structure		Yes	Yes	Yes	Yes	
Bank B/S variables			Yes	Yes	Yes	
Time dummy				Yes	Yes	
Subsample					Yes	
R^2	0.12	0.28	0.42	0.46	0.47	
N	3,121	3,121	3,121	3,121	2,743	
F-test (p -value)	0.00	0.00	0.00	0.00	0.00	

Ki Young Park (Yonsei University)

March 18, 2011 25 / 31

3

Robustness Check (1): Different Dependent Variable

- A bank, that issues loan commitments, needs to hold some liquidity in order to prepare for unexpected takedown by firms
- We try different variables:

 $COM^{liquid} = \frac{\text{unused loan commitments}}{\text{liquid assets}}$ where liquid assets = (cash + securities), and $COM^{assets} = \frac{\text{unused loan commitments}}{\text{total assets}}$

Table 3

	Dependent variable: COM ^{liquid}					
	(1)	(2)	(3)	(4)	(5)	
After interstate banking	0.37^{**}	0.19^{**}	0.18^{**}	0.18^{**}	0.09^{**}	
deregulation (α_I)	(12.84)	(4.89)	(4.64)	(4.20)	(2.16)	
After branching	0.14^{**}	0.04	0.00	-0.04	-0.07**	
deregulation (α_B)	(5.69)	(1.44)	(0.00)	(-1.47)	(-2.58)	
log(asset)			0.48^{**}	0.48^{**}	0.53^{**}	
			(7.97)	(7.59)	(6.70)	
Share of liquid assets			-2.11^{**}	-2.04^{**}	-1.77**	
			(-8.36)	(-7.63)	(-5.54)	
Share of nonperforming loans			1.27	1.19	-0.34	
			(1.59)	(1.51)	(0.32)	
Equity/assets			11.75^{**}	12.62^{**}	14.00^{**}	
			(6.75)	(5.68)	(5.50)	
Transaction deposits/asset			-2.22**	-2.38^{**}	-2.93**	
			(-4.61)	(-4.50)	(-4.69)	
Industry structure		Yes	Yes	Yes	Yes	
Bank B/S variables			Yes	Yes	Yes	
Time dummy				Yes	Yes	
Subsample					Yes	
R^2	0.08	0.21	0.39	0.42	0.44	
N	3,121	3,121	3,121	3,121	2,743	
F-test (p-value)	0.00	0.00	0.00	0.00	0.00	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Robustness Check (2): Robust Standard Errors

- Bell (2002) shows that bias of the standard errors is larger for variables that are constant or nearly constant within cluster, which is typical in the DD model
- Bertrand et al (2004) emphasize that serial correlation may make a false rejection of the null hypothesis of no effect more likely
- Following Stock and Watson (2008) and Driscoll and Kraay (1998), we use cluster-robust standard errors and Driscoll-Kraay standard errors

Table 4

	Dependent variable							
	COM		COM^{liquid}		COM		COM^{liquid}	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
After interstate banking deregulation (α_I)	0.06^{**}	0.06^{*}	0.18^{*}	0.18	0.06^{**}	0.06^{**}	0.18^{**}	0.18^{**}
	(2.02)	(1.91)	(1.86)	(1.63)	(2.99)	(3.87)	(2.92)	(3.19)
After branching deregulation (α_B)	0.02	0.00	0.00	-0.04	0.02	0.00	0.00	-0.04
	(0.63)	(0.02)	(0.00)	(-0.45)	(1.30)	(0.04)	(0.00)	(-0.86)
log(asset)	0.17^{**}	0.17^{**}	0.48^{**}	0.48^{**}	0.17^{**}	0.17^{**}	0.48^{**}	0.48^{**}
	(3.68)	(3.43)	(2.82)	(2.77)	(7.53)	(7.63)	(6.29)	(6.86)
Share of liquid assets	0.18	0.20	-2.11^{**}	-2.04^{**}	0.18	0.20	-2.11^{**}	-2.04^{**}
	(0.95)	(0.91)	(-3.17)	(-2.91)	(1.56)	(1.51)	(-4.16)	(-3.76)
Share of nonperforming loans	-0.85	-0.74	1.27	1.19	-0.85**	-0.74^{*}	1.27	1.19
	(-1.09)	(-0.85)	(0.56)	(0.49)	(-2.33)	(-1.80)	(0.94)	(0.86)
Equity/assets	2.66^{*}	2.20	11.75^{**}	12.62^{**}	2.66^{**}	2.20^{*}	11.75^{**}	12.62^{**}
	(1.79)	(1.37)	(2.45)	(2.24)	(2.52)	(1.87)	(3.25)	(3.26)
Transaction deposits/assets	-0.67	-0.70	-2.22	-2.38	-0.67**	-0.70**	-2.22^{**}	-2.38^{**}
	(-1.36)	(-1.32)	(-1.30)	(-1.25)	(-4.57)	(-4.04)	(-4.09)	(-3.74)
Time dummy		Yes		Yes		Yes		Yes
Cluster-robust standard errors	Yes	Yes	Yes	Yes				
Driscoll-Kraay standard errors					Yes	Yes	Yes	Yes
R^2	0.44	0.48	0.39	0.42	0.44	0.48	0.39	0.42
N	3,121	3,121	3,121	3,121	3,121	3,121	3,121	3,121
F-test (p -value)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Ξ.

・ロト ・御ト ・ヨト ・ヨト

Other Robustness Checks

- Ashcraft (2008) documents that the benefit of becoming a member of MBHC became larger after cross-guarantee provision was introduced in 1989
 - This cross-guarantee effect might be mixed with those of D^{I} and D^{B}
 - Dummy for cross-guarantee (D^{C}) is significant without D^{I} and D^{B}
 - ▶ When we let three dummies compete, only the coefficient of D^{I} is significant: $\hat{\alpha}_{I} = 0.06$
 - Including D^{C} does not affect the estimation result much
- Another supporting evidence: COM variable is positively correlated with ISAR (Interstate Asset Ratio), a measure of interstate banking used in Morgan et al (2004)

Summary

- Use of loan commitments has increased after interstate banking deregulation ⇒ agency cost is an important factor
- Financial integration <u>across states</u> is more important than integration <u>within state</u> in terms of agency costs
- Our finding may be one link between deregulation and more stable macroeconomy
 - Morgan et al (2004), Demyanyk (2007), and Hoffmann (forthcoming) show that interstate banking contributes to increased stability. How?
 - Park (2010) shows that states with more loan commitments are less volatile when the credit spread increases
- Regulatory changes can have real effects to the economy
 - Bank loan commitments would be one candidate, which increased after interstate banking

イロト 不得 トイヨト イヨト 二日