Pricing Inequality

Simon Mongey

Federal Reserve Bank of Minneapolis, NBER

Michael Waugh

Federal Reserve Bank of Minneapolis, NBER

SF Fed - February 2025

The views expressed herein are those of the authors and not those of the Federal Reserve System.

Mongey, Waugh - Pricing Inequality

- Late 2022: Inflation 8%, Household real cash-balances 50% higher than pre-pandemic levels
- McDonalds CEO: "Low income households resilient, strategic price increases, decrease units"

- Late 2022: Inflation 8%, Household real cash-balances 50% higher than pre-pandemic levels
- McDonalds CEO: "Low income households resilient, strategic price increases, decrease units"

2. Two facts about households

- Poor households are more price elastic (Auer Burstein Lein Vogel, 2024)
- Poor households buy low price varieties of same good (Jaimovich et al, 2019; Bils Klenow, 2001)

- Late 2022: Inflation 8%, Household real cash-balances 50% higher than pre-pandemic levels
- McDonalds CEO: "Low income households resilient, strategic price increases, decrease units"

2. Two facts about households

- Poor households are more price elastic (Auer Burstein Lein Vogel, 2024)
- Poor households buy low price varieties of same good (Jaimovich et al, 2019; Bils Klenow, 2001)
- This paper: Integrate these facts into a heterogeneous agent consumption savings model

- Late 2022: Inflation 8%, Household real cash-balances 50% higher than pre-pandemic levels
- McDonalds CEO: "Low income households resilient, strategic price increases, decrease units"

2. Two facts about households

- Poor households are more price elastic (Auer Burstein Lein Vogel, 2024)
- Poor households buy low price varieties of same good (Jaimovich et al, 2019; Bils Klenow, 2001)
- This paper: Integrate these facts into a heterogeneous agent consumption savings model

Result 1 - Household elasticity heterogeneity rationalizes wide body of empirical facts

- Late 2022: Inflation 8%, Household real cash-balances 50% higher than pre-pandemic levels
- McDonalds CEO: "Low income households resilient, strategic price increases, decrease units"

2. Two facts about households

- Poor households are more price elastic (Auer Burstein Lein Vogel, 2024)
- Poor households buy low price varieties of same good (Jaimovich et al, 2019; Bils Klenow, 2001)
- This paper: Integrate these facts into a heterogeneous agent consumption savings model

Result 1 - Household elasticity heterogeneity rationalizes wide body of empirical facts

Result 2 - Large firms have higher markups mostly (60%) due to household heterogeneity

- Late 2022: Inflation 8%, Household real cash-balances 50% higher than pre-pandemic levels
- McDonalds CEO: "Low income households resilient, strategic price increases, decrease units"

2. Two facts about households

- Poor households are more price elastic (Auer Burstein Lein Vogel, 2024)
- Poor households buy low price varieties of same good (Jaimovich et al, 2019; Bils Klenow, 2001)
- This paper: Integrate these facts into a heterogeneous agent consumption savings model

Result 1 - Household elasticity heterogeneity rationalizes wide body of empirical facts

Result 2 - Large firms have higher markups mostly (60%) due to household heterogeneity

Result 3 - A fiscal transfer of 1% of GDP to h'holds increases aggregate markup 0.3 ppt

Firms - Markups depend on customers' demand elasticities

- Firm - Selling variety $j \in \{1, \ldots, J\}$ of good $g \in \mathcal{G}$.

- Optimal price

$$p_{jg}^{*} = \frac{\varepsilon_{jg}}{\varepsilon_{jg} - 1} mc_{jg} \quad , \quad \varepsilon_{jg} = \int \underbrace{\left[\varepsilon_{jg}^{i,\rho} + \varepsilon_{jg}^{i,q}\right]}_{\text{Elasticities}} \underbrace{\left(\frac{\rho_{jg}^{i} q_{jg}^{i}}{q_{jg}}\right)}_{\text{Sorting}} di$$

- What do firms want to know?
 - Elasticities What are the elasticities of demand of different customers?
 - Sorting What is the sorting of high and low elasticity customers across firms?

- Today, conditional on choosing a single good-variety jg to consume

$$V\left(a, e, p_{jg}\right) = \max_{a', c_{jg}} u(c_{jg}) + \beta \int \overline{V}\left(a', e'\right) d\Gamma_e(e'|e)$$
$$p_{jg}c_{jg} + a' = (1 - \tau)We + (1 + r)a + \Pi + T$$
$$a' \geq \underline{a}$$

- Tomorrow, draw preferences over good-varieties ζ'_{ig} and choose jg to consume

$$\overline{V}(a', e') = \int \max_{j,g} \left\{ \frac{V(a', e', p_{jg})}{\prod_{\substack{\eta \in \mathcal{I}_{jg} \in \mathcal{I}_{jg}}}} + \zeta'_{jg} \right\} d\Gamma_{\zeta}(\zeta'; \theta, \eta)$$

- Demand

- Elasticities

- Demand

$$\rho_{jg}^{i} = \underbrace{\phi_{jg}\left(\frac{v(a^{i}, e^{i}, p_{jg})}{\widetilde{v}(a^{i}, e^{i}, \boldsymbol{p}_{g})}\right)^{\eta}}_{\rho_{j|g}^{i}} \underbrace{\left(\frac{\widetilde{v}(a^{i}, e^{i}, \boldsymbol{p}_{g})}{\overline{v}(a^{i}, e^{i})}\right)^{\theta}}_{\rho_{g}^{i}} , \quad \widetilde{v}(a^{i}, e^{i}, \boldsymbol{p}_{g}) = \left[\sum_{j \in g} \phi_{jg}v(a^{i}, e^{i}, p_{jg})^{\eta}\right]^{1/\eta}$$

- Elasticities

- Demand

$$\rho_{jg}^{i} = \underbrace{\phi_{jg}\left(\frac{v\left(a^{i}, e^{i}, p_{jg}\right)}{\widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right)}\right)^{\eta}}_{\rho_{j|g}^{i}}\underbrace{\left(\frac{\widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right)}{\overline{v}\left(a^{i}, e^{i}\right)}\right)^{\theta}}_{\rho_{g}^{i}}, \quad \widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right) = \left[\sum_{j \in g} \phi_{jg}v\left(a^{i}, e^{i}, p_{jg}\right)^{\eta}\right]^{1/\eta}$$

$$\varepsilon_{jg}^{\rho i} = \underbrace{\left[\theta \, \rho_{j|g}^{i} + \eta \left(1 - \rho_{j|g}^{i}\right)\right]}_{\text{Size-based market power}} \times \underbrace{\frac{\partial \log v \left(a^{i}, e^{i}, p_{jg}\right)}{\partial \log p_{jg}}}_{\text{Consumer heterogeneity}}$$

- Demand

$$\rho_{jg}^{i} = \underbrace{\phi_{jg}\left(\frac{v\left(a^{i}, e^{i}, p_{jg}\right)}{\widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right)}\right)^{\eta}}_{\rho_{j|g}^{i}}\underbrace{\left(\frac{\widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right)}{\overline{v}\left(a^{i}, e^{i}\right)}\right)^{\theta}}_{\rho_{g}^{i}}, \quad \widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right) = \left[\sum_{j \in g} \phi_{jg}v\left(a^{i}, e^{i}, p_{jg}\right)^{\eta}\right]^{1/\eta}$$

$$\varepsilon_{jg}^{\rho\,i} = \underbrace{\left[\theta\,\rho_{j|g}^{i} + \eta\left(1 - \rho_{j|g}^{i}\right)\right]}_{\text{Size-based market power}} \times \underbrace{\lambda_{jg}^{i}\,p_{jg}\,c_{jg}^{i}}_{\text{Consumer heterogeneity}}$$

- Demand

$$\rho_{jg}^{i} = \underbrace{\phi_{jg}\left(\frac{v\left(a^{i}, e^{i}, p_{jg}\right)}{\widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right)}\right)^{\eta}}_{\rho_{j|g}^{i}}\underbrace{\left(\frac{\widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right)}{\overline{v}\left(a^{i}, e^{i}\right)}\right)^{\theta}}_{\rho_{g}^{i}}, \quad \widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right) = \left[\sum_{j \in g} \phi_{jg}v\left(a^{i}, e^{i}, p_{jg}\right)^{\eta}\right]^{1/\eta}$$

$$\varepsilon_{jg}^{\rho\,i} = \underbrace{ \begin{bmatrix} \theta\,\rho_{j|g}^{i} + \eta \left(1 - \rho_{j|g}^{i}\right) \end{bmatrix}}_{\text{Size-based market power}} \times \underbrace{c_{jg}^{i - (\sigma - 1)}}_{\text{Consumer heterogeneity}}$$

- Demand

$$\rho_{jg}^{i} = \underbrace{\phi_{jg}\left(\frac{v\left(a^{i}, e^{i}, p_{jg}\right)}{\widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right)}\right)^{\eta}}_{\rho_{j|g}^{i}} \underbrace{\left(\frac{\widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right)}{\overline{v}\left(a^{i}, e^{i}\right)}\right)^{\theta}}_{\rho_{g}^{i}} , \quad \widetilde{v}\left(a^{i}, e^{i}, \boldsymbol{p}_{g}\right) = \left[\sum_{j \in g} \phi_{jg}v\left(a^{i}, e^{i}, p_{jg}\right)^{\eta}\right]^{1/\eta}$$

 $arepsilon_{j\mathbf{g}}^{
ho\,i} = \left[heta\,
ho_{j|\mathbf{g}}^i + \eta \Big(1 -
ho_{j|\mathbf{g}}^i\Big)
ight] imes \qquad \mathbf{c}_{j\mathbf{g}}^{i\,-(\sigma-1)}$

Size-based market power

- Sorting

$$\log\left(\frac{\rho_1^H/\rho_2^H}{\rho_1^L/\rho_2^L}\right) = \log\left(\frac{v_1^H/v_2^H}{v_1^L/v_2^L}\right)^{\eta} = \eta \int_{\log p_2}^{\log p_1} \left\langle -\frac{\partial \log v^L(p)}{\partial \log p} \right\rangle - \left\langle -\frac{\partial \log v^H(p)}{\partial \log p} \right\rangle d\log p$$

Consumer heterogeneity

Mongey, Waugh - Pricing Inequality

1. Macro

Firm elasticities determined by relative size - $\varepsilon_j = \varepsilon(s_j)$

EMX (2015, 2023), De Loecker Eeckhout Mongey (2022), Baqaee Farhi Sangani (2024, 2024), Boar Midrigan (2023) New - Household heterogeneity also shapes markups

1. Macro

Firm elasticities determined by relative size - $\varepsilon_j = \varepsilon(s_j)$

EMX (2015, 2023), De Loecker Eeckhout Mongey (2022), Baqaee Farhi Sangani (2024, 2024), Boar Midrigan (2023)

New - Household heterogeneity also shapes markups

2. Industrial Organization

Individual elasticities are parametric functions of income - $\varepsilon^i = \varepsilon(e^i)$ BLP (1995), Nevo (2000), Nakamura Zerom (2010), ...

New - Relationship emerges endogenously from a frontier macro model

1. Macro

Firm elasticities determined by relative size - $\varepsilon_j = \varepsilon(s_j)$

EMX (2015, 2023), De Loecker Eeckhout Mongey (2022), Baqaee Farhi Sangani (2024, 2024), Boar Midrigan (2023)

New - Household heterogeneity also shapes markups

2. Industrial Organization

Individual elasticities are parametric functions of income - $\varepsilon^i = \varepsilon(e^i)$ BLP (1995), Nevo (2000), Nakamura Zerom (2010), ...

New - Relationship emerges endogenously from a frontier macro model

3. Public / Spatial / Micro / Trade / Search

Parameterize elasticities or search costs $\varepsilon(e^i)$ and / or tastes $\phi_i^i(e^i)$

Handbury (2021), Auer et al (2024), Faber Fally (2022), Olivi et al (2024), Sangani (2024), Nord (2024)

New - Preferences independent of income, elasticities endogenous

1. Off-the-shelf Bewley model parameters

- Income process, borrowing constraint, etc, follows Kaplan, Violante (2024)

Calibration

1. Off-the-shelf Bewley model parameters

- Income process, borrowing constraint, etc, follows Kaplan, Violante (2024)
- 2. Follow Edmond Midrigan Xu (2023)
 - Firms-per-market J, Pareto tail of quality ξ , Preference dispersion η , θ

Parameter			Moment		Model
J	25	Concentration	Sales share HHI	0.052	0.052
ξ	10.9	Concentration	Top 4 firms sales share	30.5	30.5
η	8.9	Markups - Level	Average cost-weighted	1.25	1.25
$\dot{\theta}$	0.04	Markups - Slope	EMX within-industry elasticity of markups to sales	0.03	0.03

Calibration

1. Off-the-shelf Bewley model parameters

- Income process, borrowing constraint, etc, follows Kaplan, Violante (2024)
- 2. Follow Edmond Midrigan Xu (2023)
 - Firms-per-market J, Pareto tail of quality ξ , Preference dispersion η , θ
- 3. Use novel empirical evidence from Auer, Burstein, Lein, Vogel (2024)
 - CRRA parameter *o*
 - Replicate their estimates of declining elasticities of demand by income

Parameter			Moment		Model
J	25	Concentration	Sales share HHI	0.052	0.052
ξ	10.9	Concentration	Top 4 firms sales share	30.5	30.5
η	8.9	Markups - Level	Average cost-weighted	1.25	1.25
θ	0.04	Markups - Slope	EMX within-industry elasticity of markups to sales	0.03	0.03
σ	2.57	Elasticities-by-Income	$3 \times$ higher income, X lower elasticity	2.42	2.42
α	0.63	Sorting	Top quintile of income households pay $X\%$ higher prices	14.4	14.4

Result 1 - Integrate wide body of empirical facts

- Extensive margin* ↑ Sales mostly due to ↑ Customers, not ↑ Quantity per customer Afrouzi Drenik Kim (2024), Einav Klenow Levin Murciano-Goroff (2021)
- Firm sales Higher due to quality, lower due to higher marginal cost and higher markups Hottman Redding Weinstein (2016)
- Sorting* Higher income households buy from larger firms Faber Fally (2022)
- Income and markups* Higher income households pay higher markups Sangani (2024)
- Wealth and markups* An increase in local wealth increases local markups Stroebel Vavra (2019)
- * Quantitatively replicate these statistics in the paper

Result 2 - Household heterogeneity accounts for markup differences

1. What is responsible for markup differences across firms?

1. What is responsible for markup differences across firms?

	Relative size	Household heterogeneity
	$\left[\rho^i_{j g}\theta + (1-\rho^i_{j g})\eta\right]$	$\lambda^i_{jg} p_{jg} c^i_{jg}$
Top vs. Bottom quintile sales firms	42.5	58.5
Largest vs. Smallest sales firms	45.5	54.5

1. What is responsible for markup differences across firms?

	Relative size	Household heterogeneity
	$\left[\rho^i_{j g}\theta + (1-\rho^i_{j g})\eta\right]$	$\lambda^i_{jg} p_{jg} c^i_{jg}$
Top vs. Bottom quintile sales firms	42.5	58.5
Largest vs. Smallest sales firms	45.5	54.5

- Recalibrate model, match same concentration / markup moments, but under log (σ = 1)
- Role of household heterogeneity is zero
- But Elasticities-by-Income and Sorting moments are also zero
- New framework + New data \implies New result

1. What is responsible for markup differences across firms?

	Relative size	Household heterogeneity
	$\left[\rho^i_{j g}\theta + (1-\rho^i_{j g})\eta\right]$	$\lambda^i_{jg} p_{jg} c^i_{jg}$
Top vs. Bottom quintile sales firms	100	0
Largest vs. Smallest sales firms	100	0

- Recalibrate model, match same concentration / markup moments, but under log ($\sigma = 1$)
- Role of household heterogeneity is zero
- But Elasticities-by-Income and Sorting moments are also zero
- New framework + New data \implies New result

- One-time transfer of 1% of GDP to households

- Result - Aggregate markup increases 0.3 ppt. Shaped by consumer heterogeneity effects.

- Result - Aggregate markup increases 0.3 ppt. Shaped by consumer heterogeneity effects.

- Result - Aggregate markup increases 0.3 ppt. Shaped by consumer heterogeneity effects.

- Result - Heterogeneity accounts for 100% of markup response and 49% of inflation

1. Is the restriction to a single good each period important?

2. Is the divisibility of the good important? What if $q_{jg}^i = 1$?

3. Why not have quality ϕ_j complementary to consumption $\phi_j u(c_i^j)$?

Mongey, Waugh - Pricing Inequality

Important questions

1. Is the restriction to a single good each period important?

- Appendix has important variations that answer this:

Continuous time model - Shrink the period length. Keep the basket size Shopping cart model - Keep the period length. Expand the basket size

- Does not change extensive margin elasticity and sorting results.

2. Is the divisibility of the good important? What if $q_{ig}^i = 1$?

3. Why not have quality ϕ_j complementary to consumption $\phi_j u(c_i^j)$?

Important questions

1. Is the restriction to a single good each period important?

- Appendix has important variations that answer this:

Continuous time model - Shrink the period length. Keep the basket size Shopping cart model - Keep the period length. Expand the basket size

- Does not change extensive margin elasticity and sorting results.

2. Is the divisibility of the good important? What if $q_{ig}^i = 1$?

- Consider c^i being the 'outside' good, then $u'(c^i)$ shows up in elasticity formula
- Does not change extensive margin elasticity and sorting results.

3. Why not have quality ϕ_j complementary to consumption $\phi_j u(c_i^j)$?

1. Is the restriction to a single good each period important?

- Appendix has important variations that answer this:

Continuous time model - Shrink the period length. Keep the basket size Shopping cart model - Keep the period length. Expand the basket size

- Does not change extensive margin elasticity and sorting results.

2. Is the divisibility of the good important? What if $q_{ig}^i = 1$?

- Consider c^i being the 'outside' good, then $u'(c^i)$ shows up in elasticity formula
- Does not change extensive margin elasticity and sorting results.

3. Why not have quality ϕ_j complementary to consumption $\phi_j u(c_i^i)$?

- Appendix walks through this in context of Fajgelbaum Grossman Helpman (2011)
- Households very price sensitive to high quality goods. Large firms ightarrow Smaller markups \pmb{x}

New theory - Flexible framework that integrates IO and frontier heterogeneous agent macroeconomics. The key link is the endogenous marginal value of wealth. This avoids adding additional parameters to either model.

1. New perspective on markups

- Lesson Household heterogeneity / incomplete markets are key
- Counterfactuals studied in incomplete markets settings have markup implications
- Income inequality, Income shocks, Financial instruments ... all shape individuals' elasticities

2. New perspective on policy

- Lesson Markup responses inhibit counter-cyclical policies that operate via 'high MPC' h'holds
- Policies studied in incomplete markets settings have markup implications
- UBI, Medical insurance, Tax progressivity, Debt relief ... all shape individuals' elasticities