
The amount of time required to sell a house is one of the
more actively studied topics in real estate economics. The
time to sale is inextricably linked to the pricing of real es-
tate assets; thus, its importance to individual members of
the economy cannot be overemphasized. 

Researchers have few good theories about what should
govern the time to sale. In most models of asset prices, time
to sale is exactly zero. This is a consequence of the mar-
ket-clearing condition that is often required to pin down
equilibrium. But any model where the market clears must
abstract from frictions, and frictions in the real estate mar-
ket are so notoriously severe that they cannot be ignored.
For example, unlike participants in financial securities mar-
kets, sellers of houses typically know much more about the
asset for sale than prospective buyers know. In addition,
buyers generally do not reveal how much they are willing
to pay for a given house. Furthermore, each buyer in the
market may be different, both in terms of financial means
and tastes for the real estate good. And, most importantly,
the real estate market is decentralized; buyers and sellers
who want to trade must undergo a (sometimes costly) search
process in order to complete a transaction. 

In this paper I discuss some of the theoretical issues in-
volved with modeling the time to sale of real estate assets.
The key question I will address is why marketing periods
for houses fluctuate so much over time (see Figure 1). It is
not surprising that house values fluctuate over time and over
different states of nature. Variation in interest rates and em-
ployment opportunities should cause variation in the value
of the housing service flows provided by homeownership.
But most economic theory predicts that fluctuations in fun-
damentals should be immediately reflected in prices. That
is, if the value of a house changes by a certain amount, the
price of the house should change by the same amount. The
real estate market does not appear to work this way. Rather,
when house values decline, sellers are slow to drop their
prices. Thus, marketing times increase and the volume of
sales declines. These are all features of a cold real estate
market. The hot market has just the opposite characteris-
tics. Real estate prices are typically rising during hot mar-
kets. However, prices do not appear to rise fast enough, as
suggested by the fact that houses are quickly snapped up
after they are brought to market. 
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Residential real estate markets often go through “hot” and
“cold” periods. A hot market is one where prices are ris-
ing, liquidity is good in that average selling times are short,
and the volume of transactions is higher than the norm.
Cold markets have just the opposite characteristics—prices
are falling, liquidity is poor, and volume is low. In this pa-
per I provide a theory to match these observed correlations.
I show how liquidity depends on the value of the housing
service flow, which in turn reflects the aggregate state of
the economy. I use data from the San Francisco Bay Area
to investigate the relationship between marketing times and
state variables such as the interest rate and job growth. 
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The model developed in this paper is similar in structure
to search models developed for real estate markets by
Arnott (1989), Wheaton (1990), and Williams (1995). Stein
(1995) also studies hot and cold real estate markets, but
from a very different perspective. In Stein’s model, cold
markets arise from credit market frictions. Whereas in this
paper, hot and cold markets arise from search frictions and
asymmetric information. 

The paper is organized as follows. In the first section, I
outline a theory of real estate prices and liquidity that cap-
tures the hot and cold markets phenomenon. The model
used here is a search-theoretic model where prices and liq-
uidity are derived from the maximizing behavior of both
buyers and sellers. Agents who live in houses consume hous-
ing services or housing dividends. Trade in houses takes
place because individuals are vulnerable to idiosyncratic
shocks that sever the match with their house. This might
happen because of a change in household size or a job trans-
fer. When an agent loses his match, he moves out immedi-
ately and puts the old house up for sale. As a seller, the agent
prices the house so as to maximize the expected value of
having the house on the market. At the same time, the agent
is temporarily homeless and must search for a new house
to live in. As a potential buyer, the agent searches until he

finds a house that offers him enough utility net of price to
warrant leaving the market. Since both buyers and sellers
are optimizing, price and liquidity are determined endoge-
nously. When the per period housing service flow is allowed
to vary, liquidity also varies so as to match the observed cor-
relations between prices, liquidity, and sales volume. 

In Section II, I use data from the San Francisco Bay Area
housing market to investigate the determinants of time on
the market. In this empirical exercise, the intent is not to
test hypotheses or even to select between different models
of the real estate transaction. Rather, the exercise is a re-
duced form investigation into the relationship between
time on the market and certain economic variables and
asks whether these relationships are consistent with the
theory developed in Section I. 

I. THEORETICAL MODELS OF TIME
ON THE MARKET

The basic structure of a search model is a setting where a
large number of agents engage in bilateral trade. The cen-
tral assumption is that agents do not gather in a single mar-
ket place where they view all assets for sale. Rather, agents
form expectations about the kinds of transactions that are
feasible in the economy and then meet potential trading part-
ners sequentially. The challenge is to characterize agents’
decision rules in this environment. For example, based on
the expectations a seller might have of how much buyers
are willing to pay for a house, the seller must decide when
to accept a bid and when to reject it. The fundamental trade-
off for a seller, then, is to weigh the benefits of further search-
ing against the costs of delaying the sale. The benefits of
continued searching are obvious: a buyer may arrive who
attaches greater value to the house. The delay associated
with continued search can be costly because (a) the agent
delays consumption and (b) once the agent rejects an offer,
it is uncertain when, if ever, the next “good” offer will arrive.

A One-sided Search Problem 

A simple example may help illuminate the basic structure
of the search model.1 Suppose that an agent with a house
for sale receives bids on the house one at a time. The agent
believes that house prices are drawn from the continuous
distribution F and that draws from the distribution of prices
(i.e., offers) are i.i.d. For simplicity, assume that once the
agent has sold his house, he takes the cash from sale and
exits the economy. 

1. This section borrows from Lippman and McCall (1986) and Sargent
(1987).

FIGURE 1
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SOURCE: East Bay Regional Data
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The lifetime expected utility of a seller with offer price
p in hand can be expressed recursively by 

(1)

Lifetime expected utility is either the price p the seller re-
ceives from an immediate sale or it is the discounted ex-
pected utility of putting the house up for sale next period
—whichever is greater. The parameter β is the seller’s dis-
count factor. 

Equation (1) is an example of a Bellman’s equation. Note
that v is increasing in p and that the quantity β∫0

∞
v(y)dF(y)

is a constant. It follows that there exists a price p*, called
the reservation price, such that 

(2) .

The optimal decision rule in this problem is for sellers to
accept all offers at least as high as p* and to reject all of-
fers below p*. 

This search model is flexible. It should be apparent that
it is possible to set up the problem from either the buyer’s
or the seller’s perspective. The important point to notice,
however, is that the model implies that time on the market
depends solely on F, the distribution of the bid arrival proc-
ess. It is legitimate to ask where the seller’s beliefs about
F actually come from. If buyers were to realize that sellers
accepted all offers above p*, then no buyer would ever offer
more than p*. This type of equilibrium quickly collapses
when parties on both sides of the transaction are allowed
to behave optimally. 

A Two-sided Search Problem 

A more natural way to model trade in housing markets is
to view both buyers and sellers as searchers. Towards this
end, I will sketch the outline of a two-sided search model.2

Suppose that houses, like any asset, have value because they
produce a flow of services and assume that this service
flow accrues to the homeowner each period for as long as
the owner lives there. If the owner leaves the house, then the
house ceases to yield a service flow and the owner proceeds
to sell the house and look for a new house himself. Thus,
when an agent leaves the house, the decisionmaking prob-
lem is to specify a pricing rule for the old house and a search
strategy that will be utility maximizing. To make the prob-
lem interesting, assume that not all agents have the same
preferences for houses that they visit. Differences in hous-
ing tastes imply that the search process may take time. 

p* = β v(y)dF(y)
0

∞

∫

v( p) = max p,β v(y)dF(y)
0

∞

∫[ ] .

Proceeding more formally, assume there are a large num-
ber of risk-neutral agents in an economy where the traded
goods consist of a consumption good and houses. The con-
sumption good serves as the numeraire. There is no new
construction and no depreciation of the existing housing
stock. An agent who owns and lives in a house enjoys a per
period housing service flow, ε, that is constant for as long
as an agent stays in the house. When an agent vacates a house
and searches for a new one, she draws a new ε from the
uniform distribution F on the interval [0,1].3 Draws from
this distribution by potential buyers are independent. 

Trade in houses occurs because agents lose their “match”
with their houses. This happens for purely exogenous rea-
sons (e.g., the arrival of children, the departure of chil-
dren), and occurs with probability 1 – π each period. For
the moment, this is the only kind of uncertainty in the model.
Once a homeowner loses the match, the house ceases to pro-
vide a service flow to its owner, and the owner puts it on
the market, attempting to sell it for as much as possible. 

Each period, a potential buyer visits the empty house.
At this time, she draws from F and determines how much
she likes the house. The seller sets a take-it-or-leave-it
price before he learns anything about the buyer.4 It is as-
sumed that buyers face no financial constraints. If the buyer
chooses to buy, she pays the asking price immediately and
starts to receive housing services at the beginning of the next
period. Thus, houses are priced ex-dividend, as is the con-
vention in the asset pricing literature. If the buyer chooses
not to buy, she does not consume any housing services in
that period and searches again in the next. 

Figure 2 contains a schematic of the timing of events for
a buyer and seller pair of agents. The agents meet at the
beginning of the period. All cash flows and consumption
takes place at this time. Upon visiting the house, the buyer
observes the idiosyncratic dividend ε yielded by this par-
ticular house and the listing price. If the buyer chooses to
buy, then she pays the seller the cash price immediately.
The house begins to yield dividends to its new occupant in
the beginning of the next period. If the buyer chooses not
to buy the house, then the house lies empty and the buyer
is homeless for the period. The seller relists the house and
the buyer visits a different house in the following period. 

The steady state equilibrium in this economy consists of
utility maximizing decision rules for both buyers and sell-
ers. Let q be the expected value of having a house on the
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2. This model and its properties are developed in Krainer and LeRoy
(1998).

3. From here on sellers of houses will be male and buyers female. 

4. Real world housing transactions, of course, are accompanied by hard
bargaining. Take-it-or-leave-it pricing should be viewed as a Nash bar-
gaining game where the seller has all the bargaining power.
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market and let µ(p) be the probability that a house will sell
when the list price is p. The seller chooses a price to solve 

(3)

With probability µ the seller receives the asking price for
the house. Otherwise the seller puts the house back on the
market and tries to sell it again in the next period. The pa-
rameter β is a discount factor. 

The first order condition that yields the optimal price p is 

(4)

The retail price of housing, p, and the expected value of
having a house on the market (or the wholesale price of hous-
ing), q, are determined in equations (3)–(4) in terms of µ,
the probability of sale function. This is the key point of de-
parture between one-sided search models where µ is taken
exogenously and the two-sided models where µ is derived
endogenously. 

We now describe the optimal behavior of a buyer. We start
first with an agent who currently has match ε and is sched-
uled to consume the housing service flow at the beginning
of the next period. Define v(ε) to be the lifetime expected
utility of owning a house yielding service flow ε, 

(5) v(ε) = β(ε + πv(ε) + (1 – π)(q + s)) . 

dµ
dp

( p − βq) + µ( p) = 0 .

q = max
p̃

µ( p̃) p̃ + (1− µ( p̃))βq{ } .

The agent will consume next period’s housing service
flow with certainty. With probability π the match will per-
sist for another period and the homeowner will continue to
consume ε. The match will fail next period with probabil-
ity 1 – π. In this case, the agent must put the house on the
market and begin to search again. The house selling process,
as we saw above, yields q in expected value. The agent is
also free to search for a new house at this point. The value
of this recovered search option is denoted by s. Note that
this is the value of a house to a particular agent. The value
of a house to an owner depends solely on the service flow
ε and is very different from the price.

If we consider a buyer who is contemplating buying a
house with service flow ε for price p, then the optimal strat-
egy is to buy if the expected value of the house net of price
is greater than the option to search again next period. That is,

(6) v(ε) – p ≥ βs .

This problem has the same form as the seller’s problem
in the one-sided search model above. Since v is strictly in-
creasing in ε and βs is constant, there exists an ε* such that
a searching agent is indifferent between buying a house for
the quoted price p and searching again next period. That
is, there exists an ε* such that 

(7) v(ε*) – p = βs .

The service flow ε* is the reservation service flow, and plays
the same role in the search process as the reservation price
discussed above. 

A searching agent continues searching if she draws ε <
ε* and buys if she draws ε ≥ ε*. Therefore, we can write
the expected value of search as 

(8)

In order to close the model we note that the probability
of sale is simply the probability of drawing ε ≥ ε*, or µ =
1 – F(ε*), or 

(9) µ = 1 – ε* , 

when F is the uniform distribution on [0,1]. 
Equilibrium is a price of housing p, an expectation of

the value of a house on the market q, an expectation of the
outcome from the search process s, a reservation service
flow ε*, and a belief about the probability that a buyer will
purchase a house µ when the price is p. All these variables
must satisfy equations (3), (4), (7), (8), and (9). The equi-
librium is a Nash equilibrium: the actions of both sellers
and buyers are best responses to each other. Standard fixed-
point arguments can be used to prove the existence of equi-
librium. The nonlinear nature of the system of equations

s = F(ε*)βs + (1− F(ε*)) v(ε)dF(ε) − p
ε*

1

∫( ) .

FIGURE 2

DECISIONMAKING BETWEEN SELLER/BUYER PAIR

Buyer visits house
Buyer observes ε.

Seller quotes
price p.

If Accept
Seller receives p.

Buyer receives dividend ε in
following period.

If Reject
Seller relists in following

period. Buyer visits different
house in following period.

Buyer accepts or
rejects the house

at price p.
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makes it difficult to solve the system analytically, but it is
routine to solve for the equilibrium numerically. 

The primary object of interest in this model is the time
a house is on the market. Given the per period probability
of sale, µ, it is straightforward to derive the expected time
on the market, 

(10)

The immediate observation is that TOM is an expected
remaining duration. This expectation is a constant. It does
not depend on the time a house already has spent on the
market. This lack of time dependence is a consequence of
the choice to abstract from all financing constraints. Sell-
ers in this model are never forced to drop their prices and
sell so as to finance a downpayment on another house. 

Also, since there is no aggregate risk in the model, note
that there can be no state dependence in TOM. But aggre-
gate risk can easily be incorporated in the model by redefin-
ing the housing service flow to consist of an idiosyncratic
component ε and an aggregate component x,

(11) d = ε + x . 

The idiosyncratic component ε has the same interpreta-
tion as before. The variable x is aggregate in that all agents
who live in houses receive exactly the same x. We assume
that x is a stochastic process that can take on one of two
values, a high value xH and a low value xL . Assume that x
is a first-order Markov process with transition probability
1 – λ . Thus, 

(12) Pr(x′ = xkx = xk) = λ for k = L, H . 

I adopt this specification because prices of individual
houses tend to move together with those in the same neigh-
borhood, city, or even within a broader geographical region.
Since it is unlikely that idiosyncratic tastes vary much over
time, it makes sense to model this covariation by assuming
a common component in all housing service flows. The vari-
able x is meant to reflect the aggregate state of the econ-
omy. A more concrete interpretation of x could include
amenity levels such as school quality or the level of crime
in the area.5 It is also possible to interpret x as a location-
specific component in the housing service process that re-
flects the value of land. Under this interpretation, shocks
to the productivity of the land or to job growth filter their
way into house prices through x.

By adding a random variable x to the housing service
flow, the equations above that define equilibrium are ad-
justed to become functions of x. Figures 3 and 4 show simu-
lated values of the pricing function p(x) and the probability

TOM = 1− µ
µ

.

of sale function µ(x) for different values of π. Note that for
all values of π, p(xH) > p(xL) and µ(xH) > µ(xL). Evidently,
good liquidity corresponds to periods when the value of
the housing service flow is high and prices are high. Since
houses are more likely to sell during these periods, on av-
erage, more houses do sell and the volume of sales is greater
in this state than in the low state. Thus, the model is able
to match the observed correlations between liquidity, prices,
and volume. Krainer (1999) argues that this is a natural out-
come in markets where asset values fluctuate and agents
must search for trading partners. When x is high and the
value of housing is correspondingly high, sellers raise their
prices, but not so high as to choke liquidity. In this kind of
environment, sellers demand liquidity because if they fail
to sell, they risk the possibility that the state of the econ-
omy changes and that they will be forced to sell on less ad-
vantageous terms. Likewise, in cold markets when x is low,
sellers do not demand liquidity. That is, they do not drop
their prices to maintain liquidity. Rather, it is optimal to keep
prices high. Failure to sell in a cold market is not costly if
sellers expect the state of the economy to improve. Thus,
it is optimal for sellers to follow the old dictum and wait
out a cold real estate market. 

The modeling assumption that drives these results is the
inability of sellers to hedge changes in the opportunity cost
of failing to sell their houses. As stated above, pricing a5. See Gabriel, Mattey, and Wascher (1996).

FIGURE 3

PRICING FUNCTION
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house high in a hot market is risky because the state vari-
ables of the economy are stochastic. Sellers are anxious to
sell quickly in hot markets because they do not want to be
caught with an empty house during a cold market. If sell-
ers are allowed to rent out empty houses at a price that is
perfectly correlated with the value of the housing service
flow, then fluctuations in liquidity completely disappear and
real estate prices incorporate all changes in real estate values.
That is, expected returns for the marginal buyer are con-
stant. The fact that moral hazard discourages many home-
owners from renting out their empty houses suggests that
fluctuating liquidity is a natural feature of owner-occupied
real estate markets. 

II. EMPIRICAL STRATEGIES FOR STUDYING
TIME ON THE MARKET

The model developed above is overly simplistic for the sake
of tractability. There are two parameters in the model: 1 – π,
the per period probability of moving, and 1– λ, the per pe-
riod probability that the state variable x changes value. The
model places no restrictions on these probabilities except
that they lie between zero and one. The chief result of the
model is the joint derivation of a probability of sale func-
tion µ(x) and a pricing function p(x) that implies that house
prices, liquidity, and transaction volume be positively cor-
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related, as in fact they are in the data. As far as causation,
the model is silent and simply assumes that the evolution
of the state variable x drives the economy. The remainder of
this paper is devoted to searching for candidate x variables
and assessing their ability to “explain” time on the market
in a reduced form setting. 

The most prevalent technique for studying durations of
any kind is the use of hazard models.6 The hazard function
specifies the time t probability of an event occurring at time
T, given that the event has not yet occurred. Formally, the
hazard function is defined as 

(13)

As in the theoretical section, x is a vector of covariates that
influence the hazard function.7

The probability of selling a house in a given period is anal-
ogous to the per period hazard rate. All predictions about
how the probability of sale varies with time and with other
variables are really predictions about the shape of the haz-
ard function. In the model presented in this paper, the prob-
ability of sale is independent of how long the house has been
on the market, implying that the hazard function is a con-
stant function of time. The model predicts that the proba-
bility of sale depends on the aggregate state of the economy.
Thus, one should detect a statistically significant relation-
ship between the marketing times and variables such as em-
ployment growth and interest rates. 

The first specification of the hazard function that I con-
sider is the exponential hazard given by 

(14) θ(t; x) = γexp(x′ξ) .

Here, x is a vector of covariates and ξ a vector of parame-
ters. The parameter γ is the underlying hazard rate, or the
baseline hazard, which results when all covariates take on
zero value. Note that the exponential hazard function, like
the probability of sale function developed above, does not
depend on time.

Since the constant hazard model is likely to be too con-
straining for empirical work, I also consider a generaliza-
tion of the exponential hazard, the Weibull hazard function,
given by

(15) θ(t; x) = γα(γt)α−1exp(x′ξ) .

θ(t;x) = lim
dt→0

Pr(t ≤ T < t + dt t ≤ T, x)
dt

.

6. See Kalbfleisch and Prentice (1980) and Lancaster (1990) for exten-
sive discussion of hazard model estimation. 

7. It also is possible to make the covariates functions of time. This spec-
ification is useful for problems such as modeling the time to mortgage
prepayment, where the time path of interest rates influences the decision.
In this study, average times to sale are sufficiently short (two months),
so I have elected not to incorporate time-varying covariates.
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The Weibull model is characterized by a scale parame-
ter α, which, together with time t, determines the slope of
the hazard function. If α > 1 then the hazard is increasing,
meaning that houses that have already been on the market
a long time are more likely to sell. Increasing hazards
might be observed if sellers lowered their asking prices af-
ter a long duration on the market. The opposite situation
obtains if α < 1. A decreasing hazard might result from
buyers inferring that houses with long marketing times are
lemons. The Weibull hazard reduces to the exponential haz-
ard in the special case of α = 1. 

The third specification that I consider, the Cox model,
is semiparametric in nature. Suppose that the hazard func-
tion for a particular house i takes the form 

(16) θi(t; x) = θ0(t)exp(x′ξ) .

Here, θ0(t) is the baseline hazard. Given another house j,
the hazard ratio takes the form 

(17)

where ∆x is the difference between the covariates associ-
ated with the two houses. The Cox model is semiparamet-
ric because estimation of ξ does not require one to specify
the functional form of the underlying hazard θ0(t). 

All three specifications are examples of proportional
hazard models. This model class is particularly useful be-
cause it enables researchers to compute easily how the haz-
ard rate of otherwise identical houses varies with changes
in one of the covariates. For example, in the Cox model, if
xl is the mortgage interest rate (in percentage terms), then
exp(ξl) is the relative likelihood that the same house will
sell when the interest rate is one percentage point higher. 

Data and Results

The data are from East Bay Regional Data (EBRD), a mul-
tiple listings service that covers Alameda County, Contra
Costa County, and parts of Solano County. EBRD collects
these data for, among other purposes, calculating the me-
dian house price in a given market, tracking the volume of
sales, and providing member realtors with data to price
houses using comparables. The data range from winter 1992
to spring 1998. This sample period corresponds to nearly
one complete real estate cycle for the Bay Area. 

I use data from six adjacent East Bay municipalities:
Alameda, Albany, Berkeley, Emeryville, Oakland, and
Piedmont. The raw dataset contains 29,305 observations.
Of this total, 14,303 (49 percent) of the listings culminated
in sales. The remaining listings were either allowed to ex-
pire or were withdrawn by the seller. In cases of withdrawals
and expirations, the observation is treated as right-censored

θi (t;x)
θ j (t;x)

= exp(∆ ′x ξ) ,

at the termination date. There are many instances where an
owner lists a house, withdraws it, and then relists the house
later.8 In this case, I treat the first listing as a censored ob-
servation and calculate time on the market to be the time
elapsed between the second (or final) listing and the sale. 

Each observation in the dataset includes the original list
price, the final sale price, as well as property-specific infor-
mation such as the address, the type of structure (single-
family detached or condominium) the number of baths, the
number of bedrooms, square footage, age, and whether or
not the property is covered by a homeowner’s association.
The dataset also includes the dates of original listing, the
pending date or the date escrow is opened, and the closing
date. For this study, time on the market corresponds to a
marketing time. Thus, time on the market is calculated as
the time elapsed between the original listing and the pend-
ing date. Summary statistics of the variables are set forth
in Table 1. 

The theory presented here suggests that time on the mar-
ket depends on the aggregate state of the economy. In prac-
tice, the relevant set of state variables will include local
economic variables and financial market variables. Home-
buyers require a downpayment in order to purchase a house.
Accordingly, variables that contribute to household wealth,
such as the growth in personal income and the growth in
employment, are candidates for covariates. Of these two
variables, housing economists traditionally concentrate on
the growth in local employment, because job creation not
only adds to household wealth, but also stimulates housing
demand due to the migration of households into the mar-
ket to fill the newly created jobs. Growth in employment also
may reflect an increase in local productivity, which should
affect house prices if land is a part of the production func-
tion. The job growth data are provided by the Bureau of La-
bor Statistics.9 As can be seen in Figure 5, Bay Area job
growth has risen steadily over the course of the sample pe-
riod. Leading into the hot market, local job growth was dra-
matic, eclipsing the national average. 

Financial market variables also will affect the housing
market because most people finance their housing pur-
chases. Thus, the level and expectations about future mort-
gage interest rates will be important in the housebuying
decision. The mortgage interest rate data used in this study
are taken from Freddie Mac’s (Federal Home Loan Mortgage
Corporation) primary mortgage market survey. Figure 6
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8. The second list price is usually, but not always, lower than the first.
Anecdotally, realtors report that sellers who withdraw a house often-
times perform mild renovations before relisting, such as painting the in-
terior or improving the landscaping.

9. The Bay Area reporting region consists of San Francisco, Oakland,
San Jose, Santa Rosa, and Vallejo-Fairfield-Napa MSAs. 
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TABLE 1

SUMMARY STATISTICS

SAMPLE CHARACTERISTICS OF HOUSES SOLD, 1992–1998

VARIABLE MEAN STANDARD DEVIATION MINIMUM MAXIMUM

Bedrooms 2.70 0.94 1 9

Bathrooms 1.61 0.73 1 7

Square feet 1,575 744 420 11,067

Age 58 31 0 99

List price 244,354 171,287 14,900 3,950,000

Sold price 237,340 165,244 10,000 3,300,000

Time on market 68 78 1 816

Condominium 0.144

List in summer 0.268

Observations 14,303

FIGURE 5

ANNUAL JOB GROWTH

SOURCE: Bureau of Labor Statistics
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plots the benchmark mortgage rate plus an adjustment for
points charged. I have assumed that one point is worth ten
basis points. I use this composite measure rather than each
variable separately because there appears to have been a
break in the points series during the winter of 1997—pre-
cisely the time when the Bay Area real estate market was
heating up. 

Ignored in the analysis up to this point is the notion that
the real estate market is highly segmented by type and qual-
ity of the housing unit. Most realtors will testify that high
priced houses and houses with unusual configurations have
a longer waiting time on the market—allegedly because
the demand is much thinner in these submarkets. No such
segmentation exists in the theoretical model. However, it
is possible to recast the degree of heterogeneity in housing
characteristics either as a statement about the distribution
of the housing service flow ε or as a statement about the
waiting time until a potential buyer visits the house for
sale. That is, it is possible to assume that potential buyers
for a certain type of house arrive every n > 1 periods in-
stead of every period. Either way, in equilibrium, thinning
out the market should cause the expected time on the mar-
ket to increase. 

Empirically, we can study how time on the market de-
pends on features of the house in question by constructing
an index that measures the degree to which a house is un-
usual. Following Haurin (1988), this index takes the form 

(18)

In this specification a house i is defined by j different char-
acteristics. The atypicality of house i is measured by the
sum of the absolute deviations of the house’s characteris-
tics from the sample means of the characteristics. These
deviations, in turn, are weighted by the shadow prices of the
house characteristics, ϕj . I assume that the shadow prices
can be estimated from the hedonic pricing function 

(19)

The results from the hedonic regression are in Table 2.
The price and house characteristic variables are in logs. I
also included dummy variables for the year and season of
listing. 

The good fit and statistical significance of the explana-
tory variables in the table are typical of hedonic regressions.
On the whole, the signs of the regression coefficients are
not surprising. For example, houses with more square foot-
age and more bathrooms command higher prices. The co-
efficient on the bedroom to square footage ratio is negative.
At first, this may seem puzzling as houses with more bed-
rooms might be thought to be more valuable. However, a
large number of bedrooms per square foot is an indicator

pi = ϕ0hi1
ϕ1hi2

ϕ2LhiJ
ϕJ .

Ii = ϕj hi j − h j
j=1

J

∑ .
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that the house may be a rental property. The age of a house
has a negative effect on its price. The interpretation of the
age coefficient, however, is complicated. On the one hand,
old houses can fall into disrepair or may not offer the same
kitchen size or amount of closet space as more modern
houses do. Alternatively, age also can serve as a proxy for
an established neighborhood and have a positive effect on
the house price 

In the specification above, prices are allowed to vary over
time. But note that house characteristics are held constant.
Wallace (1996) points out that new construction and re-
modeling can lead to large changes in the means of hous-
ing characteristics. We can imagine similar problems of drift
over time if we were to generalize the hedonic function to
include quality of life variables.10 While the East Bay has
a dynamic housing market, it is unlikely that these mean
shifts are important over this relatively short sample period.

Model Estimation

Once the atypicality variable has been constructed, it is pos-
sible to study the effects of various economic factors on
time on the market. The estimation results are set forth in
Table 3. All models are estimated by maximum likelihood. 

The parameter estimates in Table 3 reflect the influence
of the covariates on the hazard rate. Thus, a positive coef-
ficient implies that the covariate is positively related to liq-
uidity. The first point to notice is that, not only are the signs

TABLE 2

HEDONIC REGRESSION

log(p) = ϕ0 + ϕ1 log(h1) + … + ϕJ log(hJ) + v
VARIABLE COEFFICIENT STANDARD ERRORS

Intercept 4.827 0.107

Bathrooms 0.147* 0.012

Bedrooms/sq feet –0.181* 0.015

Square feet 0.904* 0.015

Age –0.065* 0.004

Condominium –0.113* 0.012

Piedmont 0.488* 0.021
–
R2 0.61

F(14, 14288) 1,567

* Statistically significant at the l% level. 

10. Gabriel, Mattey, and Wascher (1996 and 1999) study whether changes
in amenities can explain migration patterns. 



of the estimated coefficients the same across the three dif-
ferent model specifications, but the estimates themselves are
quite similar. Recalling that the exponential hazard model
is just a special case of the Weibull model when α = 1, we
might think that the similarity in the coefficients is evi-
dence in favor of the exponential hazard. However, a for-
mal test of the hypothesis that α̂ = 1 is rejected.11

As expected, the degree to which a house is atypical
harms the liquidity of the asset. But note that the measured
effect of atypicality is extremely small in all three models.
We must bear in mind, however, that this coefficient meas-
ures the influence of the index on the hazard rate and thus
depends on the way the index has been constructed. The
negative coefficient implies that houses with characteristics
far from the mean are less liquid. Thus, unusually config-
ured houses are less liquid than houses with more standard
configurations. It is important to note that the negative sign
on this coefficient does not imply that adding another bath-
room reduces the house’s liquidity. 

Whether or not the house is in Piedmont has a positive
effect on liquidity. This is not surprising, as Piedmont is
thought to be a desirable place to live for, among other rea-
sons, the quality of its schools. The statistical significance
of this location-specific variable does, however, serve as a

reminder that neighborhood effects are important in real
estate markets and can create omitted variable problems in
statistical estimation. 

Intuitively, high interest rates reduce the purchasing
power of potential buyers in the market, and the data clearly
support this notion. The coefficient on the effective cost of
mortgage finance is –0.334 and is statistically different
from zero. This result suggests that when interest rates rise
and housing becomes less affordable, sellers do not auto-
matically lower their prices so as to maintain the liquidity
of the market. 

The term spread is defined to be the difference between
the yield on the 30-year Treasury bond and the 3-month
Treasury bill at the time of sale. This variable is meant to
capture expectations about the future path of interest rates.
If the expectations hypothesis is correct, then a steeply
sloped term structure suggests that short-term rates will rise
in the future. Of course, if the slope of the term structure is
steeply sloped, then long-term interest rates (i.e., mortgage
interest rates) also are likely to be high, and we might expect
the coefficient on the term spread variable to be negative.
However, the level of long-term rates is already controlled
for by the mortgage interest rate variable. The positive co-
efficient on the term spread can be interpreted to mean that
sellers are anxious to execute their trades before an expected
change in rates. Thus, they are anxious to execute their
trades before the change in state. Sellers price their houses
so that they are liquid, and buyers search less. 

The other local economic variable expected to influence
the housing market is a measure of changes in wealth. While
income growth and consumption in a narrowly defined re-
gion are difficult to measure accurately, employment growth
is measured relatively more cleanly. In all three model
specifications, the estimated coefficient on job growth is
positive—markets that have experienced recent growth tend
to be more liquid. Job growth affects the housing market
directly by its impact on demand. New jobs often draw new
workers into the area who will need housing. New jobs also
might reflect a strong and stable economy, prompting ex-
isting homeowners to trade up. The link to the theory is
that in settings where housing demand is strong, it is opti-
mal for sellers to price their houses so as to be liquid. 

One particularly useful feature of the Cox model is that
the estimated coefficients can be used to calculate relative
odds ratios. To do this, we compare the estimated hazard
rates for two houses that are identical except for differences
in one of the covariates. The covariates of primary interest
are the two external covariates—the job growth variable
and the interest rate variable. The experiment is to com-
pare house liquidity at the height of the hot market (7 per-
cent effective interest rate and 3.5 percent job growth) to
predicted liquidity when these covariates take on their
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TABLE 3

HAZARD MODELS

EXPONENTIAL WEIBULL COX

Intercept –3.517* –2.583*
(0.115) (0.117)

Atypicality –1.04e–7 * –8.42e–8 –7.07e–8

(5.08e–8) (5.24e–8) (5.29e–8)

Piedmont 0.460* 0.458* 0.464*
(0.050) (0.051) (0.050)

Term spread 0.277* 0.257* 0.250*
(0.018) (0.018) (0.018)

Effective mortgage rate –0.334* –0.313* –0.305*
(0.015) (0.015) (0.015)

Employment growth 0.114* 0.102* 0.098*
(0.009) (0.009) (0.009)

α 0.791
(0.006)

χ2(k) 705 630 603

NOTES: Standard errors are in parentheses.
* Significant at the 5% level. 

11. The 95% confidence interval for α̂ is [0.79, 0.81].
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mean values. I also look at liquidity for a cold market sce-
nario (10 percent interest rate and zero percent job growth).
The results from this exercise are contained in Table 4. 

For the case of single-family detached housing, a house
is 1.34 times more likely to sell on any given day if the ef-
fective mortgage rate is 7 percent than it would if it were
for sale when the effective rate was the sample average of
8 percent. Similarly, a 10 percent effective mortgage rate
makes the house only 0.55 times as likely to sell on a given
day, relative to the sample average. The estimated hazard
rate is much more sensitive to interest rates than it is to job
growth. For single-family houses, a house that is selling
when the six-month job growth rate has been 3.5 percent
(annualized) is 1.18 times more likely to sell than if it were
listed during a time with average job growth (1.9 percent). 

One interesting piece of evidence that emerges from the
analysis is confirmation that the single-family housing mar-
ket and the condominium market behave differently over
the course of the real estate cycle. In terms of time series
averages, the mean time on the market for a house is 95
days, while the mean time for condominiums is 124 days.
The two markets also behave differently with respect to
shocks. Note from Table 4 that the job growth sensitivities
of the two markets are comparable, with the single-family
housing liquidity slightly more volatile with respect to
changes in the job growth rate. The responses of liquidity
are more pronounced to interest rate shocks. The per pe-
riod probability of sale of a condominium is 1.41 times
higher when the effective mortgage rate is 7 percent, as op-
posed to a house that is 1.34 times as likely to sell during
this low interest rate environment. This finding seems to
agree with the idea that the condominium market has a
different clientele from the single-family housing market.
Condominium buyers, at least in the San Francisco Bay
area, tend to be younger households for whom the binding
constraint is meeting a monthly mortgage payment and, in
particular, coming up with a downpayment. 

Robustness

Two primary questions arise from the empirical work. First,
it is striking that the relationship between house charac-
teristics and time on the market is so weak.12 In part this
finding reflects the fact that large, atypical houses make up
only a small fraction of the total observations in this sam-
ple. Perhaps understandably, final transaction data involv-
ing these houses often goes unrecorded. It is also possible
that this weak relationship is due to the atypicality meas-
ure itself. One way to test whether the atypicality index is
an adequate way of summarizing the relevant information
about house characteristics is to insert observed house
characteristics directly into the hazard function and study
their influence on the hazard rate. Table 5 contains the esti-
mates of the hazard function when the atypicality index is
replaced by the number of bathrooms, the ratio of bedrooms
to square footage, and the number of square feet. 

Table 5 reveals that the coefficient estimates on the num-
ber of bathrooms and the square footage are not statistically
significant from zero. In contrast, there is a strong negative
relationship between liquidity and the ratio of bedrooms
to square footage. This is not too surprising, as we already
noted in the hedonic regression (Table 2) that this variable
was strongly related to price. The estimated coefficients on
the job growth variable are not markedly different from the
specification where atypicality was measured by a single
index. It is interesting, however, to note in Table 5 that the
interest rate coefficients are much smaller in absolute value
than in the original specification. 

A second critique of the empirical work is that the esti-
mated relationships between house marketing times and
the covariates may not be robust, but rather are influenced
by a low frequency time trend in the data. Recalling Fig-
ure 1, there has been a downward trend in the time on the
market series beginning in the winter of 1994 and persist-
ing to the end of the sample period in 1998. To address this
concern, I add a time trend to the list of covariates and re-
estimate the models in Table 3. The results are contained
in Table 6. 

Once again, the coefficient on the atypicality index is in-
significantly different from zero. The estimated coefficients
on the interest rate and job growth variables retain the same
signs as before. However, the estimated coefficients on the
interest rate variables are slightly smaller in absolute value
than in Table 3. The relationship between the job growth

TABLE 4

RELATIVE ODDS RATIOS

HOUSES CONDOMINIUMS

ONLY ONLY

House in Piedmont 1.59 —

7% effective interest rate 1.34 1.41

10% effective interest rate 0.55 0.50

Zero job growth 0.83 0.86

3.5% job growth 1.18 1.14

NOTE: Standard errors are in parentheses.

12. It is possible to argue that the house characteristics collected in this
dataset—the number and kinds of rooms and the size—are not the most
important characteristics. Characteristics such as the neighborhood qual-
ity, nearby amenities, and other intangible qualities will influence price
and liquidity, but remain essentially unobservable to the econometrician.
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variable and liquidity is strengthened when a time trend is
included in the hazard function. While these differences in
coefficient estimates appear to be small, the differences are
important in economic terms. Recall from the odds ratio
exercise in Table 4 that changes in liquidity due to a unit
change in the value of a covariate, say x1, is calculated not
as ξ1, but as exp(ξ1). 

III. CONCLUSION

In this paper I develop a search model of the real estate
market where prices and liquidity are determined endoge-
nously. When the value of the housing service flow is al-
lowed to fluctuate, liquidity also fluctuates. In periods when
the housing service flow is high, sellers do not raise their
prices to take full advantage of the increase. Rather, they
demand greater liquidity so as to complete the sale before
the market turns against them. In periods when the hous-
ing service flow is low, sellers do not drop their prices in
order to achieve the same amount of liquidity as in the hot
market. Rather, prices are sticky because sellers find it op-

timal to “fish” for a buyer who attaches an unusually high
private value to the house. This fishing takes time, and the
market becomes cold. This behavior by sellers is optimal
because the opportunity cost of failing to sell in a cold mar-
ket is relatively low—a seller can always wait until the next
period hoping to sell in a better market. 

Using data from the San Francisco Bay Area, I search
for variables that drive the value of the housing service flow
postulated in the theoretical section. I establish a statisti-
cal link between time on the market and the interest rate,
the slope of the term structure, and the job growth rate. I
detect a weak relationship between liquidity and the de-
gree to which a house is atypical. 

TABLE 5

HOUSING CHARACTERISTICS

IN THE HAZARD FUNCTION

EXPONENTIAL WEIBULL COX

Intercept –3.913* –2.890*
(0.141) (0.143)

Bath –0.015 –0.019 –0.023
(0.016) (0.016) (0.016)

Bed/square feet –260.128* –258.802* –257.688*
(17.168) (17.343) (17.430)

Square feet 6.29e–7 4.71e–6 8.61e–6

(1.45e–5) (1.50e–5) (1.53e–5)

Piedmont 0.351* 0.348* 0.351*
(0.052) (0.051) (0.051)

Term spread 0.146* 0.257* 0.143*
(0.017) (0.018) (0.017)

Effective mortgage rate –0.198* –0.197* –0.195*
(0.014) (0.014) (0.014)

Employment growth 0.161* 0.135* 0.126*
(0.009) (0.009) (0.009)

α 0.801
(0.006)

χ2(k) 1,218 976 907

NOTES: Standard errors are in parentheses.
* Significant at the 5% level. 

TABLE 6

HAZARD MODELS WITH TIME TREND

EXPONENTIAL WEIBULL COX

Intercept 13.982* 7.865*
(1.208) (1.223)

Atypical –1.58e–7 * –1.39e–7 * –1.33e–7 *
(5.78e–8) (5.91e–8) (5.96e–8)

Piedmont 0.514* 0.497* 0.496*
(0.051) (0.051) (0.051)

Term spread 0.115* 0.122* 0.127*
(0.017) (0.017) (0.017)

Effective mortgage rate –0.163* –0.175* –0.179*
(0.015) (0.015) (0.014)

Employment growth 0.284* 0.211* 0.126*
(0.013) (0.013) (0.009)

α 0.809
(0.006)

χ2(k) 1,094 723 627

NOTES: Standard errors are in parentheses.
* Significant at the 5% level. 
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