Discussion of "Pricing Inequality"

Simon Mongey and Michael Waugh

Discussion by Kunal Sangani

February 2025

Bridging Heterogeneous Agent Macro and Industrial Organization

• Ambitious paper bridging Heterogeneous Agent Macro and Industrial Organization.

• Key insight: Relating price sensitivity in IO models to marginal value of assets.

• Thoughtful model design to integrate both "machineries."

 Some remaining tensions between model structure and ability to integrate a "wide body of empirical facts."

- Intuition in a stripped down version (no income, no oligopoly forces).
- Value of wealth *a* is:

$$egin{aligned} &v_i(a) = \max_j v_{ij}(a) \ & ext{where} \qquad v_{ij}(a) = \max_{x_{ij}} \left\{ u(x_{ij}) + eta v_i(extit{Ra} - extsf{p}_j x_{ij})
ight\} + \psi_j + \zeta_{ij}. \end{aligned}$$

- Intuition in a stripped down version (no income, no oligopoly forces).
- Value of wealth a is:

$$\begin{aligned} v_i(a) &= \max_j v_{ij}(a) \\ \text{where} \quad v_{ij}(a) &= \max_{x_{ij}} \left\{ u(x_{ij}) + \beta v_i (Ra - p_j x_{ij}) \right\} + \psi_j + \zeta_{ij}. \end{aligned}$$

• IO literature gives us choice probabilities ρ_{ij} when ζ_{ij} is Type 1 Extreme Value (η):

$$\rho_{ij} = \frac{\exp\left(\eta \left[u(x_{ij}) + \beta v_i \left(Ra - p_j x_{ij}\right) + \psi_j\right]\right)}{\sum_k \exp\left(\eta \left[u(x_{ik}) + \beta v_i \left(Ra - p_k x_{ik}\right) + \psi_k\right]\right)}.$$

Notice that IO "price sensitivity coefficient" on p_j is $\eta x_{ij}\beta v'_i(a)$.

- Intuition in a stripped down version (no income, no oligopoly forces).
- Value of wealth a is:

$$egin{aligned} &v_i(a) = \max_j v_{ij}(a) \ & ext{where} \quad &v_{ij}(a) = \max_{x_{ij}} \left\{ u(x_{ij}) + eta v_i(Ra - eta_j x_{ij})
ight\} + \psi_j + \zeta_{ij}. \end{aligned}$$

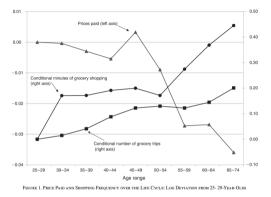
• IO literature gives us choice probabilities ρ_{ij} when ζ_{ij} is Type 1 Extreme Value (η):

$$\rho_{ij} = \frac{\exp\left(\eta \left[u(x_{ij}) + \beta v_i \left(Ra - \rho_j x_{ij}\right) + \psi_j\right]\right)}{\sum_k \exp\left(\eta \left[u(x_{ik}) + \beta v_i \left(Ra - \rho_k x_{ik}\right) + \psi_k\right]\right)}.$$

Notice that IO "price sensitivity coefficient" on p_j is $\eta x_{ij}\beta v'_i(a)$.

• Macro literature links marginal value of wealth $v'_i(a)$ to marginal utility $u'(x_{ij})$:

$$\underbrace{-d\log \rho_{ij}/d\log p_j}_{\text{Extensive margin}} = p_j\left(\eta x_{ij}\beta v_i'(a)\right) = \underbrace{\eta x_{ij}u'(x_{ij})}_{\substack{\text{Falls with wealth if}\\u'(\cdot) \text{ falls fast enough}}}.$$


- Natural way to model where differences in price sensitivity in IO models come from.
- Bells and whistles help integrate other forces in literature.
 (E.g., different elasticities within-market vs. across markets ⇒ oligopolistic forces.)
- Benefits to bringing IO and HA-Macro literatures together.
 - IO: Equal footing to "demand" and "supply" forces, often studied in isolation in macro.
 - Supply-side: Literature on market power. E.g., Atkeson and Burstein (2008), De Loecker et al. (2021), Edmond et al. (2023), Baqaee et al. (2024).
 - Demand-side: Recent but growing literature.
 E.g., Stroebel and Vavra (2019), Brand (2021), Döpper et al. (2021), Nord (2022), Sangani (2022).
 - HA-Macro: Unified model for assessing effects of transfers, income risk, wealth, etc.

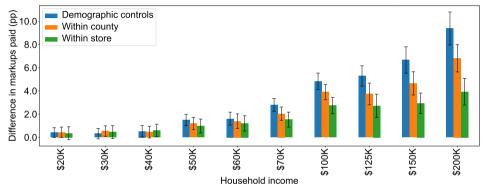
My Comments

- A few areas where model falls short of explaining the data:
 - Marginal value of wealth vs. opportunity cost of time.
 - Ø Different patterns across different markets. Which relationships are structural?
 - How does model counterfactual compare to data?

- In the model, variation in price sensitivity across households comes from differences in the marginal value of wealth, v_i'(a).
- In recent work, price sensitivity comes from different opportunity costs of time.
 - Households with lower cost of time search more for better prices.
 - Variation due to income (marginal hour spent working) or wealth (value of leisure time).

- In the model, variation in price sensitivity across households comes from differences in the marginal value of wealth, v_i'(a).
- In recent work, price sensitivity comes from different opportunity costs of time.
 - Households with lower cost of time search more for better prices.
 - Variation due to income (marginal hour spent working) or wealth (value of leisure time).
- Difficult to isolate value of wealth vs. opportunity cost of time. But some key hints:
 - Prices paid decline sharply at retirement, even though wealth doesn't.
 - Direct measures of search behavior predict prices paid.
 - Differences in prices/markups paid often due to differences in prices paid for same good, even at the same store!

(a) Aguiar and Hurst (2007).


TABLE 8 EFFECT OF SHOPPING BEHAVIOR ON HOUSEHOLD PRICE INDEXES

	(1)	(2)	(3)
No. shopping trips	-0.144 **		
$(\times 10^2)$	(0.005)		
No. stores visited		-1.063 **	
$(\times 10^2)$		(0.027)	
Fraction of transactions involving coupons			-0.324**
			(0.003)
Observations	880,104	880,104	880,104
Households	78,758	78,758	78,758
R^2	0.015	0.021	0.181

(b) Kaplan and Menzio (2015).

- Sharp decline in prices paid when cost of time falls at retirement. (Aguiar and Hurst 2007.)
- Search behavior predictive of prices paid. (Kaplan and Menzio 2015.)

Figure: Differences in retail markups paid for identical products (Sangani 2022).

- High-income households pay 3pp higher retail markups for same barcode (UPC) within store outlet! Search is big enough to explain...
 - Differences in markups across products. [Elasticity: 10% to avg. buyer income.]
 - Differences in markups across households. [Elasticity: 3% to household income.]

- Markups tend to increase with income/wealth in many settings, but not all.
 - Seminal work on "poverty premium" by Caplovitz (1963), Prahalad and Hammond (2002).
 - Within product, high-income buy bulk at lower prices. (Bornstein and Peter 2024).
 - Low-income households pay higher markups for banking services, insurance, auto loans. (e.g., Grunewald et al. 2020).
- Hard to accommodate since marginal value of wealth is equal across all purchases.

- Markups tend to increase with income/wealth in many settings, but not all.
 - Seminal work on "poverty premium" by Caplovitz (1963), Prahalad and Hammond (2002).
 - Within product, high-income buy bulk at lower prices. (Bornstein and Peter 2024).
 - Low-income households pay higher markups for banking services, insurance, auto loans. (e.g., Grunewald et al. 2020).
- Hard to accommodate since marginal value of wealth is equal across all purchases.
- Meanwhile, search offers a natural explanation:
 - Search/savings technologies vary with income (e.g., ability to negotiate offers, stockpile).
 - Markups shaped by race between opportunity cost of time vs. search productivity.

- Markups tend to increase with income/wealth in many settings, but not all.
 - Seminal work on "poverty premium" by Caplovitz (1963), Prahalad and Hammond (2002).
 - Within product, high-income buy bulk at lower prices. (Bornstein and Peter 2024).
 - Low-income households pay higher markups for banking services, insurance, auto loans. (e.g., Grunewald et al. 2020).
- Hard to accommodate since marginal value of wealth is equal across all purchases.
- Meanwhile, search offers a natural explanation:
 - Search/savings technologies vary with income (e.g., ability to negotiate offers, stockpile).
 - Markups shaped by race between opportunity cost of time vs. search productivity.
- Tension between "parsimony" and ability to integrate a "wide body of empirical facts."
 - For matching the data, both value of wealth and opportunity cost of time seem important.

- Broader pattern: Which relationships are structural? Which vary across contexts?
 - Model tightly parameterized to match *average* relationships.
 - But average relationships mask heterogeneity across markets.
- Example 1: On average, markups increase with income. But not in all markets.

- Broader pattern: Which relationships are structural? Which vary across contexts?
 - Model tightly parameterized to match *average* relationships.
 - But average relationships mask heterogeneity across markets.
- Example 1: On average, markups increase with income. But not in all markets.
- Example 2: On average, marginal costs increase with firm size.
 - False for Walmart vs. Safeway vs. corner store.
- Example 3: On average, high-income households buy from larger firms.
 - True for some markets (e.g. ground coffee): Starbucks, Peet's > Maxwell House, Folgers.
 - False for others (e.g. butter): Organic Valley < Kerrygold < Land O' Lakes.

- Broader pattern: Which relationships are structural? Which vary across contexts?
 - Model tightly parameterized to match *average* relationships.
 - But average relationships mask heterogeneity across markets.
- Example 1: On average, markups increase with income. But not in all markets.
- Example 2: On average, marginal costs increase with firm size.
 - False for Walmart vs. Safeway vs. corner store.
- Example 3: On average, high-income households buy from larger firms.
 - True for some markets (e.g. ground coffee): Starbucks, Peet's > Maxwell House, Folgers.
 - False for others (e.g. butter): Organic Valley < Kerrygold < Land O' Lakes.
- Market-specific relationships btwn quality, marginal cost, consumer tastes, firm size.
 - Problematic for counterfactuals if we misspecify avg. correlation as structural relationship.

3. Comparing Model Counterfactual to Phillips Curve Estimates

- Okun's Law: 1% increase in GDP \approx 0.5% decrease in unemployment rate.
- Back-of-the-envelope Phillips Curve slope:

 $\psi = {0.4\% \mbox{ increase in prices} \over 1\% \mbox{ of GDP transfer}} {1\% \mbox{ incr. in GDP} \over 0.5\% \mbox{ decrease in unemp.}} = 0.8.$

If a 1% of GDP transfer increases realized GDP less than 1%, this *further increases* ψ .

• MPC \approx 25% implies $\psi \approx$ 3.2.

3. Comparing Model Counterfactual to Phillips Curve Estimates

• Okun's Law: 1% increase in GDP \approx 0.5% decrease in unemployment rate.

• Back-of-the-envelope Phillips Curve slope:

 $\psi = {0.4\% \mbox{ increase in prices} \over 1\% \mbox{ of GDP transfer}} {1\% \mbox{ incr. in GDP} \over 0.5\% \mbox{ decrease in unemp.}} = 0.8.$

If a 1% of GDP transfer increases realized GDP less than 1%, this *further increases* ψ .

- MPC \approx 25% implies $\psi \approx$ 3.2.
- Phillips curve is at least 2.5x steeper than recent estimates.
 - Stock and Watson (2020): "Phillips correlation" from 0.67 (1960-83) to 0.03 (2000-19).
 - Hazell, Herreño, Nakamura, and Steinsson (2020) find $\psi \approx$ 0.1–0.3.
 - Puzzle: Why do markups in the model respond "too strongly" to transfers?

Other Comments

- Functional form assumptions are not innocuous: E.g., pass-through.
 - Calibration likely yields complete or even over-passthrough (in logs) of cost changes.
 - Heterogeneity in consumer price sensitivity pushes toward over-passthrough.
 - Oligopoly dampens pass-through, but (my guess is) this force is too small.
 - Contrasts with large body of evidence on incomplete pass-through. (Sangani 2024.)
- Can framework accommodate other empirical patterns?
 - Balanced growth? Need exogenous force changing spread of taste shocks η over time?
 - Engel curve for variety? Rather than scale up consumption, high-income hh's spread consumption over more varieties. (Li 2021).
 - **Consumption patterns?** Identical preferences ⇒ consumption patterns of low-income hh's with a wealth shock should resemble high-income hh's. True in the data?

Closing Thoughts

- Ambitious paper and agenda!
- Natural bridge between price sensitivity in IO and marginal value of wealth in macro.
- Marginal value of wealth is an intuitive source for differences in price sensitivity, but...
 - Needs to confront evidence that search / cost of time important for explaining micro data.
 - Needs to confront variation across markets (e.g., markups vs. income).
- Places where predictions of structural model ≠ empirical evidence should prompt new areas of investigation.
 - E.g., why does a model that matches the cross-section predict too much responsiveness of markups to income?

- Aguiar, M. and E. Hurst (2007). Life-cycle prices and production. *American Economic Review* 97(5), 1533–1559.
- Atkeson, A. and A. Burstein (2008). Pricing-to-market, trade costs, and international relative prices. *American Economic Review 98*(5), 1998–2031.
- Baqaee, D. R., E. Farhi, and K. Sangani (2024). The supply-side effects of monetary policy. *Journal of Political Economy 132*(4), 1065–1112.
- Bornstein, G. and A. Peter (2024). Nonlinear pricing and misallocation. Technical Report 33144, National Bureau of Economic Research.
- Brand, J. (2021). Differences in differentiation: Rising variety and markups in retail food stores. Working Paper.
- Caplovitz, D. (1963). *The Poor Pay More: Consumer practices of low-income families*. The Free Press.
- De Loecker, J., J. Eeckhout, and S. Mongey (2021). Quantifying market power and business dynamism in the macroeconomy. Technical Report 28761, National Bureau of Economic Research.
- Döpper, H., A. MacKay, N. H. Miller, and J. Stiebale (2021). Rising markups and the role of consumer preferences. Working Paper.

- Edmond, C., V. Midrigan, and D. Y. Xu (2023). How costly are markups? *Journal of Political Economy 131*(7), 1619–1675.
- Grunewald, A., J. A. Lanning, D. C. Low, and T. Salz (2020). Auto dealer loan intermediation: Consumer behavior and competitive effects. National Bureau of Economic Research, Working Paper No. 28136.
- Hazell, J., J. Herreño, E. Nakamura, and J. Steinsson (2020). The slope of the phillips curve: Evidence from us states. Technical Report 28005, National Bureau of Economic Research.
- Kaplan, G. and G. Menzio (2015). The morphology of price dispersion. *International Economic Review 56*(4), 1165–1206.
- Li, N. (2021). An engel curve for variety. *Review of Economics and Statistics 103*(1), 72–87.
- Nord, L. (2022, August). Shopping, demand composition, and equilibrium prices. Working paper.
- Prahalad, C. K. and A. Hammond (2002). Serving the world's poor, profitably. *Harvard Business Review 80*(9), 48–59.
- Sangani, K. (2022). Markups across the income distribution: Measurement and implications. Working paper.

- Sangani, K. (2024). Pass-through in levels and the unequal incidence of commodity shocks. Working paper.
- Stock, J. H. and M. W. Watson (2020). Slack and cyclically sensitive inflation. *Journal of Money, Credit and Banking 52*(S2), 393–428.
- Stroebel, J. and J. Vavra (2019). House prices, local demand, and retail prices. *Journal of Political Economy 127*(3), 1391–1436.