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Abstract

This paper studies a class of optimizing, no-arbitrage models in which the 
term structure of interest rates depends on the maturity structure of assets held 
by investors. The key assumption is that the stochastic discount factor is a 
function of the return on wealth. Portfolio choice matters for asset prices because 
it affects the distribution of this return. Such models are inherently nonlinear, 
and I propose a numerical algorithm for solving them. As an illustration, I solve 
and estimate a model in which investors price inflation and consumption risk in 
addition to wealth risk. The equilibrium duration of investors’ portfolio is treated 
as an unobserved factor. This factor is largely responsible for the nominal term 
premium and is correlated with the quantity of Treasury debt held by the public. 
Shocks to the factor that are roughly equivalent to the Federal Reserve’s large-

scale asset purchases reduce the ten-year nominal yield by about 50 basis points 
on impact. However, the model suggests that the macroeconomic effects of such 
shocks are modest.

∗230 S. LaSalle Street, Chicago, Illinois, 60604. Phone: 312-322-5957. Email: 
thomas.king@chi.frb.org. This paper developed jointly with its companion, King (2015). For helpful 
comments on both papers, I thank Stefania D’Amico, Robin Greenwood, Sam Hanson, Philip Mueller, 
Dimirtri Vayanos, Andrea Vedolin, and seminar participants at FRB Chicago, the Federal Reserve 
“Day Ahead” Conference, and the 2018 Banque de France Workshop on Monetary Policy and Asset 
Prices.  Roger Fan and Zachry Wang provided excellent research assistance. The views expressed here 
do not reflect official positions of the Federal Reserve.

1

PRELIMINARY DRAFT

thomasking
Highlight



1 Introduction

Over the last decade, economists have made considerable progress in reconciling the

behavior of the yield curve with standard consumption- and production-based asset

pricing.1 In these models, the term structure of interest rates is explained by investors’

attitudes toward inflation and consumption risk, and by the rule that monetary poli-

cymakers use to determine the short-term interest rate.

At the same time that these models have been developed, several central banks

have tried to shift the yield curve through purchases of long-term debt. Recent em-

pirical work has been nearly universal in concluding that those purchases and other

fluctuations in the structure of government liabilities have significant effects on the

term structure of interest rates and, most likely, on other asset prices.2 Perhaps the

most commonly cited explanation for these results is that a reduction in the quantity

of longer-term bonds that investors must hold leads them to require less compensation

for bearing the remaining interest-rate risk in their portfolios; consequently, expected

returns, term premiums, and yields on bonds fall. This phenomenon is sometimes

known as the “duration channel” of government debt.

This type of mechanism is completely absent from the structural, consumption-

based term-structure literature. In that literature, a shift in the quantity and distribu-

tion of government debt is either neutral or undefined. Indeed, partly on these grounds,

several authors argue that the empirical evidence on the effects of asset purchases may

reflect some other mechanism. A common refrain is that, in frictionless markets, asset

quantities should be irrelevant for asset prices, a critique exemplified by Eggertsson

and Woodford’s (2003) proof that, in a particular class of general-equilibrium models,

the structure of government debt available to the public makes no difference for either

asset prices or macroeconomic outcomes.

Meanwhile, advocates of the duration channel frequently point to models such as

Vayanos and Vila (2009) and Greenwood and Vayanos (2014) (collectively, “GVV”) for

theoretical support. In those models, shifts in the supply of long-term assets available to

investors change their equilibrium exposures to interest-rate risk, causing fluctuations

1Among others, see Wachter (2006), Piazzesi and Schneider (2007), Van Binsbergen et al. (2012),
and Rudebusch and Swanson (2012).

2See Bernanke et al. (2004), Kuttner (2006), Gagnon et al. (2010), Greenwood and Vayanos (2010,
2014), Krishnamurthy and Vissing-Jorgensen (2011, 2013), Meaning and Zhu (2011), Swanson (2011),
D’Amico et al., (2012), Hamilton and Wu (2012), Joyce et al. (2011), Li and Wei (2012), Cahill et
al. (2013), D’Amico and King (2013), Bauer and Rudebusch (2014), and Rogers et al. (2014), among
others.
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in term premia.3 Although these models clearly contain elements that are appealing

for those seeking to formalize and explore the link between bond supply and bond

pricing, a number of difficulties have prevented their use for policy analysis or their in-

corporation into broader asset-pricing and macroeconomic models. In the GVV model,

investors only hold Treasury bonds, inflation and consumption risk are not priced, and

policy actions by the government are not explicitly modeled. And, despite these sim-

plifications, the models are only analytically tractable in certain special cases. These

limitations make it difficult to assess the economic importance of their central mecha-

nism and to reconcile it with other macro-finance literature, including Eggertsson and

Woodford’s neutrality proposition.

This paper attempts to make some progress in reconciling the duration channel

with standard macro-finance approaches to the term structure. First, I point out that

the essential effect captured by the GVV model can be present in any no-arbitrage

model in which the stochastic discount factor depends on the return on wealth. In

such models, changes in the relative quantities of assets that are held by investors

affect the distribution of the wealth return and therefore affect all asset prices. Prefer-

ences that result in pricing kernels that depend on the return on wealth have long been

common in the finance literature, and, since Epstein-Zin-Weil utility has this property,

are increasingly used in macroeconomic models as well. (The Eggertsson-Woodford

model does not have it, which is why there are no such effects there.) The equilibrium

duration channel that is possible under this specification is descended from the “port-

folio balance” effects developed in papers such as Tobin (1968) and Frankel (1985),

but, unlike those papers, the models considered here are arbitrage free, obey rational

expectations, and do not require anything special about money or short-term debt.

Second, I provide a numerical method for solving such models in a wide variety of

cases, iterating on a version of Tauchen and Hussey (1991). The solution is a nontriv-

ial computational task because, even under simplifying assumptions about funcitonal

forms, equilibrium asset prices involve a nonlinear recursion in multidimensional func-

tion space. (This is why Vayanos-Vila can only be solved analytically in limiting cases.)

One advantage of the approach I propose is that it allows for arbitrary nonlinearities in

the state vector and in the pricing kernel. A key nonlinearity is introduced by allowing

investors to have relative, rather than absolute, risk aversion. Another is introduced

3These models have been extended and applied in various ways by Hamilton and Wu (2012),
Altavilla et al. (2015), Greenwood et al. (2015), King (2015), Haddad and Sraer (2015), Malkhozov
et al. (2016), and King (forthcoming), among others.
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by imposing an effective lower bound (ELB) on the nominal short rate.

Finally, I apply the approach to a model with three observable macro factors and

one unobservable factor that governs the maturity structure of investors’ assets. The

nominal pricing kernel depends on the return on wealth, inflation, and consumption

growth, with a functional form that nests Epstein-Zin. Because the SDF explicitly

accounts for inflation, the model allows for the pricing of real as well as nominal

bonds. The nominal short rate in the model is bounded by zero using a “shadow rate”

specification.4

I estimate the model on data since 1971 using nonlinear Bayesian filtering methods.

The model fits the nominal yield data well—far better than a comparable model that

ignores the return on wealth—and it also matches data on inflation-protected yields

since 2003, which are not used in the estimation. It generates a decomposition of the

yield curve that is broadly in line with other models, including a downward drift since

the early 1980s in expected inflation, the expected real short rate, and the nominal

term premium. Although the price of inflation risk and the volatility of inflation

are constant, the model exhibits a time-varying inflation risk premium through the

nonlinear interaction of inflation with wealth. This premium broadly has the properties

of other estimates of the inflation-risk premium in the literature, being high during the

1970s and then gradually declining. However, it is considerably larger on average,

ranging between 2 and 4 percent.

I estimate significant time variation in the effective duration of investors’ exposures.

In particular, the estimated duration factor rises sharply around 1980 and then drifts

downward over the next two decades. Its level is correlated with measures of Trea-

sury supply and duration. The estimates suggest that a one-year increase in duration

(about a one-standard-deviation shock, on an annual basis) results in a contempora-

neous increase of about 30 basis points in long-term nominal yields and about 20 basis

points in long-term real yields. In addition, such shocks lead to modest decreases in

consumption growth over the subsequent five years. All of these effects are smaller

near the ELB. Finally, I find that conventional monetary-policy shocks (unexpected

increases in the short rate) cause small but significant increases in the duration factor

and thus lead to modest increases in term premia. This is consistent, for example, with

the presence of yield-oriented investors, as in Hanson and Stein (2015).

4See Kim and Singleton (2012), Krippner (2012), and Wu and Xia (2013). Bauer Rudebusch (2014)
argue that the shadow-rate specification does a good job of capturing yield-curve dynamics near the
ELB, greatly outperforming traditional affine models.
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Section 2 of the paper sets up the basic class of models considered here and discusses

how they relate to those used in the previous literature. Section 3 describes the solution

algorithm. Section 4 illustrates with some simple examples in the case where the short

rate is the only stochastic factor. Section 5 discusses the development and estimation

of the four-factor macro-finance model. Section 6 presents the results of that model.

Section 7 concludes the paper.

2 Asset Portfolios and Returns under No Arbitrage

I consider investors who, at each time t, have claims to a series of certainty-equivalent

payments over each of the following N periods. Each claim pays one unit of the

consumption good at maturity. I collect the quantities of the claims at each maturity

in the vector Xt = (X
(1)
t , ..., X

(N)
t ). The time-t (real) prices of the claims are denoted

by pt = (p
(1)
t , ..., p

(N)
t ). It is assumed that the prices and quantities of these claims

are determined in equilibrium in each period to clear all asset markets. In cases in

which the optimization problem faced by agents is specified, the demand and supply

functions that give rise to this equilibrium can be solved explicitly. Some such cases

are discussed later. Here, I simply assume that the equilibrium quantities Xt follow

a known reduced-form process, which may be a function of other variables in the

economy.

The absence of equilibrium arbitrage opportunities is equivalent to the existence

of a stochastic discount factor (SDF) Mt,t+n that prices all assets in the economy. In

particular, the real price of an arbitrary asset at time t is given by

pt = Et [Mt,t+nqt+n] (1)

where qt+n is the asset’s payoff n periods hence, and Et indicates the expectation

conditioned on information at time t. This condition must hold for all horizons n > 0.

The following standard relationships follow immediately:

p
(n)
t = Et [Mt,t+n] (2)

Mt,t+n =
n∏
i=1

Mt,t+i (3)
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Define the n-period zero-coupon real bond yields in the usual way, as

y
(n)
t = − 1

n
log p

(n)
t (4)

and define the real short rate rt ≡ y
(0)
t . Equations (2) and (4) imply

rt = − log Et [Mt,t+1] (5)

Given a real SDF, Mt,t+n, the nominal SDF is defined as

M$
t,t+n ≡ Πt+nMt+n (6)

where Πt+n is the gross rate of inflation between periods t and t + n. Nominal bond

prices and yields, denoted p
$(n)
t and y

$(n)
t , are given analogously to equations (2) and

(4). The nominal short-term interest rate is denoted it = y
$(0)
t .

I consider models in which the one-period stochastic discount factor takes the form

Mt,t+1 = M(st+1, st, Rt+1) (7)

where Rt+1 is the one-period gross return on investors’ wealth, M(.) is a known func-

tion, and the vector st summarizes the time-t state of the economy. I assume that st

follows a first-order Markov process on the support S with transition density τ(st+1|st).
I restrict attention to cases in which investors do not care about the quantities of the

particular securities that they hold per se. This rules out, for example, models with

convenience yields, monetary services, or other special benefits that might attach to

certain assets beyond their pecuniary returns. Formally, I assume X
(n)
t /∈ st∀n.

The return on wealth is defined as follows:

Rt+1 ≡
X′tqt+1

X′tpt
(8)

where the payoff vector qt+s = ( 1 p
(1)
t+1 ... p

(N−1)
t+1 ). It is through (7) and (8) that

asset quantities are related to asset prices. Fluctuations in the state of the economy that

change the value of Xt will change pt because expected returns—and therefore current

prices—must adjust to make investors willing to hold the outstanding net positions

at each point in time. For convenience, define xt = ( x
(1)
t ... x

(N)
t ) as the vector of
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par value asset shares, i.e., x
(n)
t ≡ X

(n)
t /

N∑
m=1

X
(m)
t . Since the same vector Xt appears

in both the numerator and denominator of (8), the dollar values of assets outstanding

will not themselves be relevant for pricing in the class of models considered here, only

their relative quantities will be. In particular, note that Rt+1 = x′tqt+1/x
′
tpt.

Define the log real return on an n-maturity asset as

ρ
(n)
t+1 = log

q
(n−1)
t+1

p
(n)
t

(9)

If one were willing to assume that M(.) was exponentially affine and that st and Rt

were jointly Gaussian, then expected returns could be written as

Et

[
ρ
(n)
t+1

]
= rt + cov[λ′st+1, ρ

(n)
t+1] + λRcov[logRt+1, ρ

(n)
t+1] + J (n) (10)

where J (n) is a term reflecting Jensen’s inequality. However, while equation (10) is

linear in logRt, it is not linear in the quantities Xt. This means that it will generally

not be possible to provide closed-form solutions for expected returns (or prices) as

functions of portfolio quantities.

The GVV models mentioned in the introduction achieve an analytical solution by

instead assuming absolute risk aversion. In particular, the expected log return on an

n-maturity bond in those models (using the notation of this paper) is

Et

[
ρ
(n)
t+1

]
= rt + λRcovt

[
X′tqt+1, X

(n)
t q

(n−1)
t+1

]
+ J

(n)
t (11)

Thus, if Xt has an affine factor structure (as GVV assume), then so do bond returns.

This linearity allows the model to be solved analytically, at least in cases where the

conditional covariances can be calculated in closed form.

As the only model to incorporate supply effects into an affine representation of

the term structure, GVV has been highly influential in the way that economists have

designed and interpreted recent empirical studies.5 However, the unusual assumption

of absolute risk aversion that is needed to solve it has uncomfortable asset-pricing

implications. For example, the model implies that term premia should generally trend

upward with wealth, which runs counter to historical evidence. Moreover, it is not

obvious how to incorporate additional features, such as inflation or the ELB, into the

5See, for example, Hamilton and Wu (2011), and Li and Wei (2012).
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model while retaining tractability. The method proposed here, by solving the models

numerically, overcomes these problems.

3 Solution Method

The central difficulty in solving models like the above—in which M(.) is a funciton

of Rt+1 and Rt+1 is determined endogenously—is that the solution for asset prices

involves the moments of future prices, and, under rational expectations, the future

prices themselves depend on the same fundamental process. While it is common in

asset-pricing models for today’s asset prices to depend on the distribution of tomorrow’s

asset prices, the particular difficulty here is that the SDF itself depends upon both of

these objects.

I propose to solve these models numerically for the time-t vector of asset prices pt

using an iterative, discrete-state approximation method. This approach has the added

advantage that it places very few constraints on either the functional form of the

pricing kernel or the dynamics of the state vector. Consequently, it is straightforward

to consider models with potentially important nonlinearities, such as the ELB.

I first make explicit that prices and quantities depend on the state of the economy.

Namely, let X(n)(st) be the function that maps the state vector into the quantity of

asset n, and let Π(st) be the function that maps the state vector into gross inflation. It

is assumed that the form of the SDF in equation (7), the laws of motion for the states,

and the dependence of quantities on the states are known—that is, we (and investors)

have knowledge of the functions τ(st+1|st), M(st, st+1, Rt,t+1), M
$(st, st+1, Rt+1), and

X(n)(st). We seek vector-valued functions p(st) = ( p1(st) ... pN(st) ) and p$(st)

= ( p$(1)(st) ... p$(N)(st) ) that describe how all asset prices depend on st and Xt.

With this notation, the nominal price of asset n is given by

p$(n)(st) =

∫
S

τ(s′|st)M$(st, s
′, Rt+1)q

$(n)(s′)ds′ (12)

where the integral is taken over all dimensions of the state and q$(st) = ( 1 p$(1)(st) ... p$(N−1) )

is the vector of functions determining nominal asset payoffs in state st. An analagous

relationship holds for real prices p(st) with respect to the real SDF M(st, st+1, Rt+1)

and real payoffs q(st).

Given a distribution for the market return, Rt+1, (12) is a system of linear Fred-
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holm equations of the first kind, which in principle can be discretized and solved by

quadrature in one step (see Tauchen and Hussey, 1991). However, the fact that Rt+1 is

defined as in (8) requires us to iterate by, first, solving (12) using a given distribution of

Rt+1, and, second, given the resulting pricing fuctions finding the updated distribution

of Rt+1. These steps can be repeated to convergence.

Specifically, let p$,k
d (st) be a proposal for the nominal pricing function on a dis-

cretization of the state space D = (d1, . . . ,dG) ∈ SG, where G is the number of nodes

and k = 0, . . . , K indexes iterations, and let q$,k
d be the corresponding discretization

of q$,k(st). Suppose that the nodes are uniformly distributed over the state space, so

that the conditional transition probability from node j to node h can be approximated

by6

τ̂(dh|dj) ≡ τ(dh|dj)

[
G∑
g=1

τ(dg|dj)

]−1
(13)

The solution algorithm proceeds as follows.

Set the iterator k = 0.

1. Guess a function p$,k(.) such that p$
t = p$,k(st) on a discretization of S. Find

the corresponding values of pkd (dt) at each node in D.

2. Based on this function, compute the real return on wealth between each pair of

nodes (j, g) as

Rk(dj, dg) =
x (dj)

′ q$,k
d (dg)

x (dj)
′ p$,k

d (dj)
− Π (dg) (14)

3. Compute the updated nominal pricing function for the vector p$,k+1
d (dj) at each

node j = 1, ..., G by setting

p
$(0),k+1
dj

(dj) = exp [i(−dj)] (15)

and

p
$(n),k+1
d (dj) =

G∑
g=1

τ̂(dg|dj)M$ (dj,dg, R(dj, dg)) p
$(n−1),k+1
d (dg) (16)

for n = 1, ..., N . Set q$,k+1
d (dg) = ( 1 p

$(1),k+1
d (dg) ... p

$(N−1),k+1
d (dg) ).

6The uniform discretization is only for expositional ease and is not essential. Indeed, standard
quadrature methods are likely to be more efficient.
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4. Set k = k + 1 and return to step 2.

This procedure constitutes a contraction mapping on D so long as the moments

of the pricing kernel are well behaved. The Banach Theorem then guarantees for

any given discretization D, p$,k
d (dj) −→ p$

d (dj) ∀ dj ∈ D, where p$
d is the (unique)

nominal pricing function that obtains if τ̂ is the data-generating process. But continuity

of τ ensures that, for any node j,

lim
G−→∞

p
$(n)
d (dj) = Et

[
p$(n−1) (st+1)M

$

(
dj, st+1,

x (dj)
′ q$,k

d (st+1)

x (dj)
′ p$,k

d (dj)
− Πt+1

)]
(17)

i.e., in the limit, the pricing function solves the no-arbitrage condition (2). Since Πt is

a known function of the state, this argument also guarantees that the algorithm finds

the unique real SDF.

Finally, by construction, if the algorithm converges, any point of convergence is

a rational-expectations equilibrium. This follows immediately, since convergence is

defined as the fixed point at which the joint distribution of p$
t+1 and M$

t+1 is consistent

with the vector p$
t , for each point in the state space.

It is important to note that, although the algorithm only solves for the vector of

prices at G points in the state space, once these solutions are in hand it is straightfor-

ward to calculate equilibrium prices at any point through the Nystrom extension. In

particular, take an arbitrary state value st. For G large enough, we have

p$(n) (st) ≈

[
G∑
g=1

τ(dg|st)M$

(
st,dg,

x (st)
′ q$,k

d (dg)

x (st)
′ p$,k

d (st)
− Π (dg)

)
p$n−1(dg)

][
G∑
g=1

τ(dg|st)

]−1
(18)

and similarly for real prices. Once the algorithm has converged, the quantities on the

right-hand side are all known. Thus, real and nominal claims can be priced in at any

point in S.

Figure 1 displays some results on the convergence of the solution algorithm for the

one-factor model discussed in the next section. The only state variable in that model

is the “shadow” short rate i∗t . The top panel shows the computed 2-, 5-, 10-, and

15-year yields, shown for i∗t at its average value of 5.2%, across the first 30 iterations

(k = 1, . . . 30). The algorithm is initialized at a price vector p0
d (dj) = (0.95, . . . , 0.95)

for all values of dj and uses G = 8 nodes distributed uniformly across the range

i∗ = (−0.05, 0.15). It is evident from this figure that, for each maturity n, the solution
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converges very quickly once k > n.

The middle panel shows convergence in the number of gridpoints by displaying the

computed yield curve (after k = 30 iterations), again using i∗t = 0.052 for illustration.

Yield curves are shown for G = 2, 4, 8, and 16, in each case spaced equally across

possible values of the state variable. While 4 nodes is clearly too few to achieve

convergence, the solutions using 8 or more nodes are indistinguishable from each other.

For brevity, these results were shown for the average value of the shadow short

rate. Similar convergence results obtain for other points in the state space, although

solutions will not be accurate near the bounds if the underlying state process itself

is not actually bounded. For example, in the above case, we would not expect the

procedure to generate correct solutions near it = 0.15. However, so long as the bound

on the state space is imposed far enough away from the values of the states that are

actually realized in practice, this limitation has a negligible effect on the results. The

bottom panel of the figure illustrates this claim by comparing the yield curve computed

above with the yield curve computed when the grid for i∗t is extended over ranges of

30 and 40 percentage points, rather than the 20-point range used above.

4 One-factor examples

To illustrate some of the properties of these models, I consider a series of cases in which

the nominal short rate it is the only source of stochastic variation. I take periods to be

one year in length and suppose that assets have maturities of up to N = 15 periods.

I impose that the short rate is bounded below by adopting a “shadow-rate” process.

(See Kim and Singleton, 2012, and Wu and Xia, 2016, among others.) In particular,

suppose that the shadow short rate i∗t follows the linear process

i∗t = φ0 + φ1i
∗
t−1 + εt (19)

where εt has variance σ2. The short rate it is given by

it = max[i∗t , b] (20)

where the parameter b defines the ELB. I assume zero inflation, so it = rt at all t.

For the purposes of these examples, assume that the relative supply of assets is

fixed over time, xt= x. For parsimony, I approximate the maturity structure of assets
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with a normal distribution:

x(n) ∝ exp

[
−(x(n) − z)2

2θ2

]
(21)

where the parameter z is the average maturity outstanding, and θ is a scale parameter.

Finally, let the SDF be given by

Mt,t+1 = δtR
λR

t+1 (22)

where λR is a risk-aversion parameter. The variable δt is immediately determined as

δt =
exp[−it]
Et

[
RλR
t+1

] (23)

where the denominator can be calculated from (13) and (14).

For the purposes of illustration, I set φ0 = 0.0052, φ1 = 0.9, σ = 0.01, b = 0.002,

and λR = −8. These values are calibrated roughly to match the dynamics of the

short-rate and the average value of the 10-year yield in the data.

Panel A of the figure illustrates the insensitivity of the results to the shape of

the asset-maturity distribution, which, in this case, is governed by the parameter θ.

The left-hand graph shows the distribution with z = 8 and θ = 0.1 (blue) or θ = 2

(orange). The right-hand graph shows the corresponding yield curves, in both cases

taking the short rate to be it = 5.2%. The curves are nearly identical. This should not

be surprising because the individual asset share x
(n)
t does not matter for the individual

asset price p
(n)
t . Only the weighted sums of asset shares shown in equation (8) matters,

and they affect all prices in the same way through M(.). Consequently, this model

cannot produce local-supply effects from large quantity gluts or shortages in particular

sectors of the market.7

Panel B shows how a shift in the average duration in investors’ portfolio translates

into yields. Again taking the short rate to be 5.2%, I consider duration values of z = 5

years (blue) and z = 10 years (orange). In both cases, θ is set to 1, so that, as illustrated

on the left, this is just a uniform transposition of the distribution of assets to higher

maturities. As shown on the right, the yield curve shifts upward in response—by 72

basis points at the ten-year maturity. Because the expected path of short rates is the

same in both cases, the entire difference is attributable to a change in the (real) term

7Malkhozov et al. (2016) make a similar point.
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premium.

Since risk prices are themselves a function of the quantity of risk held by investors,

heteroskedasticity can cause risk prices—and therefore term premiums—to differ sig-

nificantly across states of the world. A particularly important case of this is the

lower bound on the nominal short rate. The presence of this bound, all else equal,

implies that there is less uncertainty about short-term interest rates in the near future

when the current value of those rates is near zero. The reduction in the volatility of

short-term interest rates induced by the ELB will dampen duration effects.

Panel C illustrates this effect by conducting the same comparative-statics exercise

on duration that was depicted in panel B, but this time with a shadow-rate value of

i∗t = −3%. (This is close to the average value of the shadow rate in the empirical

estimates of Krippner (2012).) Yield curves in this region of the space have an “S”

shape, due to the expectation for the short rate to remain at zero for some time. Again,

the shift from a portfolio duration of 5 years to 10 years causes an increase in longer-

term yields, but it is smaller than we obtained away from the ELB. In particular, in

this case, the increase in the 10-year yield is only 61 basis points.8

Finally, Panel D shows the effect of different values of the price of wealth risk, λR,

for it = 5.2%, z = 8 years, and θ = 1. A reduction in this parameter, from -8 to -4

in this case, acts much like a reduction in duration, causing the yield curve to fall at

longer maturities. Again, this entire decline—77 basis points on the ten-year yield—is

due to term premia.

5 A Macro-Finance Model with Portfolio Effects

I now turn to a fully specified four-factor macro-finance model in which the duration

channel is operative, and I take that model to the data. I consider a three-dimensional

state vector, st = (πt, gt, i
∗
t ), where πt is inflation, gt is the growth rate of real con-

sumption, i∗t is the shadow nominal short-term risk-free rate. Let Πt and Gt denote

the corresponding gross rates of inflation and growth, exp[πt] and exp[gt], respectively.

I assume that the two macroeconomic variables depend on their own lags and on

short- and long-term interest rates, as follows. Define the vector s̃t = (πt, gt, it, y
$(10)
t ).

Then let

πt = φπ0 + φπ
1 s̃t−1 + eπt (24)

8King (forthcoming) explores the effect of the ELB in similar models in detail.
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gt = φg0 + φg
1s̃t−1 + egt (25)

where eπt and egt are error terms.

There are two unobserved state variables, the shadow short rate i∗t and the duration

factor zt, both of which interact nonlinearly with yields and the macro variables. (Note

that the reduced-form dynamics of the economic variables above do not depend on the

unobserved states, but only on the observed it and y
$(10)
t .) The unobserved states have

laws of motion:

i∗t = φi
∗

0 + φi∗

1 s̃t−1 + φi
∗

2 i
∗
t−1 + ei

∗

t (26)

zt = φz0 + φz
1s̃t−1 + φz2z

∗
t−1 + ezt (27)

The short-term nominal rate is given by equation (20), where I calibrate the value

of b to 20 basis points. Meanwhile, the unobserved factor zt determines equilibrium

asset quantities as in equation (21), with θ = 1. As noted in the previous section,

the value of θ is likely to make very little difference. The magnitude of the factor has

the interpretation as the average duration of the investors’ equilibrium portfolio. The

reduced-form error vector et = ( eπt egt ei
∗
t ezt ) has covariance matrix Σ. Finally, I

collect all of the φ parameters in equations (24) through (27) in the vector Φ for ease

of notation.

I suppose that investor preferences are such that the nominal SDF is

M$
t,t+1 = δtΠt+1G

λ1
t+1R

λ2
t+1 (28)

where, as above, Rt+1 is the gross return on wealth, given by equation (8). Epstein-Zin

preferences are nested in this specification. As in the previous section, the random

variable δt can be calculated exactly, given the other time-t model objects, as

δt = exp [−it] Et

[
Πt+1G

λ1
t+1R

λ2
t+1

]−1
(29)

In the special case of Epstein-Zin preferences, δt is proportional to the rate of time

preference.

I estimate the above model on annual data from 1971 through 2017. There are

two reasons for using annual data. First, from a practical standpoint, having both

fewer observations and fewer points on the yield curve greatly increases computational

efficiency. Second, it is important to capture lower-frequency properties of the macro

data to fit bond yields. (See, e.g., Piazzesi and Schneider, 2007.) Using annual data
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allows for this, while still maintaining a relatively parsimonious first-order dynamic

process.

I fit the model to PCE inflation rates, growth of nondurables and services from

the NIPA data, and 1-, 5-, 10-, and 15-year nominal Treasury yields. All yields are

Gurkaynak et al. (2007) zero-coupon yields and are averaged to produce annual values.

I denote by Ω the 3× 3 covariance matrix of the error terms on the long-term nominal

yields produced by the model.

Because Treasury yields depend on the duration factor and the shadow rate in a

nonlinear way without a closed-form solution, I estimate the series {zt} by means of a

particle filter (see Doucet et al., 2001). The fixed parameters Φ, Σ, Ω, λ1, and λ2 are

estimated by a Gibbs sampling procedure. Specifically, estimation proceeds as follows.

Set the iterator j = 1. Draw Φj, Σj, and Ωj from the prior distribution.

1. Calculate the nominal SDFM$
j based on Φj and Σj, using the procedure described

in Section 3.

2. Using Φj and Σj for the state dynamics, run the particle filter. Set t = 1971

(corresponding to the first annual observation). Then,

(a) Draw values of zt,k ∼ p (zt|Φj,Σj, st−1), for k = 1 to 10, 000.

(b) If 2009 < t < 2015, take it to be constrained by the ELB and draw values of

i∗t,k ∼ p (i∗t |zt,kΦj,Σj, st−1), for k = 1 to 10, 000. Reject any draw for which

i∗t > b.

(c) For each draw zt,k, use the pricing kernel M$
j to construct model implied

nominal yields.

(d) Evaluate the weights wk,t ∝ Pr(y
$(5)
t , y

$(10)
t , y

$(15)
t |zt, πt, gt, it,Φj,Σj,Ωj) based

on the yield data.

(e) Resample 10,000 draws from the distribution of {zt}t1971, using the weights

wk,t.

(f) t = t+ 1.

Note that, in running the particle filter, I keep the whole history of each re-

sampled particle. The resulting distribution of paths is a random sample from

the posterior distribution p
(
{zt}20171971|Φj,Σj,Ωj, {πt, gt, it, y$(5)t , y

$(10)
t , y

$(15)
t }20171971

)
.

That is, it is a smoothed, rather than a filtered, estimate.
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3. Sample one history {zt}20171971 from the distribution j. Estimate the reduced-form

dynamics (24) - (27) based on this draw and the observed data.

4. Set j = j + 1.

I repeat these steps 10,000 times, dropping the first 1,000 draws to allow for burn-in.

6 Results

6.1 Yield curve fit and decomposition

Table 1 reports the parameter estimates. The coefficients λG and λR, reflecting the

market prices of consumption risk and wealth risk, respectively, are -70 and -25. It is

interesting to note that Epstein-Zin would generally imply that these two parameters

should have opposite signs, so in this sense the data reject that special case of the

model.

The left-hand column of Figure 3 shows the 5-, 10-, and 15-year nominal yields

used in the estimation (in red), together with the posterior medians and 10% - 90%

credibility intervals of the model-implied yields. As shown in Table 1, the estimated

standard deviations of the error terms, evaluated at the posterior median, range from

25 to 30 basis points. The right-hand column compares model-implied real 5- and

10-year yields to yields on Treasury inflation-protected securities (TIPS), for which

the data begin in 2003. These data were not used in the estimation and so provide

an out-of-sample test. (The n-period real yields in the model are calculated as the

expectation of the real SDF, Et [Mt,t+n], conditional on the time-t state vector.). The

model does reasonably well in tracking TIPS yields; indeed, those yields are always

within the 80% credibility interval.

Figure 4 shows the model-implied decomposition of the 10-year yield into its four

components: the expected real short rate, the expected inflation rate, the real term

premium, and the inflation-risk premium. The real term premium and the inflation

risk premium sum to the nominal term premium by definition. The average expected

nominal rate and average expected inflation over the next ten years are computed, for

each period’s state vector, based on the state dynamics in equations (24) - (27). The

average expected real rate is the difference between these series. The corresponding

real and nominal term premia are simply the differences between the model-implied
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(real or nominal) 10-year yield and its expectation component. The series are shown

as posterior medians.

The model has several features that are common to less-restricted term-structure

models (i.e., those with multiple latent factors and no economic interpretation of the

SDF), such as Kim and Wright (2007), Adrian et al. (2017), and D’Amico et al.

(2017). In particular, it implies a fairly rapid increase in the nominal term premium in

the late 1970s and early 1980s, followed by a gradual downward drift. There is also a

fairly sharp decline of about 1 percentage point during the period 2003 - 2005, around

the time of the “conundrum” in long-term rates. The real term premium is estimated

to always be small and slightly negative. Expected inflation also moved lower in the

1980s, largely following realized inflation. The ten-year expected real short rate has

drifted lower by about 150 basis points between about 2000 and 2017, consistent with

some other estimates of “r-star.”

The model does produce one fairly unusual result in this decomposition—the inflation-

risk premium is large over the entire sample period. Indeed, although it drifts downward

since the 1980s, consistent with other models, it never falls below 2 percentage points.

This leads to a somewhat higher estimate of the nominal term premium, compared, for

example, to the Kim-Wright estimate, which is a bit over 1% for the last few years of

the sample. It is interesting to note that the model exhibits significant time variation

in the inflation-risk premium, because (apart from the effects of the ELB) the variance

of inflation is constant, and it enters into the SDF with a constant exponent of 1.

Thus, the time variation arises solely from the covariance of inflation with the return

on wealth, which is a function of the duration factor zt.

6.2 The duration factor

Figure 5 shows the estimated path of the duration factor over time (median and 80%

credibility interval). It starts the sample period low but rises sharply in the early

1980s. It then gradually trends downward over the remainder of the sample, although

it spikes around the trough of every recession. Although the level of the estimated zt

is correlated with the other model objects shown in figure 4 at low frequencies, it does

not bear a one-to-one correspondence with any of them.

The factor has an interpretation as the average maturity of claims to future pay-

ments held by investors. While these claims may take a number of forms—including

privately issued securities, real assets, and future income streams—a case of particular
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interest is that of Treasury debt. To see whether the size and structure of actual Trea-

sury debt bears any relation to the duration factor, I regress the median estimate of

zt on the weighted-average maturity of all Treasury debt outstanding (WAM) and on

the maturty-weighted debt-to-GDP ratio (MWD). Both measures are calculated using

all outstanding Treasury securities available in CRSP, and I control for 1-year yields

in the regressions.

Table 2 reports the results. Both measures are strongly positively correlated with

the estimated factor. (In fact, coincidentally, they take almost identical coefficient

values.) Of the two, WAM is more consistent with the interpretation given to the

factor in the model, since it is in units of duration. According to the regression, a

one-year increase in Treasury WAM is associated with a 1.36-year increase in overall

portfolio duration. We cannot reject that the coefficient is equal to 1.

Figure 6 shows the estimated relationship between the duration factor and the level

of the 10-year yield. In the top panel, the other three state variables are all set to their

sample means. In the bottom panel, inflation and growth are set to their sample means,

but the shadow rate i∗t is set to -3%, so that the ELB is binding. In both cases, there

is a positive association between duration and yields. As in the one-factor model of

the previous section, this association is attenuated at the ELB.

Figure 7 shows that a significant portion of the level of and variation in the ten-year

yield is driven by zt. Specifically, I set λR = 0, so that the return on wealth is no longer

an element of the SDF, holding all other parameters and state variables the same. The

resulting counterfactual 10-year yield is shown by the blue line, while the black line is

the yield implied by the baseline model. The shaded-blue region, which averages about

3 percentage points, represents the contribution of the return on wealth to long-term

rates. Looked at in this way, the duration channel accounts for essentially all of the

nominal term premium. This result is also shown in the second column of Table 3,

which reports the model errors in the counterfactual model. (Column 1 reports the

errors in the baseline model, for comparison.)

A related question is whether a model that includes only consumption and infla-

tion in the SDF can do equally well in fitting the data. To answer this question, I

re-estimated the model without including Rt in M(.). Note that, even in this case,

the unobserved factor zt may continue to help, to the extent that it might absorb

predictable variation in nominal yields that is not accounted for by the observable

variables, although it would no longer have an interpretation as reflecting portfolio du-

18



ration. The last column of Table 3 reports the model fit in this case. Re-optimizing the

parameters of the model improves the fit substantially relative to the second column,

mostly because the model is able to raise the level of yields relative to that column

and eliminate the downward bias that was present in Figure 7. However, the errors

in matching yields are still about twice as large as in the baseline model (even though

the number of observable and unobservable factors is the same). Evidently, adding

the return on wealth to the SDF and treating zt as reflecting portfolio duration is

advantageous for fitting the yield-curve data.

6.3 Impulse-response functions

I now consider the dynamic effects of shocks to the short rate and the duration factor.

For this purpose, I adopt a structural decomposition of Σ using short-run ordering

restrictions. Given the use of annual data, it is not realistic to impose the usual

assumption that certain variables cannot respond to others for a least one period.

Therefore, I estimate the shocks using higher-frequency data, as follows. First, using

the Φ parameters and the estimated annual values of zt, I interpolate the zt series

to a quarterly frequency. Then, I re-run the model using quarterly data for all four

variables, including three lags of the states. I apply the Cholesky decomposition to

the covariance matrix of the error terms of this higher-frequency model to obtain the

short-run ordering. I order the duration factor last and the short rate second-to-last.

The responses of the real and nominal yield curves to the two shocks is shown in

Figure 8. Monetary-policy shocks decay nearly monotonically, and the expectation of

this behavior is reflected in the initial response of the yield curve, which is greatest

at the short end. (This shape is somewhat different at the ELB, not shown.). These

shocks have modest effects on inflation, so most of this behavior is passed through to

real yields.

The duration shock results in a much different shape of the initial response. In

response to a one-standard-deviation shock (about 1 year, at an annual frequency)

short-term yields do not move at all, while nominal yields beyond about 7 years rise by

about 30 basis points. About half of that effect is due to an increase in the real yield

curve, although that response exhibits a slight hump shape across maturities, with the

peak around the 5-year sector. The effect of duration shocks on nominal yields decays

rapidly over the first few years, while the response of real yields is more gradual.

Taking a closer look at these responses, Figure 9 shows the response of the ex-
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pectations and term-premium components of nominal yields across maturities, in the

period when the shocks occur. Most of the effect of the monetary-policy shock is on

the expectations component, but there is a modest and marginally significant effect on

term premia as well. I will return to this result momentarily. The duration shock as

essentially no effect on the expectations component. Almost all of the response shown

in the previous figure results from a change in the term premium, as we would expect.

The shocks also have implications for the dynamic paths of the economic variables.

These are shown in Figure 10. Both shocks have no significant effect on inflation but

a modestly negative effect on consumption. Interestingly, the duration factor rises

following a shock to the nominal short rate. This reaction is responsible for the modest

increase in term premia associated with this shock, noted in the previous figure. It

is consistent with investors moving into longer-term assets in response to increases in

interest rate, a behavior that Hanson and Stein (2015).

Using these result, we can do a back-of-the-envelope calculation to consider the

effects of the Federal Reserve’s asset purchase programa. In King (forthcoming) I

calculate that the Fed’s asset purchases collectively reduced the dollar duration in

public hands by about 20%, relative to what it would have otherwise been at the end

of the program. MWD at the end of 2014 was 5.0. Thus, QE may have been responsible

for a reduction of about 1.25 in this variable. From the second column of Table 2, this

would map into a value of zt that is about 1.7 years lower. The IRFs above suggest

that this would translate into about a 50 basis point decrease in long-term nominal

yields and about a 25 basis point decrease in long-term real yields, with the latter

effect having a half-life of about 8 years. In addition, such a shock would have raised

consumption growth by about 0.25% over each of the following three to four years.

There are several caveats to this calculation. First, QE programs were implemented

at the ELB, and the attenuating effects of that environment have already been noted.

Second, the programs were spread over several years, rather than occurring as a single

large shock. That timing difference could matter in the presence of nonlinearities.

Third, the dynamics of central bank asset purchases are likely to differ from those of

Treasury debt or other elements of investors’ equilibrium portfolios. Since investors

perceptions of these dynamics matters for their response, the effect of QE on yields

and economic variables might be different from the effects of other types of shocks to

zt.
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7 Conclusion

This paper has presented a method for solving a broad class of models in which the ma-

turity distribution of investors’ assets matters for bond yields (and other asset prices)

through the dependence of the pricing kernel on the return on wealth. These models

are inherently nonlinear and analytically intractable, and I develop an algorithm for

solving them. I set up and estimate one such model, which includes both inflation

and real activity as observable factors. To my knowledge, this is the first attempt to

integrate portfolio-balance / duration effects of the type explored in Vayanos-Vila into

a structural macro-finance asset pricing model. The model allows one to examine such

issues as the relative effects of short-rate and bond-supply shocks, which might be of

interest for calibrating monetary policy.

Generally, the model suggests that the direct effects of duration shocks on term

premia are fairly small. However, the presence of duration in the model, through the

return-on-wealth term in the stochastic discount factor, is very important for explaining

the behavior of yields. Put somewhat differently, fluctuations in duration are less

important for the term structure than fluctuations in real asset prices, which then

feed back through their affect on aggregate portfolio returns. Adding these features to

more-realistic and fully specified models of the macroeconomy is an important direction

for future research.
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Table 1.  Parameter Estimates 
 

lG lR w(5) w(10) w(15) 

-75 -25 0.30% 0.25% 0.27% 
 
 
 
 
 
 
Table 2.  Regressions of Duration Factor on U.S. Debt Metrics 
 

Dep. var: Estimated duration factor 

Intercept -5.37** 
(2.10) 

-2.34 
(1.40) 

1y yield 30.2*** 
(10.9) 

46.2*** 
(12.1) 

WAM 1.36*** 
(0.35) 

 

 

MWD/GDP  1.36*** 
(0.35) 

Adj. R2 0.679 0.681 
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Table 3.  Fit Statistics 
 
 Baseline Baseline 

parameters, 
but lR =0 

Re-estimated 
w/o Rt+1  in 
SDF 

Inflation t+1 1.37% 1.37% 1.38% 
Consumption t+1 1.20% 1.20% 1.20% 
1y yield t+1 1.42% 1.42% 1.44% 
5y nom. yield t 0.30% 3.51% 0.60% 
10y nom. yield t 0.25% 2.98% 0.49% 
15y nom. yield t 0.27% 3.28% 0.58% 
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Figure 1.  Convergence of the Algorithm in the One-Factor Model 
 
A.  Convergence over iterations 

 
 
B.  Convergence over number of nodes 

 
 
C.  Convergence over range of nodes 
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Figure 2.  Duration Effects in the One-Factor Model 
 

 
A.  Effect of the distribution shape 
 

   
 
 

B.  Effect of duration 
 

it* = 5% 

  
 
 

C.  Effect of the ELB 
it* = -3% 

  
 

  

0 2 4 6 8 10 12 14
Duration (years)

0.2

0.4

0.6

0.8

1.0
Portfolio Share

0 2 4 6 8 10 12 14
Maturity

5.0

5.5

6.0

6.5

7.0

7.5

8.0
%

0 2 4 6 8 10 12 14
Duration (years)

0.2

0.4

0.6

0.8

1.0
Portfolio Share

0 2 4 6 8 10 12 14
Maturity

5.0

5.5

6.0

6.5

7.0

7.5

8.0
%

0 2 4 6 8 10 12 14
Duration (years)

0.2

0.4

0.6

0.8

1.0
Portfolio Share

0 2 4 6 8 10 12 14
Maturity

0.5

1.0

1.5

2.0

2.5

3.0

3.5
%



 30 

Figure 2.  (continued) 
 

D.  Effect of the risk price 
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Figure 3.  Four-factor model-implied yields vs. data 
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Figure 4.  Decomposition of 10-year Nominal Yield 
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Figure 5.  Estimated duration factor 
 

 
 
  

1980 1990 2000 2010

2

4

6

8

10

12

14

Years



 34 

Figure 6.  10-year yield as a function of the duration factor 
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Figure 7.  Contribution of duration effect to 10-year yield 
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Figure 8.  Impulse-response functions – Yield curve 
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Figure 9.  Immediate impact of shocks on yield curve components 
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Figure 10.  Impulse-response functions – state variables 
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