Virtual Seminar on Climate Economics

Federal Reserve Bank of San Francisco

Organizing Committee:

Glenn Rudebusch (Federal Reserve Bank of San Francisco)
Michael Bauer (University of Hamburg)
Stephie Fried (Arizona State University)
Òscar Jordà (Federal Reserve Bank of San Francisco)
Toan Phan (Federal Reserve Bank of Richmond)

The Fiscal Costs of Climate Change in the United States

Lint Barrage FRBSF Virtual Seminar on Climate Economics

U.C. Santa Barbara & NBER

September 24, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

- Climate change's fiscal impacts and policy implications
 - i. Existing programs (e.g., healthcare, wildfire suppression)
 - ii. Public adaptation (e.g., coastal infrastructure)
 - iii. Revenue impacts (e.g., employment, output effects)

Growing policy concern (e.g., U.S. GAO "High Risk" List)

- Benchmark Integrated Assessment Models (IAMs, e.g. DICE, Nordhaus, 1992, 2017; FUND, Anthoff and Tol, 2014; Golosov et al., 2014, etc.) typically do not consider/distinguish fiscal costs as such
- However, if gov't raises revenues with distortionary taxes:
 - Socially costly to raise, divert public funds
 - Fiscal constraints may limit adaptation, increase damages
 - Show: Change structure of optimal carbon price

This Paper

Formalizes, aggregates, quantifies fiscal cost effects in IAM

- Set up macro climate-economy model with fiscal impacts
 ⇒ Theoretical optimal policy implications
- 2. Bottom-up quantification of fiscal impacts
 - \Rightarrow Prior literature, data, forecasts
- Quantitative U.S. fiscal policy climate-economy model
 ⇒ Welfare, fiscal implications of carbon pricing

Literature

- Climate-economy models, IAMs (Nordhaus, 1992, 2017; Manne, Richels, 2005; Anthoff, Tol, 2014; Golosov et al., 2014; vd Ploeg, Withagen, 2014; etc.), Adaptation (e.g., Hope, 2006; Tol, 2007; deBruin et al. 2009; Bosello et al., 2010; Agrawala et al. 2010; Belfiori 2015; Fried 2019)
 - Distortionary taxes: Barrage (2020)
 - Here: +Fiscal climate impacts, U.S. model
- Pollution mitigation and distortionary taxes (Sandmo 1975, Bovenberg, de Mooij 1994; Goulder 1995; Bovenberg Goulder, 1996; Williams 2002, Babiker et al. 2003; Goulder et al. 2014; Fried et al. 2018; etc.)
 - Here: Integrated assessment, output & public spending impacts

- Fiscal impacts of weather events (Noy, Nualsri, 2011; Deryugina, 2017), climate change (e.g., IMF, 2008; CBO, 2016; OMB, 2016)
 - Here: Integrate into IAM, analyze implications

Talk Outline

- 1. Introduction
- 2. Model
 - Setup
 - Qualitative Results
- 3. Quantification
 - Existing Public Program Costs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Sea Level Rise Adaptation
- Rest
- 4. Numerical Results
- 5. Conclusion

Households

Infinitely-lived, rep. household with well-behaved preferences over consumption C_t, labor L_t, climate change T_t:

$$U_0 \equiv \sum_{t=0}^{\infty} \beta^t U(C_t, L_t, T_t, \Lambda_t^u)$$

 where Λ^u_t ∼ adaptive capacity against climate utility impacts (e.g., damages to national parks)

Further assume:

$$U(C_t, L_t, T_t, \Lambda_t^u) = v(C_t, L_t) + h[(1 - \Lambda_t^u)T_t]$$

Household Flow Budget Constraint

$$C_{t} + \rho_{t}B_{t+1} + K_{t+1}$$

$$\leq w_{t}(1 - \tau_{lt})L_{t} + \left\{1 + (r_{t} - \delta(SLR_{t}, \Lambda_{t}^{slr}))(1 - \tau_{kt})\right\}K_{t}$$

$$+B_{t} + \Pi_{t} + G_{t}^{T}(T_{t})$$

 $B_{t+1} \sim \text{bond purchases}$ $\rho_t \sim \text{price of one-period bond}$ $K_{t+1} \sim \text{private capital stock}$ $w_t \sim \text{wage rate}$ $\tau_{lt} \sim \text{labor income tax rate}$ $r_t \sim \text{return on capital}$ $\tau_{kt} \sim \text{capital income tax rate}$
$$\begin{split} &\delta()\sim \text{depreciation rate}\\ &SLR_t\sim \text{sea level rise}\\ &\Lambda_t^{slr}\sim \text{adaptive capacity}\\ &\Pi_t\sim \text{profits from energy sector}\\ &G_t^T(T_t)\sim \text{gov't transfers} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Production

Final Good: Production CRS in L_{1t} , K_{1t} and energy E_t

$$Y_t = F_1(A_{1t}, L_{1t}, K_{1t}, E_t, T_t, \Lambda_t^y)$$

= $(1 - D(T_t)(1 - \Lambda_t^y)) \cdot A_t \widetilde{F}_1(L_{1t}, K_{1t}, E_t)$

• $D(T_t)$ gross climate damages, Λ_t^y adaptive capacity

Energy Input: CRS extraction technology:

$$E_t = F_2(A_{Et}, L_{2t}, K_{2t})$$

• Provide fraction μ_t from clean tech. at extra cost $\Theta_t(\mu_t E_t)$

Model Overview: Government

- Expenditures: Must raise revenues to finance
 - Household transfers $G_t^T(T_t) \ge 0$
 - Consumption: $G_t^C(T_t)$
 - Initial debt B₀
- May choose to fund $(\lambda_t^y, \lambda_t^u, \lambda_t^{slr})$ adaptation:

$$\Lambda_t^i = f^i(\{\lambda_s^i\}_{s=0}^t) \text{ for } i \in \{u, y, slr\}$$

Revenues:

- Linear taxes on labor income \u03c8_{lt}
- Linear taxes on net-of-depreciation capital income au_{kt}
- Excise taxes on energy inputs τ_{lt}
- Excise taxes on carbon emissions \u03c6_{Et}
- One-period bonds
- Marginal Cost of Public Funds (MCF_t): Welfare cost of raising extra dollar of gov't revenue
 - ► Ratio of the public / private marginal utility of income

Climate

• **Temperature change** depends on U.S. carbon emissions $E_t^M \equiv (1 - \mu_t)E_t$ plus rest-of-world (ROW) emissions E_t^{ROW} :

$$T_t = F_t(E_0^M + E_0^{ROW}, E_1^M + E_1^{ROW}..., E_t^M + E_t^{ROW})$$

- Benchmark: E_t^{ROW} exogenous, but also consider ROW response elasticity to U.S. mitigation
- Sea level rise depends on history of temperature change (Rahmsdorf, 2007):

$$SLR_t = G(SLR_0, T_1, T_2, \dots T_t)$$

Climate Impacts and Policy: Summary

- Climate Change Impact Channels:
 - [Standard]: Production: $Y_t = D(T_t) \cdot F(.)$
 - Utility: $U(C_t, L_t, T_t)$
 - Capital depreciation: $\delta(SLR_t, .)K_t$
 - [New]: Government consumption: $G_t^C(T_t)$
 - [New]: Government transfers: $G_t^T(T_t)$
- Government Policy Choices:
 - [Standard]: Carbon tax τ_{Et}
 - ► [COMET]: Capital, labor, taxes τ_{kt} , τ_{lt} ; bonds B_t^G , gov't spending G_t^C , G_t^T ...

• [New]: Public adaptation Λ_t^y , Λ_t^u , Λ_t^{slr}

Talk Outline

- 1. Introduction
- 2. Model
 - Setup
 - Qualitative Results
- 3. Quantification
 - Existing Public Program Costs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Sea Level Rise Adaptation
- Rest
- 4. Numerical Results
- 5. Conclusion

Define:

$$M_{j} \equiv \begin{cases} 1 & \text{if } j = 0 \\ \beta^{j} \prod_{m=1}^{j} \frac{1}{(1+r_{t+m}-\delta_{t+m})} & \text{o.w.} \end{cases}$$

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+\left(rac{1}{MCF_t}
ight)$$
 PV [Utility Impacts]

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+ \left(\frac{\textit{MCF}_t - 1}{\textit{MCF}_t}\right) \mathsf{PV}[\mathsf{Gov't Transfer \& Offer Curve Impacts}]$$

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

$$egin{array}{rcl} au_{Et}^{*} &=& \displaystyle{\sum_{j=0}^{\infty}} M_{j} \cdot rac{-\partial Y_{t+j}}{\partial {T_{t+j}}} \cdot rac{\partial {T_{t+j}}}{\partial E_{t}^{M}} \ &+ \left(rac{1}{MCF_{t}}
ight) extsf{PV} ext{ [Utility Impacts]} \end{array}$$

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+\left(rac{MCF_t-1}{MCF_t}
ight)$$
 PV[Gov't Transfer & Offer Curve Impacts]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+\left(rac{1}{MCF_t}
ight)$$
 PV [Utility Impacts]

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+ \left(\frac{\textit{MCF}_t - 1}{\textit{MCF}_t}\right) \mathsf{PV}[\mathsf{Gov't Transfer \& Offer Curve Impacts}]$$

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+\sum_{i=0}^{\infty}\beta^{j}(\frac{1}{MCF_{t}})\left[\frac{-U_{Tt+j}}{U_{ct}}\right]\frac{\partial T_{t+j}}{\partial E_{t}^{M}}$$

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+\left(rac{MCF_t-1}{MCF_t}
ight)$$
 PV[Gov't Transfer & Offer Curve Impacts]

*Bovenberg and van der Ploeg (1994), Bovenberg and Goulder (1996), ... 📱 🕠 🔍

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+\left(rac{1}{MCF_t}
ight)$$
 PV [Utility Impacts]

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+ \left(\frac{\textit{MCF}_t - 1}{\textit{MCF}_t}\right) \mathsf{PV}[\mathsf{Gov't Transfer \& Offer Curve Impacts}]$$

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+ \left(\frac{1}{MCF_{t}}\right) \text{PV [Utility Impacts]} \\ + \sum_{j=0}^{\infty} \left[\sum_{m=0}^{\infty} M_{j+m} \cdot \frac{\partial \delta K_{t+m}}{\partial SLR_{t+m}} \frac{\partial SLR_{t+m}}{\partial T_{t+j}}\right] \frac{\partial T_{t+j}}{\partial E_{t}^{M}}$$

 $+ \mathsf{PV}[\mathsf{Gov't} \ \mathsf{Consumption} \ \mathsf{Impacts}]$

$$+\left(rac{MCF_t-1}{MCF_t}
ight)$$
 PV[Gov't Transfer & Offer Curve Impacts]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+\left(rac{1}{MCF_t}
ight)$$
 PV [Utility Impacts]

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+ \left(\frac{\textit{MCF}_t - 1}{\textit{MCF}_t}\right) \mathsf{PV}[\mathsf{Gov't Transfer \& Offer Curve Impacts}]$$

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+\left(rac{1}{MCF_t}
ight)$$
 PV [Utility Impacts]

+PV[Sea Level Rise Impacts]

$$+ \sum_{j=0}^{\infty} M_{j} \cdot \frac{\partial G_{t+j}^{C}}{\partial T_{t+j}} \cdot \frac{\partial T_{t+j}}{\partial E_{t}^{M}}$$

$$+ \left(\frac{MCF_{t} - 1}{MCF_{t}}\right) PV[\text{Gov't Transfer & Offer Curve Impacts}]$$

・ロト・日本・モート モー うへぐ

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+\left(rac{1}{MCF_t}
ight)$$
 PV [Utility Impacts]

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+ \left(\frac{\textit{MCF}_t - 1}{\textit{MCF}_t}\right) \mathsf{PV}[\mathsf{Gov't Transfer \& Offer Curve Impacts}]$$

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 $au_{Et}^* = PV$ [Output Impacts]

$$+\left(rac{1}{MCF_t}
ight)$$
 PV [Utility Impacts]

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+\sum_{j=0}^{\infty}\beta^{j}\left(\frac{MCF_{t}-1}{MCF_{t}}\right)\left[\frac{\partial G_{t+j}^{T}}{\partial T_{t+j}}\right]\left(\frac{U_{ct+j}}{U_{cct}C_{t}+U_{ct}+U_{lct}L_{t}-U_{cct}G_{t}^{T}(T_{t})}\right)\frac{\partial T_{t+j}}{\partial E_{t}^{M}}$$

Result 1 The optimal carbon tax in period t > 0 is implicitly defined by:

 au^*_{Et} = PV [Output Impacts]

$$+\left(rac{1}{MCF_t}
ight)$$
 PV [Utility Impacts]

+PV[Sea Level Rise Impacts]

+PV[Gov't Consumption Impacts]

$$+ \left(\frac{\textit{MCF}_t - 1}{\textit{MCF}_t}\right) \mathsf{PV}[\mathsf{Gov't Transfer \& Offer Curve Impacts}]$$

Optimal Adaptation

Result 2 Public adaptation to reduce direct utility losses should be less-than-fully provided (distorted) if governments raise revenues with distortionary taxes. Public adaptation to reduce climate impacts on final goods production and sea level rise capital losses should be undistorted (fully provided) regardless of the welfare costs of raising revenues.

- Intuition: Productivity benefits compensate for fiscal costs
- Optimal tax system maintains production efficiency (Diamond, Mirrlees, 1971); Provides public production inputs fully (Judd, 1999)

Talk Outline

- 1. Introduction
- 2. Model
 - Setup
 - Qualitative Results
- 3. Quantification
 - Existing Public Program Costs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Sea Level Rise Adaptation
- Rest
- 4. Numerical Results
- 5. Conclusion

Public Program Costs: Overview

- Synthesize prior estimates:
 - Hurricane-related public disaster spending: CBO (2016)
 - Wildfire suppression: U.S. Forest Service (2015), OMB (2016)
 - Crop insurance subsidies: U.S. Dept. of Agriculture (2016)
 - Air quality, health: Garcia-Menendez et al. (2015), OMB (2016)
 - West Nile Neuroinvasive Disease: EPA (2017)
 - Urban drainage infrastructure: EPA (2017)
- Own estimates: Wildfires and public healthcare

 Hybrid: Hurricanes and public healthcare, transfers; Deryugina (2017); Emmanuel et al. (2008); Bakkensen and Barrage (2019)

1) Synthesizing Prior Estimates:

	RCP 8.5	RCP 4.5	Source
Increase	+40%	+23%	OMB (2016)
Global Temp. Change (by 2075)	2.85 C	1.6 C	IPCC (2014)
Per 1 C impact:	+14.0%	+14.4%	

Crop Insurance Cost Increase by 2080

Wildfire Suppression Cost Increases

	RCP 8.5		Source
	2041-59	2081-99	
Global Temp. Change	2.0 C	3.7 C	IPCC (2014)
Forest Service	+117%	+192%	OMB (2016), USDA FS (2015)
Per 1 C impact:	+58.5%	+51.9%	
Dept. of Interior	+45%	+72%	OMB (2016), USDA FS (2015)
Per 1C impact:	+22.5%	+19.5%	

1) Synthesizing Prior Estimates:

Hurricane Relief Spending Increase by 2075				
	RCP 8.5	Source		
Increase due to climate change	+14%	CBO (2016)		
Global Temp. Change (by 2075)	2.85C	IPCC (2014)		
Per 1C impact:	+5%			

West Nile Neuroinvasive Disease

	RCP 8.5			RCP 4.5	Source
	2050	2090	2050	2090	
Global Temp. Change	2.0C	3.7C	1.4C	1.8C	IPCC (2014)
Additional Cases	720	2200	510	800	EPA (2017)
ightarrow Federal costs (\$ mil./yr)	\$14.5	\$45.1	\$10.5	\$16.4	EPA (2017),
					CMS (2020)
Regression coefficient per 1C:				+\$10.5 mil/yr	

1) Synthesizing Prior Estimates:

Urban Drainage Infrastructure Costs (50-yr Storm)						
	RCP 8.5			RCP 4.5	Source	
	2050	2090	2050	2090		
Global Temp. Change	2.0C	3.7C	1.4C	1.8C	IPCC (2014)	
Annual Cost (\$2015 bil)	4.3	5.6	3.7	4.1	EPA (2017)	
Per 1C impact:	2.2	1.5	2.6	2.3		
Regression coefficient per	+\$1.83 bil./yr					

Ambient Air Quality

		Source
	2100	
Global Temp. Change	6.0 C vs. 1.5C	Garcia-Menendez et al. (2015),OMB (2016)
Federal healthcare	+1.2 bil./yr	Garcia-Menendez et al. (2015),OMB (2016)
Per 1 C impact:	+267 \$mil./yr	

2) Own Estimates: Wildfires and Public Healthcare

- Wildfires have been linked to poor air quality, increased healthcare utilization (e.g., Ahman et al. (2012) on 2012 Colorado fires; Gan et al. (2017) on Washington 2012 fires; Fan et al. (2018) national model)
 - Miller, Molitor, Zou et al. (2019): National data

- Data: County-year panel (1996-2018)
 - Top quartile of wildfire states (National Interagency Fire Center)
- Public medical transfers: BEA "Regional Economic Accounts" (REA); Centers for Medicare & Medicaid Services (CMMS)
- Wildfire and smoke events; other weather events: NOAA
- Air quality ratings: Environmental Protection Agency
- Demographics: REA, National Center for Health Statistics

Dep. Var.:	In(Public Medical Expenditures)						
	Medicaid plus (Veterans etc.)			Medicare			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
ln(Fire/SmokeDays)	0.0007**	0.0007**	0.0007**	0.0001	0.0006^{*}	0.0001	0.0006^{*}
	(0.0004)	(0.0004)	(0.0004)	(0.0002)	(0.0003)	(0.0002)	(0.0003)
$\ln(WinterEventDays)$			0.0011***			0.0005^{**}	0.0002
			(0.0004)			(0.0002)	(0.0003)
ln(RainThunderDays)			-0.0003			0.0004^{**}	0.0002
			(0.0002)			(0.0002)	(0.0002)
ln(HeatEventDays)			0.0008*			0.0001	-0.0003
			(0.0004)			(0.0002)	(0.0002)
$\ln(\text{ColdEventDays})$			-0.0002			0.0001	0.0002
			(0.0004)			(0.0003)	(0.0003)
Obs.	15,289	15,289	15,289	15,302	15,302	15,302	15,302
Adj. R-Sq.	0.994	0.997	0.994	0.997	0.999	0.997	0.999
#Counties	701	701	701	701	701	701	701
Demo./Inc. Controls:	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Pop. Weights:	No	Yes	No	No	Yes	No	Yes
County F.E.s:	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year F.E.s:	Yes	Yes	Yes	Yes	Yes	Yes	Yes
State-Trends:	Yes	Yes	Yes	Yes	Yes	Yes	Yes
S.E. Cluster	County	County	County	County	County	County	County

Dep. Var.:

ln(Public Medical Expenditures)

2) Own Estimates: Wildfires and Public Healthcare

Combine with projected wildfire increases by area:

Avg. F	Avg. Projected Change in Wildfire Activity* per 1 C global warming				
State	Δ	Sources:			
AZ	241	McKenzie et al. (2004), Littell et al. (2009), Liu et al. (2009)			
UT	240	McKenzie et al. (2004), Littell et al. (2009), Liu et al. (2009)			
NM	237	McKenzie et al. (2004), Littell et al. (2009), Liu et al. (2009)			
NV	98	McKenzie et al. (2004), Littell et al. (2009), Liu et al. (2009)			
ID	85	Littell et al. (2010), Liu et al. (2010)			
CA	82	Lenihan et al. (2003), McKenzie et al. (2004), Littell et al. (2009)			
OR	72	Rogers et al. (2011), Littell et al. (2010), Liu et al. (2010)			
WA	72	Rogers et al. (2011), Littell et al. (2010), Liu et al. (2010)			

*Acres burned per year or annual wildfire potential (Keetch-Byram Drought Index)

3) Hurricanes' Fiscal Costs

- ▶ Hurricane expenditure impacts: Deryugina (2017) data, code
- Climate-induced hurricane changes: Bakkensen and Barrage (2019) U.S. hurricane probability distribution estimates based on Emmanuel et al. (2008) synethtic cyclone tracks

Hurricane Impacts in Vulnerable Counties					
Saffir-Simpson	Ρι	ublic	ΔE [U.S. Land-		
Category:	Medical	Transfers	falls/yr] per $1^\circ C$		
Cat. 1	3.7%	1.2%	+0.91		
Cat. 2	3.6%	1.8%	+1.23		
Cat. 3+	4.8%	6.76%	+2.04		

Avg. annual per capita effect across estimated coefficients for years 0-10

 \rightarrow Compute county-specific expenditure changes assuming equal spatial distribution of future U.S. hurricanes

Existing Program Costs: Summary

	$\%\Delta$ per	$1^{\circ}C$
Government Consumption	Program	Aggregate
Hurricane direct response	+5%	+0.04%
Crop-insurance subsidies	+14%	+0.04%
Wildfire suppression - FS	+52%	+0.04%
Wildfire suppression - DOI	+20%	+0.004%
Fed. healthcare - Air quality		+0.01%
Healthcare - Wildfires	varies by state	+0.008%
Healthcare - Hurricanes	varies by county	+0.19%
Urban drainage infrastructure		+0.03%
West Nile Neuroinvasive Disease		+0.0002%
Total		+0.38%
Government Transfers		
Income support - Hurricanes	varies by county	+0.11%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

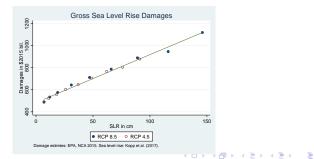
Talk Outline

- 1. Introduction
- 2. Model
 - Setup
 - Theory Results
- 3. Quantification
 - Existing Public Program Costs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- Sea Level Rise Adaptation
- Rest
- 4. Numerical Results
- 5. Conclusion

Sea Level Rise: Impacts and Adaptation


- Quantify based on EPA Coastal Property Model (Neumann et al., 2014a,b) runs for 2018 National Climate Assessment (EPA, 2017)
- Damages: Storm surge impacts, abandoned property costs
- Adaptation: Shoreline armoring, beach nourishment, elevation

Sea Level Rise: Impacts and Adaptation

- Quantify based on EPA Coastal Property Model (Neumann et al., 2014a,b) runs for 2018 National Climate Assessment (EPA, 2017)
- Damages: Storm surge impacts, abandoned property costs
- Adaptation: Shoreline armoring, beach nourishment, elevation

$$\delta(SLR_t, \Lambda_t^{slr}) = \overline{\delta} + (1 - \Lambda_t^{slr})f(SLR_t)$$

• Set $f(SLR_t) = \delta^{SLR} K_t SLR_t$ based on 'no adaptation' scen.

Sea Level Rise: Impacts and Adaptation

Adaptation capital AK_t and effectiveness Λ^{slr}_t:

$$AK_t \equiv \sum_{s=0}^{t-1} (\lambda_s^{slr} (1 - d^{slr})^s) + \lambda_s^{slr}$$
(1)
$$\Lambda_t^{SLR} = \left(\gamma_1 \frac{AK_t}{(\delta^{SLR} K_t SLR_t)} \right)^{\gamma_2}$$
(2)

Use EPA model output as 'observations'

• Select d^{slr} , γ_1 , γ_2 to minimize sum of squared errors between:

(1) and agg. damages with vs. without adaptation

• Adaptation optimality condition $\frac{\partial \Lambda_z^{str}}{\partial \lambda_z^{str}} = \frac{1}{\delta^{SLR} K_t SLR_t}$

 $\Rightarrow~d^{\it slr}=$ 0.246 (annual depr. 2.8%), $\gamma_1=$ 10.18, $\gamma_2=$ 0.09

Talk Outline

- 1. Introduction
- 2. Model
 - Setup
 - Theory Results
- 3. Quantification
 - Existing Public Program Costs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- Sea Level Rise Adaptation
- Rest
- 4. Numerical Results
- 5. Conclusion

COMET-US Calibration: Fiscal Baseline

Avg. Effective Tax Rate	Rate	Source
Capital (au_{k0})	29.0%	CBO (2014)
Labor	30.9%	OECD (2018)
Consumption	6.1%	Carey and Tchilinguirian (2000)
$ ightarrow$ Labor-Cons. Wedge (au_{l0})	35.1%	

▶ Base $\overline{G_0^T}$, $\overline{G_0^C}$: U.S. National Income and Product Accounts

- Grow at rates of population, technology growth
- Plus climate impacts: $G_t^j(\mathcal{T}_t) = G_t^j(1 + lpha_{j,1}(\mathcal{T}_t))$, j=T,C
- Initial debt: 2015 federal debt held by domestic public (FRED)
 - Extension in progress: COVID update

COMET-US Calibration: Other Climate Impacts

Structurally, output impacts as in RICE/DICE model family:

$$(1-D(T_t))=\frac{1}{1+\alpha_y T_t^2}$$

Quantitatively, disaggregate RICE U.S. damages into:

Production	Utility
70%	30%

- Disaggregation procedure as in Barrage (2020a)
 - Also subtract SLR impacts to avoid double-counting
- $D(2.5^{\circ}C) \sim 0.62\%$ output loss
- ▶ $U(.) \sim$ Willing to pay 0.26% output to avoid 2.5°C Details

COMET-US Calibration: Other

- Match base year (2015) output (BEA), labor supply (OECD), carbon energy (EPA)
- Population, productivity growth: RICE Model (Nordhaus, 2011)
- ► Abatement costs Θ(.): Match RICE per-ton costs (Nordhaus, 2011; Barrage, 2020)
- Carbon cycle, climate system: DICE (2010, 2016)
 - In progress: Update based on Dietz et al. (2020) (!)
- Preferences: CRRA, β = (.985)¹⁰, σ = 1.5, Frisch labor supply elasticity 1.83 (Chetty et al., 2011)

Talk Outline

- 1. Introduction
- 2. Model
 - Setup
 - Theory Results
- 3. Quantification
 - Existing Public Program Costs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- Sea Level Rise Adaptation
- Rest
- 4. Numerical Results
- 5. Conclusion

Fiscal Scenarios

- Income Taxes:
- 1. "First-Best": Gov't can levy non-distortionary lump-sum taxes
- 2. "Optimized Distortionary": Gov't can optimize (non-lump sum)
- "Vary τ_I, BAU τ_k": Capital income taxes fixed at baseline (τ_k = 29%), gov't can raise labor income taxes
- 4. "BAU $\overline{\tau_l}$, Vary τ_k ": Labor income taxes fixed at baseline $(\overline{\tau_l} = 35.1\%)$, gov't can raise capital income taxes
- Carbon & Energy Taxes:
- 1. "No": Business-as-usual, no carbon/energy taxes until 2115
- 2. Otherwise: Optimized

		Labor	Capital		Carbon	Δ Welfare
Scenario		Tax	Tax	MCF	Tax	EV $\Delta {\cal C}_{2015}$
Income	Carbon				(\$/mtC)	(\$2015 bil.)
	& Energy	Avg. 2025-2215		2015-25		
First-Best	No	0	0	1.00	0	
First-Best	Opt.	0	0	1.00	11.1	127

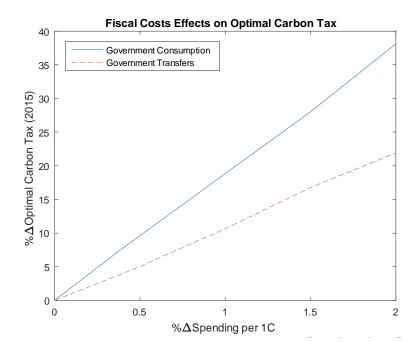
ROW Emissions: BAU

		Labor	Capital		Carbon	Δ Welfare
Scenario		Tax	Tax	MCF	Tax	EV ΔC_{2015}
Income	Carbon				(\$/mtC)	(\$2015 bil.)
	& Energy	Av	Avg. 2025-2215			
First-Best	No	0	0	1.00	0	
First-Best	Opt.	0	0	1.00	11.1	127
Opt.	No	40.3	4.6	1.10	0	
Opt.	Opt.	40.2	4.7	1.10	8.7	155

ROW Emissions: BAU

		Labor	Capital		Carbon	Δ Welfare
Scen	Scenario		Tax	MCF	Tax	EV ΔC_{2015}
Income	Carbon				(\$/mtC)	(\$2015 bil.)
	& Energy	Av	g. 2025-22	15	2015-25	
First-Best	No	0	0	1.00	0	
First-Best	Opt.	0	0	1.00	11.1	127
Opt.	No	40.3	4.6	1.10	0	
Opt.	Opt.	40.2	4.7	1.10	8.7	155
BAU $\overline{\tau_I}$,	No	35.1	35.2	1.54	0	
vary $ au_k$	Opt.	35.1	33.8	1.51	7.1	635

ROW Emissions: BAU


		Labor	Capital		Carbon	Δ Welfare
Scen	ario	Tax	Tax	MCF	Tax	EV ΔC_{2015}
Income	Carbon				(\$/mtC)	(\$2015 bil.)
	& Energy	Av	g. 2025-22	15	2015-25	
First-Best	No	0	0	1.00	0	
First-Best	Opt.	0	0	1.00	11.1	127
Opt.	No	40.3	4.6	1.10	0	
Opt.	Opt.	40.2	4.7	1.10	8.7	155
BAU $\overline{\tau_I}$,	No	35.1	35.2	1.54	0	
vary $ au_k$	Opt.	35.1	33.8	1.51	7.1	635
BAU $\overline{\tau_k}$,	No	39.6	29.0	1.10	0	
vary $ au_l$	Opt.	39.5	29.0	1.10	8.4	144

ROW Emissions: BAU

ROW Opt.

Main Results: ROW Emissions Response Elasticity 0.5

		Labor	Capital		Carbon	Δ Welfare
Scen	Scenario		Tax	MCF	Tax	ev ΔC_{2015}
Income	Carbon				(\$/mtC)	(\$2015 bil.)
	& Energy	Av	g. 2025-22	15	2015-25	
First-Best	No	0	0	1.00	0	
First-Best	Opt.	0	0	1.00	46.1	502
Opt.	No	40.3	5.0	1.10	0	
Opt.	Opt.	40.2	5.0	1.10	40.1	651
BAU $\overline{\tau_I}$,	No	35.1	35.3	1.54	0	
vary $ au_k$	Opt.	35.1	33.7	1.50	35.8	1,216
BAU $\overline{\tau_k}$,	No	39.6	29.0	1.09	0	
vary $ au_I$	Opt.	39.5	29.0	1.09	39.8	612

Talk Outline

- 1. Introduction
- 2. Model
 - Setup
 - Theory Results
- 3. Quantification
 - Existing Public Program Costs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- Sea Level Rise Adaptation
- Rest
- 4. Numerical Results
- 5. Conclusion

Conclusion

- Consideration of fiscal setting and climate impacts:
- Changes optimal carbon price to account for:
 - Gov't consumption impacts [+19% per $1\%\Delta G_t^C / {}^\circ C$]
 - Gov't transfer impacts if $MCF > 1 [+10\% \text{ per } 1\%\Delta G_t^T / ^{\circ}C]$
- New bottom-up U.S. fiscal damage functions
 - ► Currently: Gov't consumption +0.38% per 1°C
 - Currently: Gov't transfers +0.11% per 1°C
- May significantly increase welfare gains from carbon pricing
 - ▶ +10-400% with distortionary vs. lump-sum taxes
 - Failure to price carbon requires other tax increases
- ► Many caveats! But results highlight *potential importance* of fiscal effects ⇒ Warrant further empirical, IAM consideration

Main Results: ROW Optimal

		Labor	Capital		Carbon	Δ Welfare
Scen	Scenario		Tax	MCF	Tax	EV ΔC_{2015}
Income	Carbon				(\$/mtC)	(\$2015 bil.)
	& Energy	Av	g. 2025-22	15	2015-25	
First-Best	Opt.	0	0	1.00	11.1	154
First-Best	No	0	0	1.00	0	
Opt.	Opt.	40.1	5.2	1.10	8.6	177
Opt.	No	40.1	5.9	1.10	0	
BAU $\overline{\tau_I}$,	Opt.	35.1	32.7	1.47	7.2	604
vary $ au_k$	No	35.1	34.0	1.50	0	
BAU $\overline{\tau_k}$,	Opt.	39.4	29.0	1.09	8.3	170
vary $ au_l$	No	39.6	29.0	1.09	0	

ROW Emissions: Global Optimum (RICE)

Back

COMET-US Calibration: Preferences

Dynastisc household lifetime utility:

$$\sum_{t=0}^{\infty} \beta^t N_t U(c_t, I_t, T_t)$$

$$U(c_t, I_t, T_t) = \frac{[c_t \cdot (1 - \zeta I_t)^{\gamma}]^{1 - \sigma}}{1 - \sigma} + \frac{(1 + \alpha_u T_t^2)^{-(1 - \sigma)}}{1 - \sigma}$$

• With
$$\beta = (.985)^{10}$$
, $\sigma = 1.5$

ς, γ set to match (i) base year labor supply (OECD), (ii) Frisch
 elasticity of labor supply 1.83 (Chetty et al., 2011)

 α_u set to match willingness-to-pay to avoid 2.5°C equal to 0.26 pct. of output in 2065

 Back

2) Wildfires and Public Healthcare: Specification

 $\ln Y_{j,t} = \gamma_j + \delta_t + (\theta_s \cdot t) + \beta_1 \ln \mathsf{Fire}/\mathsf{SmokeDays}_{j,t} + \mathbf{X_{j,t}}' \boldsymbol{\beta} + \epsilon_{j,t}$

- In Y_{j,t} ~ In p.c. public medical spending, γ_j ~ county fixed effects, δ_t ~ year fixed effects, (θ_s · t) ~ state-specific trend
- InFireDays_{*j*,*t*} \sim num. fire or smoke days in county-year
- ➤ X_{j,t} ~ In of pop., pop>65, inc. p.c.; pop. growth, inc. growth, pct. non-hisp. white; other weather days
 - "Medicare Controls": Medicare beneficiares: In. num, pct. female, pct. non-hisp. white, pct. Medicare Advantage, avg. age; county avg. Hierarchical Condition Category score
- Alternative: 2SLS isolating link from FireDays to number of days with "unhealthy" air (EPA) in county-year

Dep. Var.:			ln(Public M	Medical Expenditures)			
	Medicai	d plus (Vete	rans etc.)	Medicare			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$\ln(FireDays)$	0.0007**	0.0007**	0.0007**	0.0001	0.0006*	0.0001	0.0006*
	(0.0004)	(0.0004)	(0.0004)	(0.0002)	(0.0003)	(0.0002)	(0.0003)
$\ln(WinterEventDays)$			0.0011***			0.0005**	0.0002
			(0.0004)			(0.0002)	(0.0003)
$\ln(RainThunderDays)$			-0.0003			0.0004**	0.0002
			(0.0002)			(0.0002)	(0.0002)
ln(HeatEventDays)			0.0008*			0.0001	-0.0003
			(0.0004)			(0.0002)	(0.0002)
$\ln(ColdEventDays)$			-0.0002			0.0001	0.0002
			(0.0004)			(0.0003)	(0.0003)
Obs.	15,289	15,289	15,289	15,302	15,302	15,302	15,302
Adj. R-Sq.	0.994	0.997	0.994	0.997	0.999	0.997	0.999
#Counties	701	701	701	701	701	701	701
Demo./Inc. Controls:	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Pop. Weights:	No	Yes	No	No	Yes	No	Yes
County F.E.s:	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year F.E.s:	Yes	Yes	Yes	Yes	Yes	Yes	Yes
State-Trends:	Yes	Yes	Yes	Yes	Yes	Yes	Yes
S.E. Cluster	County	County	County	County	County	County	County

	(1)	(2)	(3)	(4)
	First Stage	Second Stage	First Stage	Second Stage
	ln(Unhealthy	ln(Public	ln(Unhealthy	ln(Emergency
	Days)	Medical	Days)	Dep. Visits/
		Expend.)		1000 Ben.)
$\ln(FireDays)$	0.0728***		0.0798^{***}	
	(0.0166)		(0.0222)	
$\ln(\text{UnhealthyDays})$		0.0082^{**}		0.0069^{*}
		(0.0033)		(0.0041)
Obs.	4,704	4,704	2,320	2,320
#Counties	282	282	237	237
Demo./Inc. Controls:	Yes	Yes	Yes	Yes
Medicare Controls:	-	-	Yes	Yes
County F.E.s:	Yes	Yes	Yes	Yes
Year F.E.s:	Yes	Yes	Yes	Yes
State-Trends:	Yes	Yes	Yes	Yes
S.E. Cluster	County	County	County	County
Adj. R-Sq.		0.973		0.203
Kleibergen-Paap				
Wald F. Stat.	19.3		12.98	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

	(1)	(2)
	First Stage	Second Stage
	ln(Unhealthy	ln(Outp. Dialysis
	Days)	Events/1000 Ben.)
$\ln(\text{FireDays})$	0.0761***	
	(0.0222)	
$\ln(\text{UnhealthyDays})$		-0.0020
		(0.0057)
Obs.	2,298	2,298
#Counties	233	233
Demo./Inc. Controls:	Yes	Yes
Medicare Controls:	Yes	Yes
County F.E.s:	Yes	Yes
Year F.E.s:	Yes	Yes
State-Trends:	Yes	Yes
S.E. Cluster	County	County
Adj. R-Sq.		0.558
Kleibergen-Paap	11.70	
Wald F. Stat.		