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Conditional probabilities and contagion measures for Euro Area

sovereign default risk

Abstract

The Eurozone debt crisis raises the issue of measuring and monitoring interconnected

sovereign credit risk. We propose a novel empirical framework to assess the likelihood

of joint and conditional failure for Euro Area sovereigns. Our model captures all the

salient features of the data, including skewed and heavy-tailed changes in the price of

CDS protection against sovereign default, as well as dynamic volatilities and correla-

tions to ensure that failure dependence can increase in times of stress. We apply the

model to Euro Area sovereign CDS spreads from 2008 to mid-2011. Our results reveal

significant time-variation in risk dependence and considerable spill-over effects in the

likelihood of sovereign failures. We further investigate distress dependence around a

key policy announcement on 10 May 2010, and demonstrate the importance of cap-

turing higher-order time-varying moments during times of crisis for the assessment of

interactional risks.

Keywords: sovereign credit risk; higher order moments; time-varying parameters; fi-

nancial stability surveillance.

JEL classification: C32, G32.



1 Introduction

In this paper we construct a novel empirical framework to assess the likelihood of joint

and conditional failure for Euro Area sovereigns. The new framework allows us to estimate

marginal, joint, and conditional probabilities of sovereign default from observed prices for

credit default swaps (CDS) on sovereign debt. We define failure as any credit event that

would trigger a sovereign CDS contract. Examples of such failure are the non-payment of

principal or interest when it is due, a forced exchange of debt into claims of lower value,

also a moratorium or official repudiation of the debt. Our methodology is novel in that our

risk measures are derived from a multivariate framework based on a dynamic Generalized

Hyperbolic (GH) skewed-t density that naturally accommodates all relevant empirical data

features, such as skewed and heavy-tailed changes in individual country CDS spread changes,

as well as time variation in their volatilities and dependence. Moreover, the model can easily

be calibrated to match current market expectations regarding the marginal probabilities of

default, similar to for example Segoviano and Goodhart (2009) and Huang, Zhou, and Zhu

(2009).

We make three main contributions to the literature on risk assessment. First, we provide

estimates of the time variation in Euro Area joint and conditional sovereign default risk using

CDS data from January 2008 to June 2011. For example, the conditional probability of a

default on Portuguese debt given a Greek failure is estimated to be around 30% at the end

of our sample. Similar conditional probabilities for other countries are also reported. At the

same time, we may infer which countries are more exposed than others to a certain credit

event. Second, we analyze the extent to which parametric assumptions matter for such joint

and conditional risk assessments. Perhaps surprisingly, and despite the widespread use of

joint risk measures to guide policy decisions, we are not aware of a detailed investigation

of how different parametric assumptions matter for joint and conditional risk assessments.

We therefore report results based on a dynamic multivariate Gaussian and symmetric-t
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density in addition to a GH skewed-t (GHST) specification. The distributional assumptions

matter most for our conditional assessments, whereas simpler joint failure estimates are

less sensitive to the assumed dependence structure. Third, our modeling framework allows

us to investigate the presence and severity of market implied spill-overs in the likelihood

of sovereign failure. Specifically, we document spill-overs from the possibility of a Greek

failure to the perceived riskiness of other Euro Area countries. For example, at the end of

our sample we find a difference of about 30% between the one-year conditional probability

of a Portuguese default given that Greece does versus that Greece does not default. This

suggests that the cost of debt refinancing in some European countries depends to some extent

on developments in other countries. We conclude our empirical analysis by investigating the

impact on sovereign joint and conditional risks of a key policy announcement on 09 May

2010 by Euro Area heads of state.

Policy makers routinely track joint and conditional probabilities of failure for financial

sector surveillance purposes. Model based estimates of stress and spill-overs can be useful

as quick gauges of market expectations. An additional reason for their popularity in policy

circles may be that they are less expensive in terms of manpower than detailed studies based

on micro data. We give two examples for joint failure measures that are used in practice.

First, the European Central Bank’s semi-annual Financial Stability Review contains a plot

of the estimated probabilities of two or more failures in a portfolio of about twenty large and

complex European financial firms, see ECB (2011, p. 95). The estimate relies on CDS data

to infer marginal risks, and equity return correlations to infer the dependence structure. The

setup is based on a multi-factor credit risk model and Gaussian dependence, see Avesani,

Pascual, and Li (2006) and Hull and White (2004). As a second example, the International

Monetary Fund’s Global Financial Stability Review (2009, p. 132) features an estimate of

the time varying probability that all banks in a certain portfolio become distressed at the

same time. This joint probability estimate is based on Segoviano and Goodhart (2009).
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Their CIMDO framework is based on a multivariate prior distribution, usually Gaussian or

symmetric-t, which can be calibrated to match marginal risks as implied by the CDS market.

The multivariate density becomes discontinuous at so-called threshold levels: some parts of

the density are shifted up, others are shifted down, while the parametric tail and extreme

dependence implied by the prior remains intact at all times.

From a risk perspective, bad outcomes are much worse if they occur in clusters. What

seems manageable in isolation may not be so if the rest of the system is also under stress,

see Acharya, Pedersen, Philippon, and Richardson (2010). Though this argument is mainly

applied when looking at the risks of banks or other financial institutions, the same intuition

applies, possibly to an even greater extent, to sovereign default risk in the Euro Area.

While adverse developments in one country’s public finances could perhaps still be handled

with the support of a healthy remainder of the union, the situation may quickly become

untenable if two, three, four, five, or more, of its members are also distressed at the same

time. Multivariate sovereign risk dependence is a natural consequence of a large degree of

legal, economic, and financial interconnectedness between member states. Such dependence

can also be expected to be time varying, as market participants adapt to changes in policy

and in the institutional setting.

Figure 1 illustrates the particular situation in the Euro Area from January 2008 to June

2011. In addition, the figure reveals some of the statistical difficulties that need to be

addressed. The top panel in Figure 1 shows the price of CDS protection against sovereign

failure for ten Euro Area countries. The Euro Area sovereign debt crisis has progressively

spread across various member countries. After the intensification of tensions in the Greek

government bond market in Spring 2010, Ireland, Portugal and eventually also Spain and

Italy became increasingly engulfed in the sovereign crisis. French and German sovereign

credit default swaps (CDS) have also been affected since then. The bottom panel of Figure 1

plots the daily changes in the CDS data. Strong volatility clustering is present in all spread
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changes. In addition, skewness and fat tails are important features in each time series.

Our framework for joint sovereign risk assessments has four attractive features that each

match empirical stylized facts: volatility clustering, dynamic correlations, non-trivial tail de-

pendence, and the ability to handle a cross sectional dimension of intermediate size. As seen

from Figure 1, any adequate model needs to accommodate the time-variation in volatilities

and the skewness and fat-tailedness of the data before estimating the correlation structure.

Second, the correlation structure between individual countries is likely to be time-varying.

Correlations tend to increase during times of stress, see for example Forbes and Rigobon

(2002). Policy decisions such as the introduction of the European Financial Stability Fa-

cility in May 2010, as well as direct bond purchases by the ECB starting around the same

time, may also have had a direct impact on the dependence structure. We therefore propose

a model with a dynamic correlation matrix, treating each correlation pair as a latent pro-

cess. Third, we want to allow for multivariate non-Gaussian features such as extreme tail

dependence. Clearly, if an important aspect of overall system risk is that of simultaneous

failures, then the multivariate distribution should not rule out extreme dependence a priori,

e.g., by assuming a Gaussian copula. Fourth, the model needs to be flexible enough to be

calibrated repeatedly to current market conditions, such as current CDS spread levels. In

particular, there is a preference in policy circles to impose the constraint that the marginal

probabilities of default obtained from the multivariate model should be equal to the market

implied probabilities of default as obtained from current CDS spread levels. Finally, and

most obviously, an application to Euro Area sovereign risk requires us to handle dimensions

larger than what is usual in the non-Gaussian copula literature (less than five). Our results

are therefore also be interesting from this more technical perspective.

The remainder of the paper is set up as follows. Section 2 introduces a conceptual

framework for joint and conditional risk measures. Section 3 introduces the multivariate

model for failure dependence. The empirical results are discussed in Section 4. Section 5
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Figure 1: CDS levels and spread changes for ten Euro Area sovereigns
The top panel reports the price of CDS protection against sovereign default for ten Euro Area countries

as the CDS spread (in basis points). The sample is 01 Jan 2008 to 30 Jun 2011. The bottom panels plot

changes in CDS spreads with vertical axes denoted in points (so 0.2 denoting 20 percentage points).

AT 
BE 
DE 
ES 
FR 
GR 
IE 
IT 
NL 
PT 

2008 2009 2010 2011

500

1000

1500

2000

2500 AT 
BE 
DE 
ES 
FR 
GR 
IE 
IT 
NL 
PT 

2008 2009 2010 2011
−0.25

0.25
Austria 

2008 2009 2010 2011
−0.2

0.2 Belgium 

2008 2009 2010 2011

0.0

0.1
Germany 

2008 2009 2010 2011

−0.5

0.5 Spain 

2008 2009 2010 2011
−0.1

0.1 France 

2008 2009 2010 2011
−2.5

2.5 Greece 

2008 2009 2010 2011

−0.5

0.5 Ireland 

2008 2009 2010 2011

−0.5

0.5
Italy 

2008 2009 2010 2011

0.0

0.2 Netherlands 

2008 2009 2010 2011

−1

1
Portugal 

5



concludes.

2 The conceptual framework

In a corporate credit risk setting, the probability of failure is often modeled as the probability

that the value of a firm’s assets falls below the value of its debt at (or before) the time when its

debt matures, see Merton (1974) and Black and Cox (1976). To allow for default clustering,

default times of the individual firms are linked together using a copula function such as

the Gaussian or Student t copula, see for example McNeil, Frey, and Embrechts (2005).

In a sovereign credit risk setting, a similar modeling approach can be adopted, though

the interpretation has to be altered given the different nature of a sovereign compared to a

corporate. Rather than to consider asset levels falling below debt values, it is more convenient

for sovereign credit risk to compare costs and benefits of default, see Eaton and Gersovitz

(1981) and Calvo (1988). Costs from defaulting may arise from losing credit market access

for at least some time, obstacles to conducting international trade, difficulties borrowing in

the domestic market, etc., while benefits from default include immediate debt relief.

In our model below, failure is triggered by a variable vit that measures the time-varying

changes in the difference between the perceived benefits and cost of default for country i at

time t. If vit rises above a fixed threshold value, default is triggered. Since a cost, or penalty,

can always be recast in terms of a benefit, we incur no loss of generality if we focus on a

model with time-varying benefits of default and fixed costs, or vice versa, see Calvo (1988).

To model the dependence structure between sovereign defaults, we take a slightly different

approach than for corporates defaults. As the cross-sectional dimension for corporate credit

risk studies is typically large, the common approach there is to impose a simple factor

structure on the copula function in order to capture default dependence, see for example

McNeil et al. (2005, Chapter 8) for a textbook treatment. For sovereign credit risk, the cross-

sectional dimension is typically smaller and contagion concerns are much more pronounced.
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Our model is set in discrete time, similar to the familiar models for corporate credit risk

such as CreditMetrics (2007). The model describes vit, i.e., the changes in the differences

between perceived benefits and costs from default, as

vit = (ςt − µς)L̃itγ +
√
ςtL̃itϵt, i = 1, . . . , n, (1)

where ϵt ∈ Rn is a vector of standard normally distributed risk factors such as exposure to

the business cycle or to monetary policy, L̃t is a n × n matrix with ith row L̃it holding the

sensitivities of vit to the n risk factors, γ ∈ Rn is a vector of sovereign-specific constants that

controls the skewness of vit, ςt is a positively valued scalar random risk factor common to all

sovereigns and independent of ϵt, and µς = E[ςt] assuming that the expectation exists. Note

that E[vit] = 0 and that if ςt is non-random, the first term in (1) drops out.

The basic structure of (1) is very similar to the standard Gaussian or Student t copula

model. The main two differences lie in the use of the additional risk factor ςt and the skewness

parameters γ. The factor ςt is a scalar risk factor, unlike the normally distributed risk factors

ϵt. If ςt is large, all sovereigns are affected at the same time, making joint defaults of two or

more sovereigns more likely.

In this paper, we assume that ςt has an inverse-Gamma distribution, thus obtaining a

generalized hyperbolic skewed t (GHST) distribution for vit. For γ = 0, we obtain the

familiar Student t copula model. The GHST model could be further generalized to the

GH model by assuming a generalized inverse Gaussian distribution for ςt, see McNeil et al.

(2005). The current simpler GHST model, however, already accounts for all the empirical

features in the CDS data at hand, including skewness and fat tails. As ςt affects both the

variance and kurtosis of vit and (via γ) also its mean and skewness, model (1) can capture

cross-sectional default spill-overs and contagion concerns through correlations (zt) as well as

through tail dependence (ςt).

We assume that country i fails if vit exceeds a predefined sovereign-specific threshold cit.
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The probability of default pit is then given by

pit = Pr[vit > cit] = 1− Fi(cit) ⇔ cit = F−1
i (1− pit), (2)

where Fi(·) is the cumulative distribution function of vit. The thresholds may be imputed

from market-implied estimates p̂it of the probability of default based on, for example, CDS

data. It is easily seen from the mean-variance mixture (1) construction that if (v1t, . . . , vnt)

are jointly GHST distributed, then each vit is marginally GHST distributed for i = 1, . . . , n.

Given γi, L̃t, and the remaining model parameters, we can use (1) to obtain joint and

conditional probabilities of sovereign failure from CDS data in four main steps.

As a first step, we operationalize joint sovereign risk as the probability of joint credit

events in a subset of n∗ ≤ n countries. The dependence structure is taken from observed CDS

data. In particular, we calibrate the copula structure in (1) on the copula of observed changes

in the daily CDS spreads of the different sovereigns. This produces both the multivariate

dependence structure and the implied marginal densities.

In a second step, we obtain the thresholds cit that determine individual country default

risk. These can be obtained by direct simulation or by a numerical inversion of the GHST

distribution Fi(·) as explained in (2). Both approaches require a CDS market-implied es-

timate of the probability of default. To obtain such an estimate, we make a number of

simplifying assumptions. First, we fix the recovery rate at reci = 50% for all countries. This

number is roughly in the middle of the 13% to 73% range for sovereign haircuts reported

in Sturzenegger and Zettelmeyer (2008), and close to the number discussed for Greek debt

at the end of 2011. In addition, assuming a slightly higher value for expected recoveries

is conservative, since expected recovery and implied risk neutral pd’s are positively related

given the CDS spread, see below. Second, we assume a risk free rate of rt = 2% and a

flat term structure for both interest rates and default intensities until the maturity of the

CDS contract. Finally, we assume that the premium payments are paid out continuously.

Alternative specifications are clearly possible and can be adopted as well. Using these as-
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sumptions, the standard CDS pricing formula of Hull and White (2000) simplifies and can be

inverted to extract the market-implied risk neutral probability of default pit, see for example

Brigo and Mercurio (2006, Chapter 21). This probability is a direct function of the observed

CDS spread sit,

pit =
sit × (1 + rt)

1− reci
. (3)

In a third step, we use the time-varying estimates of the multivariate dependence struc-

ture between CDS spreads, obtained using the techniques discussed in the next section,

Section 3. This dependence structure allows the correlations to vary over time and is based

on pre-filtered and standardized changes in CDS spreads.

In a fourth step, we obtain measures of marginal, joint, and conditional failure of one,

two, or more sovereigns by means of simulation. In the simulation setup, we draw repeatedly

from the multivariate distribution, say, 10, 000 times at each time point t. In each simulation,

country i fails if and only if the draw for country i exceeds the default threshold cit computed

in the second step. In this way, we control the marginal probabilities of default for country

i at time t to closely match the CDS implied probabilities. Joint and conditional failure

probabilities are obtained similarly by counting the joint exceedances and dividing by the

number of simulations.

3 Statistical model

3.1 Generalized Autoregressive Score dynamics

As mentioned in Section 2, we use sovereign CDS data to estimate the model’s time-varying

dependence structure and to calibrate the model’s marginal default probabilities to current

market data. Our econometric specification closely follows the economic model structure of

the previous section. We observe a vector yt ∈ Rn of changes in sovereign CDS spreads and
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assume that

yt = µ+ Ltet, (4)

with µ ∈ Rn a vector of fixed unknown means, and et a GHST distributed random variable

with mean zero and covariance matrix I. To ease the notation, we set µ = 0 in the remaining

exposition. For µ ̸= 0, all derivations go through if yt is replaced by yt − µ. We concentrate

on the case where et follows a GHST distribution, such that yt has the density

p(yt; Σ̃t, γ, ν) =
ν

ν
2 21−

ν+n
2

Γ(ν
2
)π

n
2 |Σ̃t|

1
2

·
K ν+n

2

(√
d(yt) · (γ′γ)

)
eγ

′L̃−1
t (yt−µ̃t)

d(yt)
ν+n
4 · (γ′γ)−

ν+n
4

, (5)

d(yt) = ν + (yt − µ̃t)
′Σ̃−1

t (yt − µ̃t), (6)

µ̃t = − ν

ν − 2
L̃tγ, (7)

where ν > 4 is the degrees of freedom parameter, µ̃t is the location vector and Σ̃t = L̃tL̃
′
t is

the scale matrix,

L̃t = LtT, (8)

(T ′T )−1 =
ν

ν − 2
I +

2ν2

(ν − 2)2(ν − 4)
γγ′, (9)

and Ka(b) is the modified Bessel function of the second kind. The matrix Lt characterizes

the time-varying covariance matrix Σt = LtL
′
t. We consider the standard decomposition

Σt = LtL
′
t = DtRtDt, (10)

where Dt is a diagonal matrix containing the time-varying volatilities of yt, and Rt is the

time-varying correlation matrix.

The fat-tailedness and skewness of the data yt creates challenges for standard dynamic

specifications for volatilities and correlations, such as standard GARCH or DCC type dy-

namics, see Engle (2002). In the presence of fat tails, large absolute observations yit occur

regularly even if volatility is not changing rapidly. If not properly accounted for, such obser-

vations lead to biased estimates of the dynamic behavior of volatilities and correlations. The
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Generalized Autoregressive Score (GAS) framework of Creal, Koopman, and Lucas (2012)

as applied in Zhang, Creal, Koopman, and Lucas (2011) to the case of GHST distributions

provides a coherent approach to deal with such settings. The GAS model creates an ex-

plicit link between the distribution of yt and the dynamic behavior of Σt, Lt, Dt, and Rt.

In particular, if yt is fat-tailed, observations that lie far outside the center automatically

have less impact on future values of the time-varying parameters in Σt. The same holds for

observations in the left-hand tail if yt is left-skewed. The intuition for this is that the score

dynamics attribute the effect of a large observation yt partly to the distribution properties of

yt and partly to a local increase of volatilities and/or correlations. The estimates of dynamic

volatilities and correlations thus become more robust to incidental influential observations.

This is important for the CDS data displayed in Figure 1. We refer to Creal, Koopman, and

Lucas (2011) and Zhang, Creal, Koopman, and Lucas (2011) for more details.

We assume that the time-varying covariance matrix Σt is driven by a number of unob-

served dynamic factors ft, or Σt = Σ(ft) = L(ft)L(ft)
′. The dynamics of ft are specified

using the GAS framework for GHST distributed random variables and are given by

ft+1 = ω +

p−1∑
i=0

Aist−i +

q−1∑
j=0

Bjft−j; (11)

st = St∇t, (12)

∇t = ∂ ln p(yt; Σ̃(ft), γ, ν)/∂ft, (13)

where ∇t is the score of the GHST density with respect to ft, Σ̃(ft) = L(ft)TT
′L(ft)

′, ω is

a vector of fixed intercepts, Ai and Bj are appropriately sized fixed parameter matrices, St

is a scaling matrix for the score ∇t, and ω = ω(θ), Ai = Ai(θ), and Bj = Bj(θ) all depend

on a static parameter vector θ. Typical choices for the scaling matrix St are the unit matrix

or inverse (powers) of the Fisher information matrix It−1, where

It−1 = E[∇t∇′
t|yt−1, yt−2, . . .].

For example, St = I−1
t−1 accounts for the curvature in the score ∇t.
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For appropriate choices of the distribution, the parameterization, and the scaling matrix,

the GAS model (11)–(13) encompasses a wide range of current familiar models such as

the (multivariate) GARCH model. Further details on the parameterization Σt = Σ(ft),

Dt = D(ft), and Rt = R(ft), as well as the choice for the scaling matrix St used in this

paper are presented in the appendix. In particular, ft contains the log-volatilities of yt and

a spherical representation of the correlation matrix Rt. The latter ensures that Rt = R(ft)

is a correlation matrix by construction, irrespective of the value of ft.

Using the GHST specification of (5), we obtain that

∇t = Ψ′
tH

′
tvec

(
wt · yty′t − Σ̃t −

(
1− ν

ν − 2
wt

)
L̃tγy

′
t

)
, (14)

where wt is a scalar weight function defined in the appendix that depends on the distance

d(yt) from equation (6), and where Ψt and Ht are time-varying matrices that depend on ft,

but not on the data. See the appendix for further details.

Due to the presence of wt in (14), observations that are far in the tails receive a smaller

weight and therefore have a smaller impact on future values of ft. This robustness feature

is directly linked to the fat-tailed nature of the GHST distribution and allows for smoother

correlation and volatility dynamics in the presence of heavy-tailed observations.

For skewed distributions (γ ̸= 0), the score in (14) shows that positive CDS changes have

a different impact on correlation and volatility dynamics than negative ones. As explained

earlier, this aligns with the intuition that CDS changes from for example the left tail are

less informative about changes in volatilities and correlations if the (conditional) observa-

tion density is itself left-skewed. For the symmetric Student’s t case, we have γ = 0 and

the asymmetry term in (14) drops out. If furthermore the fat-tailedness is ruled out by

considering ν → ∞, one can show that the weights wt tend to 1 and that ∇t collapses to

the intuitive form for a multivariate GARCH model, ∇t = Ψ′
tH

′
tvec(yty

′
t − Σt).
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3.2 Parameter estimation

The parameters of the dynamic GHST model can be estimated by standard maximum like-

lihood procedures as the likelihood function is known in closed form using a standard pre-

diction error decomposition. The joint estimation of all parameters in the model, however,

is rather cumbersome. Therefore, we split the estimation in two steps relating to (i) the

marginal behavior of the coordinates yit and (ii) the joint dependence structure of the vector

of standardized residuals D−1
t yt. Similar two-step procedures can be found in Engle (2002),

Hu (2005), and other studies that are based on a multivariate GARCH framework.

In the first step, we estimate a dynamic GHST model for each series yit separately using

the GAS dynamic specification and taking our time-varying parameter ft as the log-volatility

log(σit). The skewness parameter γi is also estimated for each series separately, while the

degrees of freedom parameter ν is fixed at a pre-determined value. This restriction ensures

that the univariate GHST distributions are the marginal distributions from the multivariate

GHST distribution and that the model is therefore internally consistent.

In the second step, we consider the standardized data zit = yit/σ̂it, where σ̂it are obtained

from the first step. Using zt = (z1t, . . . , znt)
′, we estimate a multivariate dynamic GHST

model using the GAS dynamic specification. The GHST distribution in this second step has

mean zero, skewness parameters γ̂i as estimated in the first step, the same pre-determined

value for ν is for the marginal models, and covariance matrix cov(zt) = Rt = R(ft), where

ft contains the spherical coordinates of the choleski decomposition of the correlation matrix

Rt, see the Appendix for further details.

The advantages of the two-step procedure for estimation efficiency are substantial, par-

ticularly if the number n of time series considered in yt is large. The univariate models of

the first step can be estimated at low computational cost. Using these estimates, the uni-

variate dynamic GHST models are used as a filter to standardize the individual CDS spread

changes. In the second step, only the parameters that determine the dynamic correlations
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remain to be estimated.

4 Empirical application: Euro Area sovereign risk

4.1 CDS data

We compute joint and conditional probabilities of failure for a set of ten countries in the Euro

Area. We focus on sovereigns that have a CDS contract traded on respective reference bonds

since the beginning of our sample in January 2008. We select ten countries: Austria (AT),

Belgium (BE), Germany (DE), Spain (ES), France (FR), Greece (GR), Ireland (IE), Italy

(IT), the Netherlands (NL) and Portugal (PT). CDS spreads are available for these countries

at a daily frequency from 01 January 2008 to 30 June 2011, yielding T = 913 observations.

The CDS contracts are denominated in U.S. dollars and therefore do not depend on foreign

exchange risk concerns should a European credit event materialize. The contracts have a five

year maturity and are traded in fairly liquid over-the-counter markets. All time series data is

obtained from Bloomberg. Table 1 provides summary statistics for daily de-meaned changes

in these CDS spreads. All time series have significant non-Gaussian features under standard

tests and significance levels. All series are covariance stationary according to standard unit

root (ADF) tests.

4.2 Marginal and joint risk

We model the CDS spread changes with the framework explained in Section 3 based on the

dynamic GHST distribution with p = q = 1 in (11), which we label a GAS(1,1) specifica-

tion. We consider three different choices for the parameters, corresponding to a Gaussian,

a Student-t, and a GHST distribution, respectively. We fix the degrees of freedom param-

eter for the fat-tailed specifications to ν = 5. Although this may seem high at first sight

given some of the large spread changes in Figure 1, the value is small enough to result in a

substantial robustification of the results, both in terms of likelihood evaluation as well as in

terms of the volatility and correlation dynamics.
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Table 1: Data descriptive statistics
The summary statistics correspond to daily changes in observed sovereign CDS spreads for ten Euro Area

countries from January 2008 to June 2011. Mean, Median, Standard Deviation, Minimum and Maximum

are multiplied by 100. Almost all skewness and excess kurtosis statistics have p-values below 10−4, except

the skewness parameters of France and Ireland.

Mean Median Std.Dev. Skewness Kurtosis Minimum Maximum
Austria 0.00 0.00 0.05 1.07 18.74 -0.27 0.42
Belgium 0.00 0.00 0.04 0.33 8.29 -0.21 0.27
Germany 0.00 0.00 0.02 0.41 7.98 -0.09 0.10
Spain 0.00 0.00 0.08 -0.71 18.47 -0.79 0.50
France 0.00 0.00 0.02 0.14 6.38 -0.11 0.11
Greece 0.00 -0.02 0.30 -0.31 46.81 -3.64 2.91
Ireland 0.00 -0.01 0.12 0.02 9.13 -0.79 0.55
Italy 0.00 0.00 0.07 -0.82 25.54 -0.77 0.45
Netherlands 0.00 0.00 0.02 1.62 19.59 -0.10 0.24
Portugal 0.00 -0.01 0.13 -2.60 51.49 -1.85 0.74

The assumed statistical model directly influences the volatility estimates. Figure 2 plots

estimated volatility levels for the three different models along with the squared CDS changes.

The volatilities from the univariate Gaussian models repeatedly seem to be too high. The

thin tails of the Gaussian imply that volatility needs to increase sharply in response to an

extreme jump in the CDS spread, see for example the Spanish CDS spread around April

2008, and many countries around Spring 2010. In particular, the magnitude appears too large

when compared to the subsequent squared CDS spread changes. The volatility estimates

based on the Student-t and GHST distribution change less abruptly after incidental large

changes than the Gaussian ones. The results for the two fat-tailed distribution are mutually

similar and in line with the subsequent squared changes in CDS spreads. Some differences

are visible for the series that exhibit significant skewness, such as the time series for Greece,

Spain, and Portugal.

Table 2 reports the parameter estimates for the ten univariate country-specific models. In

all cases, volatility is highly persistent, i.e., B is close to one. Note that the parameterization

of our score driven model is different than that of a standard GARCH model. In particular,
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Figure 3: Average correlation over time
We plot the estimated average correlation over time, where averaging takes place over 45 estimated correlation

coefficients. The correlations are estimated based on different parametric assumptions: Gaussian, symmetric

t, and GH Skewed-t (GHST). The time axis runs from March 2008 to June 2011. The corresponding rolling

window correlations are each estimated using a window of sixty business days of pre-filtered CDS changes.

The bottom-right panel collects the six series for comparison.
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the persistence is completely captured by B rather than by A + B as in the GARCH case.

Also note that ω sometimes takes on negative values. This is natural as we define ft to be

the log-volatility rather than the volatility itself.

Next, we estimate the dynamic correlation coefficients from the standardized CDS spread

changes. Given n = 10, there are 45 different elements in the correlation matrix. Figure

3 plots the average correlation, averaged across 45 time varying bivariate pairs, for each

model specification. As a robustness check, we benchmark each multivariate model-based

estimate with the average over 45 correlation pairs obtained from a 60 business days rolling

window. Over each window we use the pre-filtered marginal data as for the multivariate

model estimates.

17



Table 2: Model parameter estimates
The table reports parameter estimates that pertain to three different model specifications. The sample

consists of daily changes from January 2008 to June 2011. The degree of freedom parameter ν is set to five

for the t distributions. Parameters in γ are estimated in the marginal distributions. Almost all parameters

are statistically significant at the 5% level. Some parameters for the volatility factor means in the t-model

are insignificant.

AT BE DE ES FR GR IE IT NL PT Correlation

Gaussian

A 0.06 0.10 0.08 0.15 0.11 0.12 0.08 0.11 0.08 0.16 0.02
(0.00) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.00)

B 0.99 0.98 0.97 0.94 0.97 0.99 0.96 0.99 0.97 0.99 0.96
(0.00) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01)

ω -0.03 -0.07 -0.14 -0.18 -0.12 0.00 -0.09 0.00 -0.11 0.00 1.00
(0.01) (0.02) (0.03) (0.02) (0.03) (0.00) (0.01) (0.00) (0.03) (0.00) (0.00)

t

A 0.28 0.30 0.35 0.39 0.40 0.42 0.30 0.34 0.26 0.36 0.01
(0.07) (0.31) (0.31) (0.18) (0.68) (0.00) (0.22) (0.17) (0.04) (0.04) (0.00)

B 0.99 0.98 0.95 0.98 0.96 0.98 0.99 0.98 0.97 0.99 0.99
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ω 0.07 0.05 -0.07 0.09 0.00 0.14 0.09 0.08 -0.02 0.11 1.01
(0.38) (1.62) (2.03) (0.79) (4.14) (0.00) (0.84) (0.82) (0.28) (0.15) (0.01)

ν 5 5 5 5 5 5 5 5 5 5 5
- - - - - - - - - - -

GHST

A 0.13 0.15 0.21 0.16 0.22 0.17 0.14 0.16 0.16 0.15 0.01
(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.00)

B 0.99 0.98 0.93 0.98 0.95 0.97 0.98 0.98 0.96 0.98 0.99
(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

ω -0.04 -0.08 -0.29 -0.05 -0.18 -0.05 -0.05 -0.05 -0.18 -0.05 1.05
(0.02) (0.03) (0.07) (0.03) (0.05) (0.02) (0.02) (0.03) (0.05) (0.02) (0.01)

ν 5 5 5 5 5 5 5 5 5 5 5
- - - - - - - - - - -

γ 0.11 0.17 0.04 0.12 0.12 0.35 0.22 0.10 0.06 0.29 -
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) -
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If we compare the correlation estimates across the different specifications, the GHST

model matches the rolling window estimates most closely. Rolling window and GHST cor-

relations are low in the beginning of the sample at around 0.3 and increase to around 0.75

during 2010 and 2011. In the beginning of the sample the GHST-based average correlation

is lower than that implied by the two alternative specifications. The pattern reverses in the

second half of the sample. This result is in line with correlations that tend to increase during

times of stress.

The correlation estimates across all model specifications vary considerably over time.

Estimated dependence across Euro Area sovereign risk increases sharply for the first time

around 15 September 2008, on the day of the Lehman failure, and around 30 September

2008, when the Irish government issued a blanket guarantee for all deposits and borrowings

of six large financial institutions. Average GHST correlations remain high afterwards, around

0.75, until around 10 May 2010. At this time, Euro Area heads of state introduced a rescue

package that contained government bond purchases by the ECB under the so-called Securities

Markets Program, and the European Financial Stability Facility, a fund designed to provide

financial assistance to Euro Area states in economic difficulties. After an eventual decline

to around 0.6 towards the end of 2010, average correlations increase again towards the end

of the sample.

The parameter estimates for volatility and correlations are shown in Table 2. Unlike

the raw sample skewness, the estimated skewness parameters are all positive, indicating a

fatter right tail of the distribution. The negative raw skewness may be the result of several

influential outliers. These are accommodated in a model specification with fat-tails.

4.3 Measures of Eurozone financial stress

This section reports marginal and joint risk estimates that pertain to Euro Area sovereign

default. First, Figure 4 plots estimates of CDS-implied probabilities of default (pd) over a

one year horizon based on (3). These are directly inferred from CDS spreads, and do not
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Figure 4: Implied marginal failure probabilities from CDS markets
We plot risk neutral marginal probabilities of failure for ten Euro Area countries extracted from CDS markets.

The time axis is from January 2008 to June 2011.
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depend on parametric assumptions regarding their joint distribution. Market-implied pd’s

range from around 1% for Germany and the Netherlands to above 10% for Greece, Portugal,

and Ireland.

The top panel of Figure 5 tracks the market-implied probability of two or more failures

among the ten Euro Area sovereigns in the portfolio over a one year horizon. The joint failure

risk estimate is calculated by simulation, using 10,000 draws at each time t. This simple

estimate combines all marginal and joint failure information into a single time series plot

and reflects the deterioration of debt conditions since the beginning of the Eurozone crisis.

The overall dynamics are roughly similar across the different distributional specifications.

The risk of two or more failures over a one year horizon, as reported in Figure 5, starts to

pick up in the weeks after the Lehman failure and the Irish blanket guarantee in September

2008. The joint risk estimate peaks in the first quarter of 2009, at the height of the Irish debt
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Figure 5: Probability of two or more failures
The top panel plots the time-varying probability of two or more failures (out of ten) over a one-year hori-

zon. Estimates are based on different distributional assumptions regarding marginal risks and multivariate

dependence: Gaussian, symmetric-t, and GH skewed-t (GHST). The bottom panel plots model-implied

probabilities for n∗ sovereign failures over a one year horizon, for n∗ = 0, 1, . . . , 4.
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crisis, then decreases until the third quarter of 2009. It is increasing since then until the end

of the sample. The joint probability decreases sharply, but only temporarily, around the 10

May 2010 announcement of the the European Financial Stability Facility and the European

Central Bank’s intervention in government debt markets starting at around the same time.

In the beginning of our sample, the joint failure probability from the GHST model is

higher than the ones from the Gaussian and symmetric-t model. This pattern reverses

towards the end of the sample, when the Gaussian and symmetric-t estimates are slightly

higher than the GHST estimate. Towards the end of the sample, the joint probability

measure is heavily influenced by the possibility of a credit event in Greece and Portugal.

The CDS changes for each of these countries are positively skewed, i.e., have a longer right

tail. As the crisis worsens, we observe more frequent positive and extreme changes, which

increase the volatility in the symmetric models more than in the skewed setting. Higher

volatility translates into higher marginal risk, or lower estimated default thresholds. This

explains the (slightly) different patterns in the estimated probabilities of joint failures.

The bottom panel in Figure 5 plots the probability of a pre-specified number of failures.

The lower level of our GHST joint failure probability in the top panel of Figure 5 towards

the end of the sample is due to the higher probability of no defaults in that case. Altogether,

the level and dynamics in the estimated measures of joint failure from this section do not

appear to be very sensitive to the precise model specification.

4.4 Spillover measures: What if . . . failed?

This section investigates conditional probabilities of failure. Such conditional probabilities

relate to questions of the ”what if?” type and reveal which countries may be most vulnerable

to the failure of a given other country. We condition on a credit event in Greece to illustrate

our general methodology. We pick this case since it has by far the highest market-implied

probability of failure at the end of our sample period. To our knowledge, this is the first

attempt in the literature on evaluating the spill-over effects and conditional probability of
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sovereign failures.

Figure 6 plots the conditional probability of default for nine Euro Area countries if

Greece defaults. We distinguish four cases, i.e., Gaussian dependence, symmetric-t, GHST,

and GHST with zero correlations. The last experiment is included to disentangle the effect

of correlations and tail dependence, see our discussion below equation (1). Regardless of the

parametric specification, Ireland and Portugal seem to be most affected by a Greek failure,

with conditional probabilities of failure of around 30%. Other countries may be perceived

as more ‘ring-fenced’ as of June 2011, with conditional failure probabilities below 20%. The

level and dynamics of the conditional estimates are sensitive to the parametric assumptions.

The conditional pd estimates are highest in the GHST case. The symmetric-t estimates

in turn are higher than those obtained under the Gaussian assumption. The bottom right

panel of Figure 6 demonstrates that even if the correlations are put to zero, the GHST still

shows extreme dependence due to the mixing varialbe ςt in (1). The correlations and mixing

construction thus operate together to capture the dependence in the data.

Figure 7 plots the pairwise correlation estimates for Greece with each of the remaining

nine Euro Area countries. The estimated correlations for the GHST model are higher than

for the other two models in the second half of the sample. This is consistent with the higher

level of conditional pd’s in the GHST case compared to the other distribution assumptions,

as discussed above for Figure 5. Interestingly, the dynamic correlation estimates of Euro

Area countries with Greece increased most sharply in the first half of 2009. These are the

months before the media attention focused on the Greek debt crisis, which was more towards

the end of 2009 up to Spring 2010.

Figure 8 plots the difference between the conditional probability of failure of a given

country given that Greece fails and the respective conditional probability of failure given

that Greece does not fail. We refer to this difference as a spillover component or contagion

effect as the differences relate to the question whether CDS markets perceive any spillovers
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Figure 6: Conditional probabilities of failure given that Greece fails
We plot annual conditional failure probabilities for nine Euro Area countries given a Greek failure. We

distinguish estimates based on a Gaussian dependence structure, symmetric-t, GH skewed-t (GHST), and a

GHST with zero correlations.
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Figure 7: Dynamic correlation of Euro Area countries with Greece
We plot time-varying bivariate correlation pairs for nine Euro Area countries and Greece. The correlation

estimates are obtained from the ten-dimensional multivariate model with a Gaussian, symmetric-t, and GH

skewed-t (GHST) dependence structure, respectively.
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Figure 8: Risk spillover components
We plot the difference between the (simulated) probability of failure of i given that Greece fails and the

probability of failure of i given that Greece does not fail. The underlying distributions are multivariate

Gaussian, symmetric-t, and GH skewed-t (GHST), respectively.
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from a potential Greek default to the likelihood of of other Euro Area countries failing. The

level of estimated spillovers are substantial. For example, the difference in the conditional

probability of a Portuguese failure given that Greece does or does not fail, is about 30%. The

spillover estimates do not appear to be very sensitive to the different parametric assumptions.

In all cases, Portugal and Ireland appear the most vulnerable to a Greek default since around

mid-2010.

The conditional probabilities can be scaled by the time-varying marginal probability of

a Greek failure to obtain pairwise joint failure risks. These joint risks are increasing towards

the end of the sample and are higher in 2011 than in the second half of 2009. Annual joint

probabilities for nine countries are plotted in Figure 9. For example, the risk of a joint failure

over a one year horizon of both Portugal and Greece, as implied by CDS markets, is about
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Figure 9: Joint default risk with Greece
We plot the time-varying probability of two simultaneous credit events in Greece and a given other Euro

Area country. The estimates are obtained from a multivariate model based on a Gaussian, symmetric-t, and

GH skewed-t (GHST) density, respectively.
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16% at the end of our sample.

4.5 Event study: the 09 May 2010 rescue package and risk depen-
dence

During a weekend meeting on 08-09 May, 2010, Euro Area heads of state ratified a compre-

hensive rescue package to mitigate sovereign risk conditions and perceived risk contagion in

the Eurozone. This section analyses the impact of the resulting simultaneous announcement

of the European Financial Stability Facility (EFSF) and the ECB’s Securities Markets Pro-

gram (SMP) on Euro Area joint risk and conditional risk as implied by our empirical model.

We do so by comparing CDS-implied risk conditions closely before and after the 9th May

2010 announcement.

The agreed upon rescue fund, the European Financial Stability Facility (EFSF), is a
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limited liability company with an objective to preserve financial stability of the Euro Area by

providing temporary financial assistance to Euro Area member states in economic difficulties.

Initially committed funds were 440bn Euro (which were increased to 780bn Euro in June

2011). The announcement made clear that EFSF funds can be combined with funds raised

by the European Commission of up to 60bn Euro, and funds from the International Monetary

Fund of up to 250bn Euro, for a total safety net up to 750bn Euro.

A second key component of the 09 May 2010 package consisted of the ECB’s government

bond buying program, the SMP. Specifically, the ECB announced that it would start to

intervene in secondary government bond markets to ensure depth and liquidity in those

market segments that are qualified as being dysfunctional. These purchases were meant

to restore an appropriate transmission of monetary policy actions targeted towards price

stability in the medium term. The SMP interventions were almost always sterilized through

additional liquidity-absorbing operations.

The joint impact of the 09 May 2010 announcement of the EFSF and SMP as well as of

the initial bond purchases on joint risk estimates can be seen in the top panel of Figure 5.

The figure suggests that the probability of two or more credit events in our sample of ten

countries decreases from about 12% to approximately 6% before and after the 09 May 2010

announcement. Figure 1 and 4 indicate that marginal risks decreased considerably as well.

The graphs also suggest that these decreases were temporary. The average correlation plots

in Figure 3 do not suggest a wide-spread and prolonged decrease in dependence. Instead,

there seems to be an up-tick in average correlations. Overall, the evidence so far suggest that

the announcement of the policy measures and initial bond purchases may have substantially

lowered joint risks, but not necessarily through a decrease in joint dependence.

To further investigate the impact on joint and conditional sovereign risk from actions

communicated on 09 May 2010 and implemented shortly afterwards, Table 3 reports model-

based estimates of joint and conditional risk. We report our risk estimates for two dates,
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Thursday 06 May 2010 and Tuesday 11 May 2011, i.e., two days before and after the an-

nounced change in policy. The top panel of Table 3 confirms that the joint probability of a

credit event in, say, both Portugal and Greece, or Ireland and Greece, declines from 7.3% to

3.1% and 4.8% to 2.6%, respectively. These are large decreases in joint risk. For any country

in the sample, the probability of that country failing simultaneously with Greece or Portugal

over a one year horizon is substantially lower after the 09 May 2010 policy announcement

than before.

The bottom panel of Table 3, however, indicates that the decrease in joint risk is generally

not due to a decline in failure dependence, ‘interconnectedness’, or ‘contagion’. Instead, the

conditional probabilities of a credit event in for example Greece or Ireland given a credit

event in Portugal increases from 78% to 84% and from 43% to 49%, respectively. Similarly,

the conditional probability of a credit event in Belgium or Ireland given a credit event in

Greece increases from 10% to 15% and from 24% to 25%, respectively.

As a bottom line, based on the initial impact of the two policy measures on CDS risk

pricing, our analysis suggests that the two policies may have been perceived to be less of a

‘firewall’ or ‘ringfence’ measure, i.e., intended to lower the impact and spread of an adverse

development should it actually occur. Markets perceived the measures much more as a means

to affect the probability of individual adverse outcomes downwards, but without decreasing

dependence.

5 Conclusion

We proposed a novel empirical framework to assess the likelihood of joint and conditional

failure for Euro Area sovereigns. Our methodology is novel in that our joint risk measures are

derived from a multivariate framework based on a dynamic Generalized Hyperbolic skewed-t

(GHST) density that naturally accommodates skewed and heavy-tailed changes in marginal

risks as well as time variation in volatility and multivariate dependence. When applying the
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Table 3: Joint and conditional failure probabilities
The top and bottom panels report model-implied joint and conditional probabilities of a credit event for a

subset of countries, respectively. For the conditional probabilities Pr(i failing | j failed), the conditioning

events j are in the columns (PT, GR, DE), while the events i are in the rows (AT, BE, . . . , PT). Avg

contains the averages for each column.

Joint risk, Pr(i and j failing)

Thu 06 May 2010 Tue 11 May 2010

PT GR DE PT GR DE

AT 1.54% 1.64% 0.86% 0.92% 1.04% 0.58%

BE 1.84% 1.97% 0.90% 1.34% 1.57% 0.65%

DE 1.43% 1.45% 0.83% 1.01%

ES 4.67% 5.01% 1.22% 1.91% 2.41% 0.71%

FR 1.45% 1.44% 0.89% 1.06% 1.22% 0.67%

GR 7.28% 1.45% 3.06% 1.01%

IR 4.00% 4.75% 1.16% 1.79% 2.57% 0.77%

IT 4.06% 4.34% 1.23% 1.89% 2.29% 0.72%

NL 1.29% 1.29% 0.72% 0.92% 1.10% 0.65%

PT 7.28% 1.43% 3.06% 0.83%

Avg 3.06% 3.24% 1.10% 1.52% 1.81% 0.73%

Conditional risk, Pr(i failing | j failed)

Thu 06 May 2010 Tue 11 May 2010

PT GR DE PT GR DE

AT 17% 8% 56% 25% 10% 49%

BE 20% 10% 58% 37% 15% 55%

DE 15% 7% 23% 10%

ES 50% 25% 79% 52% 23% 60%

FR 16% 7% 58% 29% 12% 56%

GR 78% 94% 84% 85%

IR 43% 24% 75% 49% 25% 65%

IT 44% 22% 80% 52% 22% 61%

NL 14% 7% 47% 25% 11% 55%

PT 37% 93% 30% 70%

Avg 33% 16% 71% 42% 17% 62%
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model to Euro Area sovereign CDS data from January 2008 to June 2011, we find significant

time variation in risk dependence, as well as considerable spillover effects in the likelihood of

sovereign failures. We also documented how parametric assumptions, including assumptions

about higher order moments, matter for joint and conditional risk assessments. Using the 09

May 2010 new policy measures of the European heads of state, we illustrated how the model

contributes to our understanding of market perceptions about specific policy measures.
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A Appendix: the dynamic GH skewed-t (GHST) model

The generalized autoregressive score model for the GH skewed-t (GHST) density (5) adjusts

the time-varying parameter ft at every step using the scaled score of the density at time t.

This can be regarded as a steepest ascent improvement of the parameter using the local (at

time t) likelihood fit of the model. Under the correct specification of the model, the scores

form a martingale difference sequence.

We partition ft as ft = (f v
t , f

c
t ) for the (diagonal) matrix D2

t = D(f v
t )

2 of variances

and correlation matrix Rt = R(f c
t ), respectively, where Σt = DtRtDt = Σ(ft). We set

f v
t = ln(diag(D2

t )), which ensures that variances are always positive, irrespective of the

value of f v
t . For the correlation matrix, we use the hypersphere transformation also used

in Zhang et al. (2011). This ensures that Rt is always a correlation matrix, i.e., positive

semi-definite with ones on the diagonal. We set Rt = R(f c
t ) = XtX

′
t, with f c

t as a vector

containing n(n− 1)/2 time-varying angles ϕijt ∈ [0, π] for i > j, and

Xt =



1 c12t c13t · · · c1nt

0 s12t c23ts13t · · · c2nts1nt

0 0 s23ts13t · · · c3nts2nts1nt

0 0 0 · · · c4nts3nts2nts1nt

...
...

...
. . .

...

0 0 0 · · · cn−1,nt

∏n−2
ℓ=1 sℓnt

0 0 0 · · ·
∏n−1

ℓ=1 sℓnt



, (A1)

where cijt = cos(ϕijt) and sijt = sin(ϕijt). The dimension of f c
t thus equals the number of

correlation pairs.

As implied by equation (13), we take the derivative of the log-density with respect to ft,
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and obtain

∇t =
∂vech(Σt)

′

∂ft

∂vech(Lt)
′

∂vech(Σt)

∂vec(L̃t)
′

∂vech(Lt)

∂ ln pGH(yt|ft)
∂vec(L̃t)

(A2)

= Ψ′
tH

′
t

(
wt(yt ⊗ yt)− vec(Σ̃t)− (1− ν

ν − 2
wt)(yt ⊗ L̃tγ)

)
(A3)

= Ψ′
tH

′
tvec

(
wtyty

′
t − Σ̃t − (1− ν

ν − 2
wt)L̃tγy

′
t

)
, (A4)

Ψt = ∂vech(Σt)/∂f
′
t , (A5)

Ht = (Σ̃−1
t ⊗ Σ̃−1

t )(L̃t ⊗ I)
(
(T ′ ⊗ In)D0

n

) (
Bn (In2 + Cn) (Lt ⊗ In)D0

n

)−1
, (A6)

wt =
ν + n

2 · d(yt)
−

k′
(ν+n)/2

(√
d(yt) · γ′γ

)
√
d(yt)/γ′γ

, (A7)

where k′
a(b) = ∂ lnKa(b)/∂b is the derivative of the log modified Bessel function of the second

kind, D0
n is the the duplication matrix vec(L) = D0

nvech(L) for a lower triangular matrix

L, Dn is the standard duplication matrix for a symmetric matrix S vec(S) = Dnvech(S),

Bn = (D′
nDn)

−1D′
n, and Cn is the commutation matrix, vec(S ′) = Cnvec(S) for an arbitrary

matrix S. For completeness, we mention that L̃t = LtT , Σ̃t = L̃tL̃
′
t, and

(T ′T )−1 =
ν

ν − 2
I +

2ν2

(ν − 2)2(ν − 4)
γγ′.

To scale the score ∇t, Creal, Koopman, and Lucas (2012) propose the use of powers of

the inverse information matrix. The information matrix for the GHST distribution, how-

ever, does not have a tractable form. Therefore, we scale by the information matrix of the

symmetric Student’s t distribution,

St =
{
Ψ′(I⊗ L̃−1

t )′[gG− vec(I)vec(I)′](I⊗ L̃−1
t )Ψ

}−1

, (A8)

where g = (ν + n)(ν + 2 + n), and G = E[xtx
′
t ⊗ xtx

′
t] for xt ∼ N(0, In). Zhang et al. (2011)

demonstrate that this results in a stable model that outperforms alternatives such as the

DCC if the data is fat-tailed and skewed.

Using the dynamic GH model for the individual CDS series, we first estimate the pa-

rameters for the f v
t process. Apply the equations (A4) to (A7) in the univariate setting, we
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compute the f v
t s and use them to filter the data. The time varying factor for country i’s

volatility follows

f v
i,t+1 = (1− avi − bvi )ω

v
i + avi s

v
i,t + bvf v

i,t, (A9)

with avi and bvi scalar parameters corresponding to the ith series.

Next, we estimate the parameters for the f c
t process using the filtered data. Assuming

the variances are constant (Dt = In), the covariance matrix Σt is equivalent to Rt. The

matrix Ψt should only contain the derivative with respect to Rt. The dynamic model can be

estimated directly as explained above. For parsimony, we follow a similar parameterization

of the dynamic evolution of f c
t as in the DCC model and assume

f c
t+1 = (1− Ac −Bc)ωc + Acsct +Bcf c

t , (A10)

where Ac, Bc ∈ R are scalars, and ωc is an n(n − 1)/2 vector. To reduce the number of

parameters in the maximization, we obtain ωc from transformed correlation matrix. All

parameters are estimated by maximum likelihood. Inference is carried out by taking the

negative inverse Hessian of the log likelihood at the optimum as the covariance matrix for

the estimator.
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