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Abstract

This paper proposes methods for estimation and inference in multi-

variate, multi-quantile models. The theory can simultaneously accom-

modate models with multiple random variables, multiple confidence

levels, and multiple lags of the associated quantiles. The proposed

framework can be conveniently thought of as a vector autoregressive

(VAR) extension to quantile models. We estimate a simple version of

the model using market equity returns data to analyse spillovers in the

values at risk (VaR) between a market index and financial institutions.

We construct impulse-response functions for the quantiles of a sample

of 230 financial institutions around the world and study how financial

institution-specific and system-wide shocks are absorbed by the sys-

tem. We show how our methodology can successfully identify both

in-sample and out-of-sample the set of financial institutions whose risk

is most sentitive to market wide shocks in situations of financial dis-

tress, and can prove a valuable addition to the traditional toolkit of

policy makers and supervisors.
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1 Introduction

This paper suggests a multivariate regression quantile model to directly

study the degree of tail interdependence among different random variables.

Our theoretical framework allows the quantiles of several random variables

to depend on (lagged) quantiles, as well as past innovations and other covari-

ates of interest. This modeling strategy has at least three advantages over

the more traditional approaches that rely on the parameterization of the en-

tire multivariate distribution. First, regression quantile estimates are known

to be robust to outliers, a desirable feature in general and for applications to

financial data in particular. Second, regression quantile is a semi-parametric

technique and as such imposes minimal distributional assumptions on the

underlying data generating process (DGP). Third, our multivariate frame-

work allows researchers to directly measure the tail dependence among the

random variables of interest, rather than recovering it indirectly via models

of time-varying first and second moments.

To illustrate our approach and its usefulness, consider a simple set-up

with two random variables, 1 and 2. All information available at time  is

represented by the information set F−1. For a given level of confidence  ∈
(0 1), the quantile  at time  for random variables   = 1 2 conditional

on F−1 is
Pr[ ≤ |F−1] =   = 1 2 (1)

A simple version of our proposed structure relates the conditional quantiles

of the two random variables according to a vector autoregressive (VAR)

structure:

1 =  0
1 + 111−1 + 122−1

2 =  0
2 + 211−1 + 222−1

where  represents predictors belonging to F−1 and typically includes
lagged values of . If 12 = 21 = 0, the above model reduces to the

univariate CAViaR model of Engle and Manganelli (2004), and the two

specifications can be estimated independently from each other. If, however,

12 and/or 21 are different from zero, the model requires the joint estimation

of all of the parameters in the system. The off-diagonal coefficients 12 and

21 represent the measure of tail codependence between the two random

variables, thus the hypothesis of no tail codependence can be assessed by

testing 0 : 12 = 21 = 0.

The first part of this paper develops the consistency and asymptotic

theory for the multivariate regression quantile model. Our fully general

model is much richer than the above example, as we can accommodate: (i)

more than two random variables; (ii) multiple lags of ; and (iii) multiple

confidence levels, say (1  ).
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In the second part of this paper, as an empirical illustration of the model,

we estimate a series of bivariate VAR models for the conditional quantiles of

the return distributions of individual financial institutions from around the

world. Since quantiles represent one of the key inputs for the computation

of the Value at Risk (VaR) for financial assets, we call this model VAR for

VaR, that is, a vector autoregressive (VAR) model where the dependent

variables are the VaR of the financial institutions, which are dependent on

(lagged) VaR and past shocks.

Our modeling framework appears particularly suitable to develop sound

measures of financial spillover, the importance of which has been brought

to the forefront by the recent financial crisis. In the current policy debate,

great emphasis has been put on how to measure the additional capital needed

by financial institutions in a situation of generalized market distress. The

logic is that if the negative externality associated with the spillover of risks

within the system is not properly internalised, banks may find themselves

in need of additional capital at exactly the worst time, such as when it is

most difficult and expensive to raise fresh new capital. If the stability of the

whole system is threatened, taxpayer money has to be used to backstop the

financial system, to avoid systemic bank failures that may bring the whole

economic system to a collapse.

Adrian and Brunnermeier (2009), Acharya et al. (2009), and Brownlees

and Engle (2010) have recently proposed to classify financial institutions

according to the sensitivity of their VaR to shocks to the whole financial

system. The empirical section of this paper illustrates how the multivariate

regression quantile model provides an ideal framework to estimate directly

the sensitivity of VaR of a given financial institution to system-wide shocks.

A useful by-product of our modeling strategy is the ability to compute quan-

tile impulse-response functions. These are obtained by computing the long

run quantiles and then applying a suitable identified shock to the multivari-

ate quantile model. Using the quantile impulse-response functions, we can

assess the resilience of financial institutions to shocks to the overall index,

as well as their persistence.

The model is estimated on a sample of 230 financial institutions from

around the world. For each of these equity return series, we estimate a

bivariate VAR for VaR where one variable is the return on a portfolio of

financial institutions and the other variable is the return on the single finan-

cial institution. We find strong evidence of significant tail codependence for

a large fraction of the financial institutions in our sample. When aggregating

the impulse response functions at the sectoral and geographic level no strik-

ing differences are revealed. We, however, find significant cross-sectional

differences. By aggregating the 20 stocks with the strongest and weakest

tail codependence to market shocks (thus, forming two portfolios), we find

that, while in tranquil times, the two portfolios have comparable risk. In

times of severe financial distress, the risk of the first portfolio increases dis-
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proportionately relative to the second. This result holds for both in-sample

and out-of-sample.

The plan of this paper is as follows. In Section 2, we set forth the mul-

tivariate and multi-quantile CAViaR framework, a generalization of Engle

and Manganelli’s original CAViaR (2004) model. Section 3 provides condi-

tions ensuring the consistency and asymptotic normality of the estimator,

as well as the results which provide a consistent asymptotic covariance ma-

trix estimator. Section 4 contains our empirical study. Section 5 provides

a summary and some concluding remarks. The appendix contains all of the

technical proofs of the theorems in the text.

2 TheMultivariate andMulti-Quantile Process and

Its Model

We consider a sequence of random variables denoted by {( 0  0
) :  =

1 2  } where  is a finitely dimensioned  × 1 vector and  is also a

countably dimensioned vector whose first element is one. To fix ideas,  can

be considered as the dependent variables and as the explanatory variables

in a typical regression framework. In this sense, the proposed model which

will be developed below is sufficiently general enough to handle multiple

dependent variables. We specify the data generating process as follows.

Assumption 1 The sequence {( 0  0
)} is a stationary and ergodic sto-

chastic process on the complete probability space (ΩF  0), where Ω is

the sample space, F is a suitably chosen -field, and 0 is the probability

measure providing a complete description of the stochastic behavior of the

sequence of {( 0  0
)}.

We define F−1 to be the -algebra generated by −1 := { (−1−1) }
i.e. F−1 := (−1). For  = 1   we also define () := 0[   |
F−1] which is the cumulative distribution function (CDF) of  conditional
on F−1. In the quantile regression literature, it is typical to focus on a
specific quantile index; for example,  ∈ (0 1). In this paper, we will de-
velop a more general quantile model where multiple quantile indexes can be

accounted for jointly. To be more specific, we consider  quantile indexes

denoted by 1 2   for the  element (denoted by ) of . The 

quantile indexes do not need to be the same for all of the elements of 

which explains the double indexing of  . Moreover, we note that we spec-

ify the same number () of quantile indexes for each  = 1  . However,

this is just for notational simplicity. Our theory easily applies to the case in

which the number of quantile indexes differs with ; i.e.,  can be replaced

with .

To formalize our argument, we assume that the quantile indexes are
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ordered such that 0  1      1. For  = 1   the th quantile

of  conditional on F−1 denoted ∗, is

∗ := inf{ : () = } (2)

and if  is strictly increasing,

∗ = −1 ()

Alternatively, ∗ can be represented asZ ∗

−∞
() = [1[≤∗] | F−1] =   (3)

where (·) is the Lebesgue-Stieltjes probability density function (PDF)
of  conditional on F−1, corresponding to 

Our objective is to jointly estimate the conditional quantile functions

∗ for  = 1   and  = 1 2  . For this, we write 
∗
 := (

∗0
1 

∗0
2  

∗0
)

0

with ∗ := (
∗
1 

∗
2  

∗
)

0 and impose an additional appropriate struc-
ture. First, we ensure that the conditional distributions of  are everywhere

continuous, with positive densities at each of the conditional quantiles of in-

terest, ∗. We let  denote the conditional probability density function
(PDF) which corresponds to . In stating our next condition (and where

helpful elsewhere), we make explicit the dependence of the conditional CDF

 on  ∈ Ω by writing ( ) in place of () Similarly, we may write
( ) in place of () The realized values of the conditional quantiles

are correspondingly denoted ∗()
Our next assumption ensures the desired continuity and imposes specific

structure on the quantiles of interest.

Assumption 2 (i)  is continuously distributed such that for each  ∈
Ω ( ·) and ( ·) are continuous on R  = 1 2   ; (ii) For the

given 0  1      1 and {∗} as defined above, we suppose
the following: (a) for each    and  ( 

∗
())  0; and (b) for

the given finite integers  and  there exist a stationary ergodic sequence

of random  × 1 vectors {Ψ} with Ψ measurable−F−1 and real vectors
∗ := (

∗
1  

∗
)

0 and ∗ := (
∗0
 1  

∗0
 )

0 where each ∗ 
is a × 1 vector, such that for  = 1    = 1   and all 

∗ = Ψ
0

∗
 +

X
=1

∗0−
∗
  (4)

The structure of equation in (4) is a multivariate version of the MQ-

CAViaR process of White, Kim, and Manganelli (2008), itself a multi-

quantile version of the CAViaR process introduced by Engle and Manganelli
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(2004). Under suitable restrictions on ∗ , we obtain as special cases; (1)
separate MQ-CAViaR processes for each element of ; (2) standard (sin-

gle quantile) CAViaR processes for each element of ; or (3) multivariate

CAViaR processes, in which a single quantile of each element of  is re-

lated dynamically to the single quantiles of the (lags of) other elements

of  Thus, we call any process that satisfies our structure “Multivariate

MQ-CAViaR” (MVMQ-CAViaR) processes or naively “VAR for VaR.”

For MVMQ-CAViaR, the number of relevant lags can differ across the

elements of  and the conditional quantiles; this is reflected in the possibility

that for the given , elements of ∗ may be zero for values of  greater
than some given integer. For notational simplicity, we do not represent 

as being dependent on  or  Nevertheless, by convention, for no  ≤ 

does ∗ equal the zero vector for all  and . The finitely dimensioned

random vectors Ψ may contain lagged values of , as well as measurable

functions of  and lagged  In particular, Ψ may contain Stinchcombe

and White’s (1998) GCR transformations, as discussed in White (2006).

For a particular quantile, say  , the coefficients to be estimated are

∗ and ∗ := (∗01  
∗0
)

0 Let ∗0 := (∗0  ∗0), and write ∗ =
(∗011  

∗0
1  

∗0
1 

∗0)0 an  × 1 vector, where  := ( + ) We call ∗ the “MVMQ-
CAViaR coefficient vector.” We estimate ∗ using a correctly specified model
for the MVMQ-CAViaR process. First, we specify our model.

Assumption 3 (i) Let A be a compact subset of R For  = 1  

and  = 1   we suppose the following: (a) the sequence of functions

{ : Ω × A → R} is such that for each  and each  ∈ A (· ) is
measurable−F−1; (b) for each  and each  ∈ Ω ( ·) is continuous on
A; and (c) for each   and  (· ) is specified as follows:

(· ) = Ψ0 +
X
=1

− (· )0 

Next, we impose the correct specification assumption together with an

identification condition. Assumption 4(i.a) below delivers the correct speci-

fication by ensuring that the MVMQ-CAViaR coefficient vector ∗ belongs
to the parameter space, A. This ensures that ∗ optimizes the estimation
objective function asymptotically. Assumption 4(i.b) delivers the identifica-

tion by ensuring that ∗ is the only optimizer. In stating the identification
condition, we define (

∗) := (· )− (· ∗) and use the norm
|||| := max=1 || where for convenience we also write  = (1  )0

Assumption 4 (i)(a) There exists ∗ ∈ A such that for all   
(· ∗) = ∗; (5)
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(b) There is a non-empty index set I ⊆ {(1 1)  (1 )  ( 1)  ( )}
such that for each   0 there exists   0 such that for all  ∈ A with
||− ∗||  ,

 [∪()∈I{|(∗)|  }]  0

Among other things, this identification condition ensures that there is suf-

ficient variation in the shape of the conditional distribution to support the

estimation of a sufficient number (#I) of the variation-free conditional quan-
tiles. As in the case of MQ-CAViaR, distributions that depend on a given

finite number of variation-free parameters, say , will generally be able to

support  variation-free quantiles. For example, the quantiles of the ( 1)

distribution all depend on  alone, so there is only one “degree of freedom”

for the quantile variation. Similarly, the quantiles of the scaled and shifted

−distributions depend on three parameters (location, scale, and kurtosis),
so there are only three “degrees of freedom” for the quantile variation.

3 Asymptotic Theory

We estimate ∗ by the quasi-maximum likelihood method. Specifically, we

construct a quasi-maximum likelihood estimator (QMLE) ̂ as the solution

to the optimization problem

min
∈A

̄ () := −1
X
=1

{
X
=1

X
=1

 ( − (· ))} (6)

where () = () is the standard “check function,” defined using the

usual quantile step function, () =  − 1[≤0]
We thus view

() := −{
X
=1

X
=1

 ( − (· ))}

as the quasi log-likelihood for the observation  In particular, () is the

log-likelihood of a vector of  independent asymmetric double exponential

random variables (see White, 1994, ch. 5.3; Kim and White, 2003; Ko-

munjer, 2005). Because  − (· ) does not need to actually have this
distribution, the method can be regarded as a quasi maximum likelihood.

We establish consistency and asymptotic normality for ̂ through meth-

ods analogous to those of White, Kim, and Manganelli (2008). For concise-

ness, we place the remaining regularity conditions (i.e., Assumptions 5,6 and

7) and technical discussions in the appendix.
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Theorem 1 Suppose that Assumptions 1, 2(i,ii), 3(i), 4(i) and 5(i,ii) old.

Then, we have

̂
→ ∗

With ∗ and  ∗ as given below, the asymptotic normality result is provided
in the following theorem.

Theorem 2 Suppose that Assumptions 1-6 hold. Then, the asymptotic

distribution of the QMLE estimator ̂ obtain from (6) is given by:

 12(̂ − ∗) → (0 ∗−1 ∗∗−1)

where

∗ : =

X
=1

X
=1

[(0)∇(· ∗)∇0(· ∗)]

 ∗ : = (∗ 
∗0
 )

∗ : =

X
=1

X
=1

∇(· ∗)
()

 : =  − (· ∗)

We note that the transformed error term of 
() =  − 1[≤0]

appearing in Theorem 2 can be viewed as a generalized residual. To test

restrictions on ∗ or to obtain confidence intervals, we require a consistent
estimator of the asymptotic covariance matrix ∗ := ∗−1 ∗∗−1. First,
we provide a consistent estimator ̂ for 

∗; then we propose a consistent
estimator ̂ for 

∗ Once ̂ and ̂ are proved to be consistent for 
∗

and ∗ respectively, then it follows by the continuous mapping theorem that
̂ := ̂−1 ̂ ̂

−1
 is a consistent estimator for ∗

A straightforward plug-in estimator of  ∗ is constructed as follows:

̂ := −1
X
=1

̂̂
0


̂ :=

X
=1

X
=1

∇(· ̂ )
(̂)

̂ :=  − (· ̂ )
The next result establishes the consistency of ̂ for 

∗

Theorem 3 Suppose that Assumptions 1-6 hold. Then, we have the fol-

lowing result:

̂
→  ∗
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Next, we provide a consistent estimator of ∗. We follow Powell’s (1984)
suggestion of estimating (0) with 1[−̂≤̂≤̂ ]2̂ for a suitably cho-
sen sequence {̂} This is also the approach taken in Kim and White (2003),
Engle and Manganelli (2004), and White, Kim, and Manganelli (2008). Ac-

cordingly, our proposed estimator is

̂ = (2̂ )
−1

X
=1

X
=1

X
=1

1[−̂≤̂≤̂ ]∇(· ̂ )∇0(· ̂ )

Theorem 4 Suppose that Assumptions 1-7 hold. Then, we obtain the

consistency result for ̂ as follows:

̂
→ ∗

There is no guarantee that ̂ is asymptotically efficient. There is now

considerable literature that investigates the efficient estimation in quantile

models; see, for example, Newey and Powell (1990), Otsu (2003), Komunjer

and Vuong (2006, 2007a, 2007b). Thus far, this literature has only consid-

ered single quantile models. It is not obvious how the results for the single

quantile models extend to multivariate and multi-quantile models. Never-

theless, Komunjer and Vuong (2007a) show that the class of QML estimators

is not large enough to include an efficient estimator, and that the class of

M -estimators, which strictly includes the QMLE class, yields an estimator

that attains the efficiency bound. Specifically, when  =  = 1 they show

that replacing the usual quantile check function  (·) in equation (6) with

∗ ( − (· )) = ( − 1[−(·)≤0])(()− ((· )))

will deliver an asymptotically efficient quantile estimator. We conjecture

that replacing  with ∗ in equation in (6) will improve the estimator
efficiency for  and/or  greater than 1. We leave the study of the asymp-

totically efficient multivariate and multi-quantile estimator for future work.

4 Assessing Tail Reactions of Financial Institu-

tions to System Wide Shocks

The financial crisis which started in 2007 has had a deep impact on the con-

ceptual thinking of systemic risk among both academics and policy makers.

There has been a recognition of the shortcomings of the measures that are

tailored to dealing with institution-level risks. In particular, institution-level

Value at Risk measures miss important externalities associated with the need
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to bail out systemically important banks in order to contain potentially dev-

astating spillovers to the rest of the economy. Therefore, government and

supervisory authorities may find themselves compelled to save ex post sys-

temically important financial institutions, while these ignore ex ante any

negative externalities associated with their behavior. There exists many

contributions, both theoretical and empirical, as summarised, for instance,

in Brunnermeier (2012) or Bisias et al. (2012). For the purpose of the ap-

plication we have in mind, it is useful to structure the material around two

early contributions, the CoVaR of Adrian and Brunnermeier (2009) and the

systemic expected shortfall (SES) of Acharya et al. (2010).

Both measures aim to capture the risk of a financial institution condi-

tional on a significant negative shock hitting another financial institution or

the whole financial system. Formally, the  
|
 is the VaR of financial

institution  conditional on the event  that hits the financial institution 

(denoted by ):

Pr(   
|
 |) = 

The systemic expected shortfall is shown to be proportional to the marginal

expected shortfall, which is analogously defined as:


|
 = ( |)

The main difference is that the expectation of the whole left tail, rather than

just the quantile, is considered. In practice, loss distributions in the tail are

extremely hard to estimate. One strategy is to standardize the returns by the

estimated volatility or quantiles, and then apply non-parametric techniques,

as done for instance in Manganelli and Engle (2002) or Brownlees and Engle

(2010). An alternative is to use extreme value theory to impose a parametric

structure on the tail behavior, as done in Hartmann et al. (2004).

As we will show in the rest of this section, the theoretical framework de-

veloped in this paper lends itself to a coherent modeling of the dynamics of

the tail interdependence implicit in both the CoVaR and systemic expected

shortfall measures. Unlike standard GARCH based approaches, which re-

quire the modeling of the entire multivariate distribution, the advantage

of our multivariate regression quantiles framework - besides providing a ro-

bust, semi-parametric technique which does not rely on strong distributional

assumptions - is that it is tailored to directly model the object of interest.

In this section, we apply our model to study the spillover that occur in

the equity return quantiles of a sample of 230 financial institution around

the world. We first describe our empirical model and show how to com-

pute impulse-response functions within the multivariate and multi-quantile

framework. We next present the data and the optimization strategy. Finally,

we discuss the empirical findings.
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4.1 Empirical specification

The specification we use in our empirical analysis is the following simple

bivariate quantile model:

 = +|−1|+−1 (7)

where , −1, and  are 2-dimensional vectors, and ,  are (2,2)-matrices.
The parameters can be consistently estimated by minimizing the multivari-

ate regression quantile objective function (6). It is straightforward to derive

an estimate of the CoVaR from this model. For instance, if the conditioning

event  is defined as 2−1 = 2−1, that is financial institution 2 is hit by
a shock equal to its quantile, the associated CoVaR for financial institution

1 is given by 1 = 1 + 11|1−1|+ 12|2−1|+ 111−1 + 122−1.1

A DGP consistent with (7) can be obtained assuming that the data are

structurally generated as:

 =  (8)

where  := (
−1) is an F−measurable lower triangular matrix and the

elements of  := [1 2]
0 are mutually independent with {|F} being a

martingale difference sequence.

A suitable choice of  ensuring that the conditional quantiles of  obey

(4) and (7) is the following bivariate model:∙
1
2

¸
=

∙
 0

 

¸ ∙
1
2

¸


where  is the bivariate standard normal random variable. Note that the

standard deviations of 1 and 2 are given by (1) =  and (2) =q
2 + 2 respectively. Suppose that   and  are specified in such a

way to satisfy the following:

(1) = ̃1 + ̃11|1−1|+ ̃12|2−1|+ 111−1 + 122−1
(2) = ̃2 + ̃21|1−1|+ ̃22|2−1|+ 211−1 + 222−1

The respective quantile processes associated with this DGP are given by:

1 = ̃1 + ̃11|1−1|+ ̃12|2−1|+ 111−1 + 122−1
2 = ̃2 + ̃21|1−1|+ ̃22|2−1|+ 211−1 + 222−1

where  is the -quantile of the standard normal distribution. In matrix

form, the above system can be rewritten as in (7), where  = ̃ and

 = ̃ .

1 denotes the i-th element of the vector , while  is the element of the i-th

row and j-th column of the matrix . Similar notation is used to denote the individual

elements of the vectors and matrices ,  and .
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In the empirical application, we impose the following identification as-

sumption:

Identification Assumption: The first element of  in (8) denotes

the per-period return on a financial index and the second element is the

per-period return on a specific financial institution within the index.

The identification assumption behind this decomposition is that shocks

to the financial index are allowed to have a direct impact on the return of the

specific financial institution, but shocks to the specific financial institution

do not have a direct impact on the financial index. Here, we limit ourselves to

a bivariate system, as we are interested in the interaction between a financial

index and an individual financial institution. The theoretical framework of

this paper can accommodate higher dimensional models, although at the

cost of increasing the computational burden.

Incidentally, this identification scheme illustrates the potential pitfalls of

choosing appropriate conditioning events for the CoVaR measures. Defining

the conditioning event  as 2−1 = 2−1, as done before, neglects the fact
that shock to the financial institution 2 may be correlated with that of other

financial institutions, therefore producing a potentially misleading classifi-

cation of the systemic importance of financial institutions. In the following,

based on the identification scheme which is implicit in the triangular struc-

ture of , our attention will focus mainly on the impact of market shocks

on the VaR of individual financial institutions.

4.1.1 The Quantile Impuse Response Function (QIRF)

This modeling framework allows us to proceed a step further beyond the

scope of the static analysis implicit in the CoVaR framework because we

can introduce the concept of impulse-response functions for quantiles. To

see how quantile impulse-response functions can be defined, assume that in

the DGP (8) there is a shock  (or intervention) to 1 only at time  so that

̃1 ≡ 1 +  (since  is assumed to be the standard normal, it is actually

−standard deviation). In all other times there is no intervention. In other
words, the time path of the error terms without the intervention would be

{ 1−2 1−1 1 1+1 1+2 }
while the time path with the intervention would be

{ 1−2 1−1 ̃1 1+1 1+2 }
Our objective is the measure the impact of the one-off intervention at time

 on the quantile dynamics.

We first consider the time path of  without and with the intervention.

The affected  will be denoted as ̃. Note that the intervention  at time
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 will only affect , but not the future realizations of + ( = 1 2 3 ),

due to the way we specify our model. Hence, the time path of ̃ with the

intervention is given by

{ −2 −1 ̃ +1 +2 }
In fact, the difference between the origainal series and the affected series is

zero for  ≥ 1. Furthermore note that ̃ = [̃12]
0 because of (8).

The  quantile impulse-response function (QIRF) for the  variable

() denoted as ∆(̃1) is defined as

∆(̃1) = ̃+ − +  = 1 2 3 

where ̃+ is the 
 conditional quantile of the affected series (̃+) and

+ is the 
 conditional quantile of the unaffected series (+).

First, we consider the case for  = 1, i.e. ∆1(̃1) When  = 1, the

QIRF is given by

∆11(̃1) = 11(|̃1|− |1|) + 12(|̃2|− |2|)
For   1, the QIRF is given by

∆1(̃1) = 11∆1−1(̃1) + 12∆2−1(̃1)

The case for  = 2 is similarly obtained as follows. For  = 1,

∆21(̃1) = 21(|̃1|− |1|) + 22(|̃2|− |2|)
while for   1

∆2(̃1) = 21∆1−1(̃1) + 22∆2−1(̃1)

Now, let us define

∆(̃1) :=

∙
∆1(̃1)

∆2(̃1)

¸


and

 = |̃|− ||
= |̃

1
 |− ||

where ̃1 = [̃1 2]
0. Then, we can show that the QIRF is compactly

expressed as follows:

∆(̃1) = 

∆(̃1) = (−1) for   1

The QIRF when there is a shock (or intervention) to 2 only at time  can

be analogously obtained.

In the empirical application, the matrix  - needed to compute the

impact of ̃1 on  - is estimated using a standard Cholesky decomposition.
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4.2 Data and Optimization Strategy

The data used in this section have been downloaded from Datastream. We

considered three main global sub-indices: banks, financial services, and in-

surances. The sample includes daily closing prices from 1 January 2000 to

6 August 2010. Prices were transformed into continuously compounded log

returns, giving an estimation sample size of 2765 observations. We use 453

additional observations up to 2 May 2012, for the out-of-sample exercises.

We eliminated all the stocks whose times series started later than 1 January

2000, or which stopped after this date. At the end of this process, we were

left with 230 stocks.

Table 1 reports the names of the financial institutions in our sample,

together with the country of origin and the sector they are associated with,

as from Datastream classification. Table 2 shows the breakdown of the

stocks by sector and by geographic area. There are twice as many financial

institutions classified as banks in our sample relative to those classified as

financial services or insurances. The distribution across geographic areas is

more balanced, with a greater number of EU financial institutions and a

slightly lower Asian representation. The proxy for the market index used

in each bivariate quantile estimation is the equally weighted average of all

the financial institutions in the same geographic area, in order to avoid

asynchronicity issues.

We estimated 230 bivariate 1% quantile models between the market in-

dex and each of the 230 financial institutions in our sample. Each model

is estimated using, as starting values in the optimization routine, the uni-

variate CAViaR estimates and initializing the remaining parameters at zero.

We also generated 40 additional initial conditions by adding a normally dis-

tributed noise to this vector. For each of these 40 initial conditions, we

minimized the regression quantile objective function (6) using the fmin-

search optimization function in Matlab, which is based on the Nelder-Mead

simplex algorithm. Finally, among the resulting 40 vectors of the parameter

estimates, we chose the vector yielding the lowest value for the function (6).

We adopt this strategy because we have found that parameter estimates

are sometimes sensitive to the choices of the initial conditions (possibly due

to a flat likelihood near the optimum). Such an optimization strategy is

more time consuming, but delivers more reliable results. In calculating the

standard errors, we have set the bandwidth to 1 throughout the sample.

4.3 Results

Table 3 reports, as an example, the estimation results for four well-known

financial institutions: Barclays, Deutsche Bank, Citigroup and Goldman

Sachs. The diagonal autoregressive coefficients for the  matrix are around

0.90 and all of them are statistically significant, which indicates the VaR

14



processess are significantly autocorrelated. These findings are consistent

with what is typically found in the literature using CAViaR models. Notice,

however, that some of the non-diagonal coefficients for the  and  ma-

trices are significantly different from zero, illustrating how the multivariate

quantile model can uncover dynamics that cannot be detected by estimating

univariate quantile models. In general, we reject the joint null hypothesis

that all off-diagonal coefficients of the matrices  and  are equal to zero at

the 5% level for 142 financial institutions out of the 230 in our sample. The

resulting estimated 1% quantiles for Barclays, Deutsche Bank, Citigroup

and Goldman Sachs are reported in Figure 1. The quantile plots clearly re-

veal the generalized sharp increase in risk following the Lehman bankruptcy.

Careful inspection of the plots also reveals a noticeable cross-sectional dif-

ference, with the risk for Goldman Sachs being contained to less than half

the risk of Citigroup at the height of the crisis.

The methodology introduced in this paper, however, allows us to go

beyond the analysis of the univariate quantiles, and directly looks at the tail

codependence between financial institutions and the market index. Figure 2

displays the impulse response of the risks of the four financial institutions to

a 2 standard deviation shock to the market index (see the discussion in the

previous sub-section for a detailed explanation of how the impulse-response

functions are computed). The horizontal axis measures the time (expressed

in days), while the vertical axis measures the change in the 1% quantiles

of the individual financial institutions (expressed in percentage returns) as

a reaction to the market shock. The impulse response functions track how

this shock propagates through the system and how long it takes to absorb

it. The shock is completely reabsorbed after the impulse response function

has converged again to zero.

Looking more closely at the impulse response functions of the four se-

lected financial institutions reveals a few differences in how their long run

risks react to shocks. For instance, Deutsche Bank and Barclays have a

sharp initial reaction. However, while the shock to Deutsche Bank’s VaR is

entirely absorbed after around 35 days, the shock to Barclays’ risk appear

to be more persistent, with its effect not being completely absorbed after

more than 50 days. Similarly, risk shocks on Citigroup’s VaR appears to be

long lasting, while Goldman Sachs quantiles overall exhibit very little tail

correlation with the market.

It should be borne in mind that each of the 230 bivariate models is esti-

mated using a different information set (as the time series of the index and

of a different financial institution is used for each estimation). Therefore,

each pair produces a different estimate of the VaR of the index, simply be-

cause we condition on a different information set. Moreover, the coefficients

and any quantities derived from them, such as impulse responses, are in-

formation set-specific. This means that naive comparisons across bivariate

pairs can be misleading and are generally unwarranted. The proper context

15



for comparing sensitivities and impulse responses is in a multivariate setting

using a common information set. Because of the non trivial computational

challenges involved, we leave this for future study.

Nevertheless, averaging across the bivariate results can still provide use-

ful summary information and suggest general features of the results. Ac-

cordingly, Figure 3 plots the average impulse-response functions ∆1(̃2)

and ∆2(̃1) measuring the impact of a two standard deviation individual

financial institution shock on the index and the impact of a two standard

deviation shock to the index on the individual financial institution’s risk. In

the left column, the average is taken with respect to the geographical dis-

tribution. That is, the average impulse-response for Europe, for example, is

obtained by averaging all the impulse-response functions for the European

financial institutions. We notice two things. First, the impact of a shock

to the index (charts in the top row) is much stronger than the impact of a

shock to the individual financial institution (charts in the bottom row). This

result is partly driven by our identification assumption that shocks to the

index have a contemporaneous impact on the return of the single financial

institutions, while the institution’s specific shocks have only a lagged im-

pact on the global financial index. Second, we notice that the risk of Asian

financial institutions appears to be on average somewhat less sensitive to

global shocks than their European and North American counterparts.

The charts on the right column of Figure 3 plot the average impulse-

response functions for the financial institutions grouped by line of business,

i.e. banks, financial services, and insurances. We see that a shock to the

index has a stronger initial impact on the group of insurance companies.

Regarding the impact of shocks to the individual financial institutions on

the risk of the global index, banks have on average a lower initial impact,

but the shock appears to be more persistent than for financial services and

insurance companies.

Overall, however, it is fair to say that no big differences can be noted

among the impulse responses by aggregating over the geographic or sector-

ial dimension. To highlight the still sizeable cross-sectional difference, and

to get an idea of the orders of magnitude involved, we ranked the financial

institutions by their overall risk impact by integrating out all the individual

impulse-responses. Figure 4 plots the average impulse-responses which cor-

respond to the 20 financial institutions whose risk is most and least sensitive

to market shocks, together with those of the largest and smallest impact on

the risk of the market risk index. It is clear that the shocks to the index

have an impact of an order of magnitude greater than that of the shocks

to the individual financial institutions. A two standard deviation shock to

the index produces an average initial increase in the daily VaR of the most

sensitive financial institutions at more than 3%. The shock is also quite

persistent, as it is not yet completely absorbed after 50 days. On the other

hand, for the least sensitive financial institutions, a shock to the index pro-
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duces an average immediate increase in the VaR of less than 1%, which is

then entirely absorbed after the third week.

To gauge what extent the model correctly identifies the financial insti-

tutions whose risks are most exposed to market shocks, Figure 5 plots the

average quantiles of the two sets of financial institutions identified in Figure

4. Specifically, the charts in the top panels of the figure, track the esti-

mated in-sample quantiles and stock price developments of the 20 financial

institutions which have been identified in Figure 4 as being most and least

exposed to market shocks. For comparison, we have added the risk and price

developments of the market index. Prices have been normalized to 100 at

the beginning of the sample. The charts in the bottom panels replicate the

same exercise with the out-of-sample data.

The figure presents two striking facts. First, during normal times, i.e.

between 2004 and mid-2007, the quantiles of the most and least sensitive

groups of financial institutions is roughly equal. Actually, there are some

periods in 2003 in which the quantiles of the least sensitive financial institu-

tions exceeded the quantiles of the most sensitive ones. The second striking

fact is that the situation changes abruptly in periods of market turbulence.

For instance, at the beginning of the sample, in 2001-2003, the quantiles

of the most sensitive financial institutions increased significantly more than

that of the least sensitive ones. The change in behavior during crisis peri-

ods is even more striking from 2008 onwards, showing a greater exposure to

common shocks. The chart on price developments on the right hand side

confirms that the group of financial institutions identified as the most sensi-

tive to market shocks are those whose stock market value dropped the most

during the Lehman crisis, with their values dropping on 18 February 2009

by more than 90% with respect to the beginning of the sample. In con-

trast, the values of the least sensitive financial institutions have remained

relatively stable throughout the sample, and in particular, they suffer only

minor losses at the height of the crisis. The bottom panels reveal that the

same result holds for the out-of-sample period. Of particular notice is the

sharp drop in the out-of-sample quantile for the group of the most sensitive

financial institutions which occurred on 12 August, 2011, the beginning of

the second phase of the euro area sovereign debt crisis.

This application illustrates how the proposed methodology can usefully

inform policy makers by helping identify the set of financial institutions

which may be most exposed to common shocks, especially in times of crisis.

Of course, this should only be considered as a partial model-based screening

device for the identification of the most systemic banks. Further analysis,

market intelligence and sound judgment are other necessary elements to

produce a reliable risk assessment method for the larger and more complex

financial groups.

Again, we emphasize that the results presented in these figures merely

summarize the pattern of the results found in the bivariate analysis of our
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230 financial institutions. Cross-comparisons could be improved by estimat-

ing for instance a 3- or 4- or −variate system using a common information

set, or adopting an appropriate factor structure which would minimize the

number of parameters to be estimated. Alternatively, one could impose that

the  matrix in (7) is diagonal, which would be equivalent to assuming that

the parameters of the system are variation free, as in Engle et al. (1983).

This assumption would have the added advantage of allowing a separate

estimation of each quantile. That is, for an −variate system, the opti-
mization problem in (6) can be broken down into  independent optimiza-

tion problems, which in turn would considerably increase the computational

tractability.

5 Conclusion

We have developed a theory ensuring the consistency and asymptotic nor-

mality of multivariate and multi-quantile models. Our theory is general

enough to comprehensively cover models with multiple random variables,

multiple confidence levels and multiple lags of the quantiles.

We conducted an empirical analysis in which we estimate a vector au-

toregressive model for the Value at Risk — VAR for VaR — using returns

of individual financial institutions from around the world and a global fi-

nancial sector index. By examining the impulse-response functions, we can

study the financial institutions’ long run risk reactions to shocks to the

overall index. Judging from our bivariate models, we found that the risk of

Asian financial institutions tend to be less sensitive to system wide shocks,

whereas insurance companies exhibit a greater sensitivity to global shocks.

By looking at the integral of all the individual impulse-responses, we found

wide differences on how financial institutions react to different shocks. Both

in-sample and out-of-sample analyses reveal that financial institutions with

the strongest impulse-responses to global shocks are those which suffer the

most in periods of market turbulence.

The methods developed in this paper can be applied to many other

contexts. For instance, many stress-test models are built from vector au-

toregressive models on credit risk indicators and macroeconomic variables.

Starting from the estimated mean and adding assumptions on the multivari-

ate distribution of the error terms, one can deduce the impact of a macro

shock on the quantile of the credit risk variables. Our methodology pro-

vides a convenient alternative for stress testing, by allowing researchers to

estimate vector autoregressive processes directly on the quantiles of interest,

rather than on the mean.
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Appendix

We establish the consistency of ̂ by applying the results of White (1994).

For this, we impose the following moment and domination conditions. In

stating this next condition and where convenient elsewhere, we exploit sta-

tionarity to omit explicit reference to all values of 

Assumption 5 (i) For  = 1   || ∞; (ii) let0 := max=1max=1
sup∈A |(· )| Then (0) ∞

Proof of Theorem 1 We verify the conditions of corollary 5.11 of White

(1994), which delivers ̂ → ∗, where

̂ := argmax
∈A

−1
X
=1

( (· ))

and ( (· )) := −{
P

=1

P
=1  ( − (· ))}. Assumption 1

ensures White’s Assumption 2.1. Assumption 3(i) ensures White’s Assump-

tion 5.1. Our choice of  satisfies White’s Assumption 5.4. To verify

White’s Assumption 3.1, it suffices that ( (· )) is dominated on A
by an integrable function (ensuring White’s Assumption 3.1(a,b)), and that

for each  in A, {( (· ))} is stationary and ergodic (ensuring White’s
Assumption 3.1(c), the strong uniform law of large numbers (ULLN)). Sta-

tionarity and ergodicity is ensured by Assumptions 1 and 3(i). To show

domination, we write

|( (· ))| ≤
X
=1

X
=1

| ( − (· ))|

=

X
=1

X
=1

|( − (· ))( − 1[−(·)≤0])|

≤ 2

X
=1

X
=1

(||+ |(· )|)

≤ 2

X
=1

||+ 2|0|

so that

sup
∈A

|( (· ))| ≤ 2
X
=1

||+ 2|0|

Thus, 2
P

=1 || + 2|0| dominates |( (· ))|; this has finite
expectation by Assumption 5(i,ii).
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White’s Assumption 3.2 remains to be verified; here, this is the condition

that ∗ is the unique maximizer of (( (· )) Given Assumptions
2(ii.b) and 4(i), it follows through the argument that directly parallels to

that of the proof by White (1994, corollary 5.11) that for all  ∈ A
(( (· )) ≤ (( (· ∗))

Thus, it suffices to show that the above inequality is strict for  6= ∗ Con-
sider  6= ∗ such that ||−∗||   and let∆() :=

P
=1

P
=1(∆())

with ∆() :=  ( − (· ))−  ( − (· ∗)) It will suffice
to show that ∆()  0 First, we define the “error”  :=  − (· ∗)
and let (·) be the density of  conditional on F−1 Noting that
(

∗) := (· )−(· ∗) we next can show through some algebra
and Assumption 2(ii.a) that

(∆()) = [

Z (
∗)

0

((
∗)− ) ()]

≥ [
1

2
21[|(∗)|] +

1

2
(

∗)21[|(∗)|≤])]

≥ 1

2
2[1[|(∗)|]]

The first inequality above comes from the fact that Assumption 2(ii.a) im-

plies that for any   0 sufficiently small, we have ()   for ||  .

Thus,

∆() : =

X
=1

X
=1

(∆()) ≥ 1
2
2

X
=1

X
=1

[1[|(∗)|]]

=
1

2
2

X
=1

X
=1

 [|(∗)|  ] ≥ 1
2
2

X
()∈I

 [|(∗)|  ]

≥ 1

2
2 [∪()∈I{|(∗)|  }]  0

where the final inequality follows from Assumption 4(i.b). As  is arbitrary,

the result follows. ¥

Next, we establish the asymptotic normality of  12(̂ − ∗). We use
a method originally proposed by Huber (1967) and later extended by Weiss

(1991). We first sketch the method before providing formal conditions and

the proof.

Huber’s method applies to our estimator ̂  provided that ̂ satisfies

the asymptotic first order conditions

−1
X
=1

{
X
=1

X
=1

∇(· ̂ ) 
( − (· ̂ ))} = (

12) (9)
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where∇(· ) is the ×1 gradient vector with elements ()(· )  =
1   and 

( − (· ̂ )) is a generalized residual. Our first task is
thus to ensure that equation (9) holds.

Next, we define

() :=

X
=1

X
=1

[∇(· )
( − (· ))]

With () continuously differentiable at ∗ interior to A, we can apply the
mean value theorem to obtain

() = (∗) +0(− ∗) (10)

where 0 is an ×  matrix with (1× ) rows 0 = ∇0(̄()), where ̄()
is a mean value (different for each ) lying on the segment connecting  and

∗  = 1  . It is straightforward to show that the correct specification

ensures that (∗) is zero. We will also show that

0 = −∗ +(||− ∗||) (11)

where ∗ :=
P

=1

P
=1[(0)∇(· ∗)∇0(· ∗)] with (0)

representing the value at zero of the density  of  := − (· ∗)
conditional on F−1 Combining equations (10) and (11) and putting (∗) =
0, we obtain

() = −∗(− ∗) +(||− ∗||2) (12)

The next step is to show that

 12(̂ ) + = (1) (13)

where  := −12
P

=1 
∗
  with ∗ :=

P
=1

P
=1∇(· ∗)

().

Equations (12) and (13) then yield the following asymptotic representation

of our estimator ̂ :

 12(̂ − ∗) = ∗−1−12
X
=1

∗ + (1) (14)

As we impose conditions sufficient to ensure that {∗ F} is a martingale
difference sequence (MDS), a suitable central limit theorem (e.g., theorem

5.24 in White, 2001) is applied to equation (14) to yield the desired asymp-

totic normality of ̂ :

 12(̂ − ∗) → (0 ∗−1 ∗∗−1) (15)

where  ∗ := (∗ ∗0 ).
We now strengthen the conditions given in the text to ensure that each

step of the above argument is valid.
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Assumption 2 (iii) (a) There exists a finite positive constant 0 such that

for each  and  each  ∈ Ω and each  ∈ R, ( ) ≤ 0 ∞; (b) There
exists a finite positive constant 0 such that for each  and  each  ∈ Ω
and each 1 2 ∈ R, |( 1)− ( 2)| ≤ 0|1 − 2|.

Next we impose sufficient differentiability of  with respect to .

Assumption 3 (ii) For each  and each  ∈ Ω ( ·) is continuously differ-
entiable on A; (iii) For each  and each  ∈ Ω ( ·) is twice continuously
differentiable on A.

To exploit the mean value theorem, we require that ∗ belongs to (A),
the interior of A.

Assumption 4 (ii) ∗ ∈ (A)

Next, we place domination conditions on the derivatives of 

Assumption 5 (iii) Let1 := max=1max=1max=1 sup∈A |()(· )|.
Then (a) (1) ∞; (b) (2

1) ∞; (iv) Let us define

2 := max
=1

max
=1

max
=1

max
=1

sup
∈A

|(2)(· )|

Then (a) (2) ∞; (b) (2
2) ∞

Assumption 6 (i) ∗ :=
P

=1

P
=1[(0)∇(· ∗)∇0(· ∗)] is

positive definite; (ii)  ∗ := (∗∗0 ) is positive definite.

Assumptions 3(ii) and 5(iii.a) are additional assumptions that help to en-

sure that equation (9) holds. Further imposing Assumptions 2(iii), 3(iii.a),

4(ii), and 5(iv.a) suffices to ensure that equation (12) holds. The additional

regularity provided by Assumptions 5(iii.b), 5(iv.b), and 6(i) ensures that

equation (13) holds. Assumptions 5(iii.b) and 6(ii) help ensure the avail-

ability of the MDS central limit theorem. We now have conditions that are

sufficient to prove the asymptotic normality of our MVMQ-CAViaR estima-

tor.

Proof of Theorem 2 As outlined above, we first prove

−1
X
=1

{
X
=1

X
=1

∇(· ̂ ) 
( − (· ̂ ))} = (1) (16)

The existence of ∇ is ensured by Assumption 3(ii). Let  be the × 1
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unit vector with  element equal to one and the rest zero, and let

() := −12
X
=1

X
=1

X
=1

 ( − (· ̂ + ))

for any real number . Then, by the definition of ̂ , () is minimized at

 = 0. Let () be the derivative of () with respect to  from the right.

Then

() = −−12
X
=1

X
=1

X
=1

∇(· ̂ + ) 
( − (· ̂ + ))

where ∇(· ̂ + ) is the 
 element of ∇(· ̂ + ). Using the

facts that (i) () is non-decreasing in  and (ii) for any   0, (−) ≤ 0
and () ≥ 0, we have

|(0)| ≤ ()−(−)

≤ −12
X
=1

X
=1

X
=1

|∇(· ̂ )|1[−(·̂ )=0]

≤ −12 max
1≤≤

1

X
=1

X
=1

X
=1

1[−(·̂ )=0]

where the last inequality follows from the domination condition imposed

in Assumption 5(iii.a). Because 1 is stationary, 
−12max1≤≤ 1 =

(1). The second term is bounded in probability:
P

=1

P
=1

P
=1 1[−(·̂ )=0] =

(1) given Assumption 2(i,ii.a) (see Koenker and Bassett, 1978, for de-

tails). Since (0) is the 
 element of −12

P
=1

P
=1

P
=1∇(· ̂ )


( − (· ̂ )), the claim in (16) is proven.

Next, for each  ∈ A, Assumptions 3(ii) and 5(iii.a) ensure the existence
and finiteness of the × 1 vector

() : =

X
=1

X
=1

[∇(· )
( − (· ))]

=

X
=1

X
=1

[∇(· )
Z 0

(∗)
()]

where (
∗) := (· ) − (· ∗) and () = ()( +

(· ∗)) represents the conditional density of  :=  − (· ∗)
with respect to Lebesgue measure The differentiability and domination con-

ditions provided by Assumptions 3(iii) and 5(iv.a) ensure (e.g., by Bartle,

1966, corollary 5.9) the continuous differentiability of () on A, with

∇() =
X
=1

X
=1

[∇{∇0(· )
Z 0

(∗)
()}]

26



Since ∗ is interior to A by Assumption 4(ii), the mean value theorem applies
to each element of () to yield

() = (∗) +0(− ∗) (17)

for  in a convex compact neighborhood of ∗ where 0 is an ×  matrix

with (1× ) rows (̄()) = ∇0(̄()), where ̄() is a mean value (different
for each ) lying on the segment connecting  and ∗ with  = 1  . The

chain rule and an application of the Leibniz rule to
R 0
(∗)

() then

give

() = ()−()

where

() :=

X
=1

X
=1

[∇∇0(· )
Z 0

(∗)
()]

() :=

X
=1

X
=1

[((
∗))∇(· )∇0(· )]

Assumption 2(iii) and the other domination conditions (those of Assumption

5) then ensure that

(̄()) = (||− ∗||)
(̄()) = ∗ +(||− ∗||)

where ∗ :=
P

=1

P
=1[(0)∇(· ∗)∇0(· ∗)] Letting ∗ :=P

=1

P
=1

[(0)∇(· ∗)∇0(· ∗)], we obtain
0 = −∗ +(||− ∗||) (18)

Next, we have that (∗) = 0 To show this, we write

(∗) =

X
=1

X
=1

[∇(· ∗)
( − (· ∗))]

=

X
=1

X
=1

([∇(· ∗)
( − (· ∗)) | F−1])

=

X
=1

X
=1

(∇(· ∗)[
( − (· ∗)) | F−1])

=

X
=1

X
=1

(∇(· ∗)[
() | F−1])

= 0
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as [
() | F−1] =  −[1[≤∗] | F−1] = 0 by definition of ∗

for  = 1   and  = 1   (see equation (3)). Combining (∗) = 0 with
equations (17) and (18), we obtain

() = −∗(− ∗) +(||− ∗||2) (19)

The next step is to show that

 12(̂ ) + = (1) (20)

where := −12
P

=1 
∗
  with 

∗
 := (

∗) and () :=
P

=1

P
=1∇(· )


(− (· )). Let ( ) := sup{ :||−||≤} ||()−()||. By the

results of Huber (1967) and Weiss (1991), to prove (20) it suffices to show the

following: (i) there exist   0 and 0  0 such that ||()|| ≥ || − ∗||
for || − ∗|| ≤ 0; (ii) there exist   0 0  0 and  ≥ 0 such that

[( )] ≤  for || − ∗|| +  ≤ 0; and (iii) there exist   0 0  0

and  ≥ 0 such that [( )2] ≤  for ||− ∗||+  ≤ 0.

The condition that ∗ is positive-definite in Assumption 6(i) is sufficient
for (i). For (ii), we have that for the given (small)   0

( )

≤ sup
{ :||−||≤}

X
=1

X
=1

||∇(· )
(−(· ))−∇(· )

(−(· ))||

≤
X
=1

X
=1

sup
{ :||−||≤}

||
(−(· ))|| × sup

{ :||−||≤}
||∇(· )−∇(· )||

+

X
=1

X
=1

sup
{ :||−||≤}

||
( − (· ))− 

( − (· ))||

× sup
{ :||−||≤}

||∇(· )||

≤ 2+1

X
=1

X
=1

1[|−(·)|1]

using the following: (i) ||
(−(· ))|| ≤ 1; (ii) ||

(−(· ))−


(− (· ))|| ≤ 1[|−(·)||(·)−(·)|]; and (iii) the mean
value theorem applied to ∇(· ) and (· ). Hence, we have

[( )] ≤ 0+ 210

for some constants 0 and 1 given Assumptions 2(iii.a), 5(iii.a), and

5(iv.a). Hence, (ii) holds for  = 0 + 210 and 0 = 2 The last

condition (iii) can be similarly verified by applying the −inequality to
equation (??) with   1 (so that 2  ) and using Assumptions 2(iii.a),

5(iii.b), and 5(iv.b). As a result, equation (20) is verified.
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Combining equations (19) and (20) yields

∗ 12(̂ − ∗) = −12
X
=1

∗ + (1)

However, {∗ F} is a stationary ergodic martingale difference sequence
(MDS). In particular, ∗ is measurable−F, and(

∗
 |F−1) = (

P
=1

P
=1∇(· ∗)

()

| F−1) =
P

=1

P
=1∇(· ∗)(

() | F−1) = 0, as [
() |

F−1] = 0 for all  = 1   and  = 1   Assumption 5(iii.b) ensures that
 ∗ := (∗ ∗0 ) is finite. The MDS central limit theorem (e.g., theorem 5.24
of White, 2001) applies, provided  ∗ is positive definite (as ensured by
Assumption 6(ii)) and that −1

P
=1 

∗
 
∗0
 =  ∗ + (1), which is ensured

by the ergodic theorem. The standard argument now gives

 ∗−12∗ 12(̂ − ∗) → (0 )

which completes the proof. ¥

Proof of Theorem 3 We have

̂ −  ∗ = (−1
X
=1

̂̂
0
 − −1

X
=1

∗ 
∗0
 ) + (

−1
X
=1

∗ 
∗0
 −[∗

∗0
 ])

where ̂ :=
P

=1

P
=1∇̂̂ and ∗ :=

P
=1

P
=1∇∗∗ with

∇̂ := ∇(· ̂ ) ̂ := 
(−(· ̂ ))∇∗ := ∇(· ∗),

and ∗ := 
( − (· ∗)) Assumptions 1 and 2(i,ii) ensure that

{∗∗0 } is a stationary ergodic sequence. Assumptions 3(i,ii), 4(i.a), and
5(iii) ensure that [∗ ∗0 ]  ∞ It follows by the ergodic theorem that

−1
P

=1 
∗
 
∗0
 −[∗ ∗0 ] = (1) Thus, it suffices to prove 

−1P
=1 ̂̂

0
−

−1
P

=1 
∗
 
∗0
 = (1)

The ( ) element of −1
P

=1 ̂̂
0
 − −1

P
=1 

∗
 
∗0
 is

−1
X
=1

{
X
=1

X
=1

X
=1

X
=1

(̂̂∇̂∇̂−∗∗∇
∗
∇

∗
)}

Thus, it will suffice to show that for each ( ) and (   ),

−1
X
=1

{̂̂∇̂∇̂ − ∗
∗
∇

∗
∇

∗
} = (1)

By the triangle inequality,

|−1
X
=1

{̂̂∇̂∇̂ − ∗
∗
∇

∗
∇

∗
}| ≤  + 
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where

 = −1
X
=1

|̂̂∇̂∇̂ − ∗
∗
∇̂∇̂|

 = −1
X
=1

|∗∗∇
∗
∇

∗
 − ∗

∗
∇̂∇̂|

We now show that  = (1) and  = (1), delivering the desired

result. For   the triangle inequality gives

 ≤ 1 +2 +3 

where

1 = −1
X
=1

 |1[≤0] − 1[̂≤0]||∇̂∇̂|

2 = −1
X
=1

|1[≤0] − 1[̂≤0]||∇̂∇̂|

3 = −1
X
=1

|1[≤0]1[≤0] − 1[̂≤0]1[̂≤0]||∇̂∇̂|

Theorem 2, ensured by Assumptions 1 − 6, implies that  12||̂ − ∗|| =
(1) This, together with Assumptions 2(iii,iv) and 5(iii.b), enables us to

apply the same techniques used in Kim and White (2003) to show 1 =

(1), 2 = (1) and 3 = (1), implying  = (1)

It remains to show  = (1). By the triangle inequality,

 ≤ 1 +2 

where

1 = −1
X
=1

|∗∗∇
∗
∇

∗
 −[∗

∗
∇

∗
∇

∗
]|

2 = −1
X
=1

|∗∗∇̂∇̂ −[∗
∗
∇

∗
∇

∗
]|

Assumptions 1, 2(i,ii), 3(i,ii), 4(i.a), and 5(iii) ensure that the ergodic the-

orem applies to the stochastic sequence of {∗∗∇
∗
∇

∗
} so

1 = (1) Next, Assumptions 1, 3(i,ii), and 5(iii) ensure that the sta-

tionary ergodic ULLN applies to {∗∗∇(· )
∇(· )} This and the result of Theorem 1 (̂ − ∗ = (1)) ensure

that 2 = (1) by e.g., White (1994, corollary 3.8), and the proof is

complete. ¥
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To establish the consistency of ̂  we strengthen the domination con-

dition on ∇ and impose conditions on {̂}.

Assumption 5 (iii)(c) (3
1) ∞

Assumption 7 {̂} is a stochastic sequence and {} is a non-stochastic
sequence such that (i) ̂

→ 1; (ii)  = (1); and (iii) −1 = ( 12).

Proof of Theorem 4 We begin by sketching the proof. We first define

 := (2 )
−1

X
=1

X
=1

X
=1

1[−≤≤ ]∇∗∇0∗

and then we will show the following:

∗ −( )
→ 0 (21)

( )−
→ 0 (22)

 − ̂
→ 0 (23)

Combining the results above will deliver the desired outcome: ̂ −∗ → 0.

For (21), one can show by applying the mean value theorem to ( )−
(− ), where () :=

R
1{≤}(), that

( ) = −1
X
=1

X
=1

X
=1

[( )∇∗∇0∗] =
X
=1

X
=1

[( )∇∗∇0∗]

where  is a mean value lying between − and   and the second

equality follows by stationarity. Therefore, the ( ) element of |( )−∗|
satisfies

|
X
=1

X
=1

{( )− (0)∇
∗
∇

∗
}|

≤
X
=1

X
=1

{|( )− (0)||∇
∗
∇

∗
|}

≤
X
=1

X
=1

0{| ||∇
∗
∇

∗
|}

≤ 0[
2
1]

which converges to zero as  → 0. The second inequality follows from

Assumption 2(iii.b), and the last inequality follows by Assumption 5(iii.b).

Therefore, we have the result shown in equation (21).
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To show (22), it suffices to simply apply an LLN for double arrays,

e.g. theorem 2 in Andrews (1988). Finally, for (23), we consider the ( )

element of |̂ − |, given by

| 1

2̂

X
=1

X
=1

X
=1

1[−̂≤̂≤̂ ]∇̂∇̂

− 1

2

X
=1

X
=1

X
=1

1[−≤≤ ]∇
∗
∇

∗
|

=


̂
× | 1

2

X
=1

X
=1

X
=1

(1[−̂≤̂≤̂ ] − 1[−≤≤ ])∇̂∇̂

+
1

2

X
=1

X
=1

X
=1

1[−≤≤ ](∇̂ −∇
∗
)∇̂

+
1

2

X
=1

X
=1

X
=1

1[−≤≤ ]∇
∗
(∇̂ −∇

∗
)

+
1

2
(1− ̂


)

X
=1

X
=1

X
=1

1[−≤≤ ]∇
∗
∇

∗
|

≤ 

̂
[1 +2 +3 + (1− ̂


)4 ]

where

1 :=
1

2

X
=1

X
=1

X
=1

|1[−̂≤̂≤̂ ] − 1[−≤≤ ]| × |∇̂∇̂|

2 :=
1

2

X
=1

X
=1

X
=1

1[−≤≤ ]|∇̂ −∇
∗
| × |∇̂|

3 :=
1

2

X
=1

X
=1

X
=1

1[−≤≤ ]|∇
∗
| × |∇̂ −∇

∗
|

4 :=
1

2

X
=1

X
=1

X
=1

1[−≤≤ ]|∇
∗
∇

∗
|

It will suffice to show that 1 = (1) 2 = (1) 3 = (1) and

4 = (1) Then, because ̂
→ 1, we obtain the desired result:

̂ −∗
→ 0.

We first show 1 = (1). It will suffice to show that for each  and ,

1

2

X
=1

|1[−̂≤̂≤̂ ] − 1[−≤≤ ]| × |∇̂∇̂| = (1)
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Let  lie between ̂ and ∗ and put  := ||∇(·  )|| × ||̂ −
∗||+ |̂ −  | Then

(2 )
−1

X
=1

|1[−̂≤̂≤̂ ]−1[−≤≤ ]|× |∇̂∇̂| ≤  + 

where

 := (2 )
−1

X
=1

1[|− | ]|∇̂∇̂|

 := (2 )
−1

X
=1

1[|+ | ]|∇̂∇̂|

It will suffice to show that 
→ 0 and 

→ 0 Let   0 and let  be

an arbitrary positive number. Then, using reasoning similar to that of Kim

and White (2003, lemma 5), one can show that for any   0

 (  ) ≤  ((2 )
−1

X
=1

1[|− |(||∇(· )||+1) ])|∇̂∇̂|  )

≤ 0



X
=1

 {(||∇(·  )||+ 1)|∇̂∇̂|}

≤ 0{|3
1|+|2

1|}
where the second inequality is due to the Markov inequality and Assumption

2(iii.a), and the third is due to Assumption 5(iii.c). As  can be chosen

arbitrarily small and the remaining terms are finite by assumption, we have


→ 0. The same argument is used to show 

→ 0 Hence, 1 = (1)

is proved.

Next, we show 2 = (1). For this, it suffices to show 2 :=
1

2 

P
=1

1[−≤≤ ]|∇̂ −∇
∗
| × |∇̂| = (1) for each  and . Note

that

2 ≤ 1

2

X
=1

|∇̂ −∇
∗
| × |∇̂|

≤ 1

2

X
=1

||∇2(· ̃)|| × ||̂ − ∗|| × |∇̂|

≤ 1

2
||̂ − ∗|| 1



X
=1

21

=
1

2 12
 12||̂ − ∗|| 1



X
=1

21
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where ̃ is between ̂ and 
∗, and∇2(· ̃) is the first derivative of∇̂

with respect to  which is evaluated at ̃. The last expression above is (1)

because: (i)  12||̂−∗|| = (1) by Theorem 2; (ii) 
−1P

=121 =

(1) by the ergodic theorem; and (iii) 1(
12) = (1) by Assumption

7(iii). Hence, 2 = (1). The other claims 3 = (1) and 4 =

(1) can be analogously and more easily proven. Hence, they are omitted.

Therefore, we finally have  −̂
→ 0 which, together with (21) and (22),

implies that ̂ −∗
→ 0. As a result, the proof is complete. ¥
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Table 1 – Financial institutions included in the sample 
NAME COUNTRY SECTOR NAME COUNTRY SECTOR NAME COUNTRY SECTOR 

1 77 BANK JP BK 50 FUKUOKA FINANCIAL GP. JP BK 99 SVENSKA HANDBKN.'A' SE BK 
2 ALLIED IRISH BANKS IE BK 51 SOCIETE GENERALE FR BK 100 SWEDBANK 'A' SE BK 
3 ALPHA BANK GR BK 52 GUNMA BANK JP BK 101 SYDBANK DK BK 
4 AUS.AND NZ.BANKING GP. AU BK 53 HSBC HOLDINGS HK BK 102 SAN-IN GODO BANK JP BK 
5 AWA BANK JP BK 54 HACHIJUNI BANK JP BK 103 SHIGA BANK JP BK 
6 BANK OF IRELAND IE BK 55 HANG SENG BANK HK BK 104 SHINKIN CENTRAL BANK PF. JP BK 
7 BANKINTER 'R' ES BK 56 HIGO BANK JP BK 105 SUMITOMO MITSUI FINL.GP. JP BK 
8 BARCLAYS GB BK 57 HIROSHIMA BANK JP BK 106 SUMITOMO TRUST & BANK. JP BK 
9 BB&T US BK 58 HOKUHOKU FINL. GP. JP BK 107 SUNTRUST BANKS US BK 

10 BANCA CARIGE IT BK 59 HUDSON CITY BANC. US BK 108 SUNCORP-METWAY AU BK 
11 BANCA MONTE DEI PASCHI IT BK 60 HUNTINGTON BCSH. US BK 109 SURUGA BANK JP BK 
12 BANCA POPOLARE DI MILANO IT BK 61 HYAKUGO BANK JP BK 110 TORONTO-DOMINION BANK CA BK 
13 BANCA PPO.DI SONDRIO IT BK 62 HYAKUJUSHI BANK JP BK 111 US BANCORP US BK 
14 BANCA PPO.EMILIA ROM. IT BK 63 INTESA SANPAOLO IT BK 112 UBS 'R' CH BK 
15 BBV.ARGENTARIA ES BK 64 IYO BANK JP BK 113 UNICREDIT IT BK 
16 BANCO COMR.PORTUGUES 'R' PT BK 65 JP MORGAN CHASE & CO. US BK 114 UNITED OVERSEAS BANK SG BK 
17 BANCO DE VALENCIA ES BK 66 JYSKE BANK DK BK 115 VALIANT 'R' CH BK 
18 BANCO ESPIRITO SANTO PT BK 67 JOYO BANK JP BK 116 WELLS FARGO & CO US BK 
19 BANCO POPOLARE IT BK 68 JUROKU BANK JP BK 117 WESTPAC BANKING AU BK 
20 BANCO POPULAR ESPANOL ES BK 69 KBC GROUP BE BK 118 WING HANG BANK HK BK 
21 BANCO SANTANDER ES BK 70 KAGOSHIMA BANK JP BK 119 YAMAGUCHI FINL.GP. JP BK 
22 BNP PARIBAS FR BK 71 KEIYO BANK JP BK 120 3I GROUP GB FS 
23 BANK OF AMERICA US BK 72 KEYCORP US BK 121 ABERDEEN ASSET MAN. GB FS 
24 BANK OF EAST ASIA HK BK 73 LLOYDS BANKING GROUP GB BK 122 ACKERMANS & VAN HAAREN BE FS 
25 BANK OF KYOTO JP BK 74 M&T BK. US BK 123 AMP AU FS 
26 BANK OF MONTREAL CA BK 75 MEDIOBANCA IT BK 124 ASX AU FS 
27 BK.OF NOVA SCOTIA CA BK 76 MARSHALL & ILSLEY US BK 125 ACOM JP FS 
28 BANK OF QLND. AU BK 77 MIZUHO TST.& BKG. JP BK 126 AMERICAN EXPRESS US FS 
29 BANK OF YOKOHAMA JP BK 78 NATIONAL BK.OF GREECE GR BK 127 BANK OF NEW YORK MELLON US FS 
30 BENDIGO & ADELAIDE BANK AU BK 79 NATIXIS FR BK 128 BLACKROCK US FS 
31 COMMERZBANK (XET) DE BK 80 NORDEA BANK SE BK 129 CI FINANCIAL CA FS 
32 CREDIT SUISSE GROUP N CH BK 81 NANTO BANK JP BK 130 CLOSE BROTHERS GROUP GB FS 
33 CREDITO VALTELLINES IT BK 82 NATIONAL AUS.BANK AU BK 131 CIE.NALE.A PTF. BE FS 
34 CANADIAN IMP.BK.COM. CA BK 83 NAT.BK.OF CANADA CA BK 132 CRITERIA CAIXACORP ES FS 
35 CHIBA BANK JP BK 84 NY.CMTY.BANC. US BK 133 CHALLENGER FINL.SVS.GP. AU FS 
36 CHUGOKU BANK JP BK 85 NISHI-NIPPON CITY BANK JP BK 134 CHARLES SCHWAB US FS 
37 CHUO MITSUI TST.HDG. JP BK 86 NORTHERN TRUST US BK 135 CHINA EVERBRIGHT HK FS 
38 CITIGROUP US BK 87 OGAKI KYORITSU BANK JP BK 136 COMPUTERSHARE AU FS 
39 COMERICA US BK 88 OVERSEA-CHINESE BKG. SG BK 137 CREDIT SAISON JP FS 
40 COMMONWEALTH BK.OF AUS. AU BK 89 BANK OF PIRAEUS GR BK 138 DAIWA SECURITIES GROUP JP FS 
41 DANSKE BANK DK BK 90 PNC FINL.SVS.GP. US BK 139 EURAZEO FR FS 
42 DBS GROUP HOLDINGS SG BK 91 POHJOLA PANKKI A FI BK 140 EATON VANCE NV. US FS 
43 DEUTSCHE BANK (XET) DE BK 92 PEOPLES UNITED FINANCIAL US BK 141 EQUIFAX US FS 
44 DEXIA BE BK 93 ROYAL BANK OF SCTL.GP. GB BK 142 FRANKLIN RESOURCES US FS 
45 DNB NOR NO BK 94 REGIONS FINL.NEW US BK 143 GAM HOLDING CH FS 
46 DAISHI BANK JP BK 95 RESONA HOLDINGS JP BK 144 GBL NEW BE FS 
47 EFG EUROBANK ERGASIAS GR BK 96 ROYAL BANK CANADA CA BK 145 GOLDMAN SACHS GP. US FS 
48 ERSTE GROUP BANK AT BK 97 SEB 'A' SE BK 146 ICAP GB FS 
49 FIFTH THIRD BANCORP US BK 98 STANDARD CHARTERED GB BK 147 IGM FINL. CA FS 

              



NAME COUNTRY SECTOR NAME COUNTRY SECTOR NAME COUNTRY SECTOR 
148 INDUSTRIVARDEN 'A' SE FS 176 AGEAS (EX-FORTIS) BE IN 204 MS&AD INSURANCE GP.HDG. JP IN 
149 INTERMEDIATE CAPITAL GP. GB FS 177 ALLIANZ (XET) DE IN 205 MUENCHENER RUCK. (XET) DE IN 
150 KINNEVIK 'B' SE FS 178 AMLIN GB IN 206 MANULIFE FINANCIAL CA IN 
151 INVESTOR 'B' SE FS 179 AON US IN 207 MARKEL US IN 
152 LEGG MASON US FS 180 GENERALI IT IN 208 MARSH & MCLENNAN US IN 
153 MAN GROUP GB FS 181 AVIVA GB IN 209 OLD MUTUAL GB IN 
154 MARFIN INV.GP.HDG. GR FS 182 AXA ASIA PACIFIC HDG. AU IN 210 PRUDENTIAL GB IN 
155 MACQUARIE GROUP AU FS 183 AXA FR IN 211 PARTNERRE US IN 
156 MITSUB.UFJ LSE.& FINANCE JP FS 184 ALLSTATE US IN 212 POWER CORP.CANADA CA IN 
157 MIZUHO SECURITIES JP FS 185 AMERICAN INTL.GP. US IN 213 POWER FINL. CA IN 
158 MOODY'S US FS 186 ARCH CAP.GP. US IN 214 PROGRESSIVE OHIO US IN 
159 MORGAN STANLEY US FS 187 BALOISE-HOLDING AG CH IN 215 QBE INSURANCE GROUP AU IN 
160 NOMURA HDG. JP FS 188 BERKSHIRE HATHAWAY 'B' US IN 216 RSA INSURANCE GROUP GB IN 
161 ORIX JP FS 189 CNP ASSURANCES FR IN 217 RENAISSANCERE HDG. US IN 
162 PARGESA 'B' CH FS 190 CHUBB US IN 218 SAMPO 'A' FI IN 
163 PROVIDENT FINANCIAL GB FS 191 CINCINNATI FINL. US IN 219 SCOR SE FR IN 
164 PERPETUAL AU FS 192 EVEREST RE GP. US IN 220 STOREBRAND NO IN 
165 RATOS 'B' SE FS 193 FAIRFAX FINL.HDG. CA IN 221 SWISS LIFE HOLDING CH IN 
166 SCHRODERS GB FS 194 GREAT WEST LIFECO CA IN 222 SWISS RE 'R' CH IN 
167 SLM US FS 195 HANNOVER RUCK. (XET) DE IN 223 TOPDANMARK DK IN 
168 SOFINA BE FS 196 HELVETIA HOLDING N CH IN 224 TORCHMARK US IN 
169 STATE STREET US FS 197 HARTFORD FINL.SVS.GP. US IN 225 TRAVELERS COS. US IN 
170 T ROWE PRICE GP. US FS 198 ING GROEP NL IN 226 UNUM GROUP US IN 
171 TD AMERITRADE HOLDING US FS 199 JARDINE LLOYD THOMPSON GB IN 227 VIENNA INSURANCE GROUP A AT IN 
172 WENDEL FR FS 200 LEGAL & GENERAL GB IN 228 W R BERKLEY US IN 
173 ACE US IN 201 LINCOLN NAT. US IN 229 XL GROUP US IN 
174 AEGON NL IN 202 LOEWS US IN 230 ZURICH FINANCIAL SVS. CH IN 
175 AFLAC US IN 203 MAPFRE ES IN 

 
 
Note: The abbreviation for the sector classification are as follows: BK = Bank, FS = Financial Services, IN = Insurance. Classification as provided by 
Datastream.



Table 2 – Breakdown of financial institutions by sector and by geographic area 
 Banks Financial Services Insurances  
EU 47 22 27 96 
North America 25 17 28 70 
Asia 47 14 3 64 
 119 53 58 230 
Note: Swiss and Norwegian financial institutions have been classified as EU. Asia includes Australian 
financial institutions. 
 
 
 
Table 3 – Estimates and standard errors for selected financial institutions 
 
Barclays 

 1c  11a  12a  11b  12b  
 -0.19 -0.45 -0.12 0.77 -0.01 
s.e. 0.07 0.14 0.09 0.06 0.01 
 2c  21a  22a  21b  22b  
 -0.17 -0.40 -0.22 -0.21 0.96 
s.e. 0.09 0.13 0.12 0.08 0.01 

 
Deutsche Bank 

 1c  11a  12a  11b  12b  
 -0.12 -0.37 -0.07 0.87 -0.03 
s.e. 0.05 0.15 0.04 0.05 0.02 
 2c  21a  22a  21b  22b  
 -0.16 -0.11 -0.32 -0.03 0.87 
s.e. 0.11 0.34 0.22 0.11 0.08 

 
Citigroup 

 1c  11a  12a  11b  12b  
 -0.13 -0.08 -0.15 0.83 0.02 
s.e. 0.08 0.08 0.05 0.09 0.02 
 2c  21a  22a  21b  22b  
 -0.02 -0.10 -0.17 -0.06 0.97 
s.e. 0.10 0.13 0.11 0.12 0.03 

 
Goldman Sachs 

 1c  11a  12a  11b  12b  
 -0.03 -0.13 -0.11 0.95 -0.04 
s.e. 0.02 0.05 0.05 0.02 0.02 
 2c  21a  22a  21b  22b  
 -0.04 -0.03 -0.17 0.00 0.93 
s.e. 0.03 0.11 0.07 0.04 0.03 

Note: Coefficients significant at the 5% level formatted in bold. 
 



 Figure 1 – 1% quantile for selected financial institutions 
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Figure 2 – Impulse-response functions to a shock to the market for selected financial institutions 

 



Figure 3 – Impulse-response functions by sectoral and geographic aggregation 
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Figure 4 – Strongest and weakest VaR impulse-responses 

 
Note: The figure reports the average impulse-response function of the 20 financial institutions with the strongest and weakest impact, as measured by the area 
below the impulse-response function. 



Figure 5 – In-sample and out-of-sample average VaR and price developments of the 20 financial institutions with the strongest and weakest VaR 
impulse-responses to a market shock 
In-sample VaR In-sample price developments (price = 100 on 2 January, 2000) 

 
Out-of-sample VaR Out-of-sample price developments (price = 100 on 6 August, 2010) 

 
 


	var for var august_2012
	Tables and Figures May_2012

