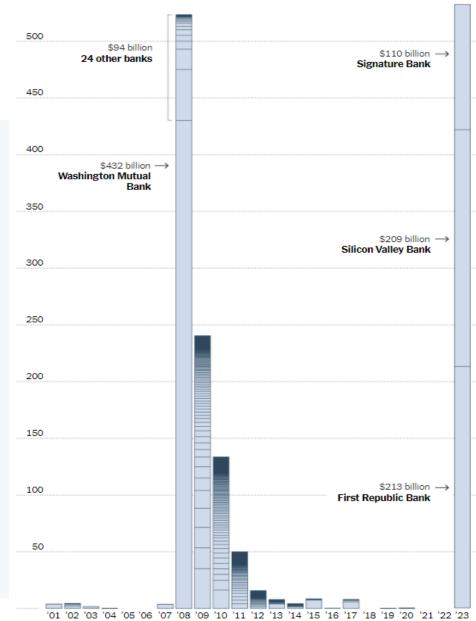


Interest Rate Risk in Banking

Peter DeMarzo, Arvind Krishnamurthy, Stefan Nagel

Discussion by **Erica Jiang**Macroeconomics and Monetary Policy Conference
2/2025



Background

U.S. bank failures in each year, sized by total assets and adjusted for inflation

\$550 billion

Source: FDIC and NYTimes

How exposed are banks to interest rate risk?

Maturity transformation exposes banks to interest rate risk

- Deposit franchise may hedge against interest rate risk
 - Drechsler et al. (2021)
- Franchise value collapses when most valuable due to run
 - Jiang et al. (2023), Haddad et al. (2023), Drechsler et al (2023)
- Banks use limited interest rate swaps to hedge
 - Granja et al. (2024)

This Paper

Focus on a "no-run" equilibrium (best scenario for banks)

- Franchise value (FV) declines as interest rates rise
 - Exacerbates, rather than offsets, losses on security holdings
 - In contrast to existing studies (e.g., Drechsler et al. 2021)
- Intuition: Example 1 in Jiang et al (2023)
 - Deposit beta<1 does not offer equity value hedging benefits
 - Hedging benefits requires peculiar assumptions on fixed operating costs or changes in beta
- Contribution: Estimate FV under the assumption of no run

Methodology

Assets	Liabilities		
Loans (L)	Deposits (D)		
Securities (T)	Other Borrowing (B)		
	Book Equity (E)		

- · Banks' value creation: deposit-taking and loan-making
 - Value creation from deposit-taking: $r^* r^D$
 - From loan-making: $r^L r^*$ (* discuss later)
 - Don't create value by holding securities (T/B)
- Banks' franchise value

$$FV = PV(D(r^* - r^D) + L(r^L - r^*) - C)$$

Findings

• Estimating FV, as the value of a replicating portfolio:

$$Spread = \phi_0 + \phi_r r^* + \phi_1 l^1 + \phi_t l^5 + \epsilon$$

- Empirical findings:
 - Fixed Component: $PV(\phi_0 c)$ **Duration
 - ϕ_0 is mostly from loan spread
 - $\phi_0 > c \rightarrow$ positive duration; $FV \downarrow$ when $r^* \uparrow$
 - Floating Component: ϕ_r

- **Level of FV
- ϕ_r is mostly from deposit spread
- Value creation mostly from deposit-taking (Egan et al, 2022)

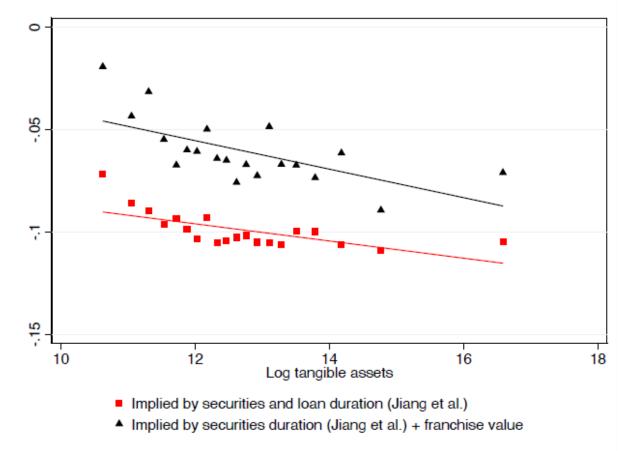
Big-Picture Takeaway

Existing studies:

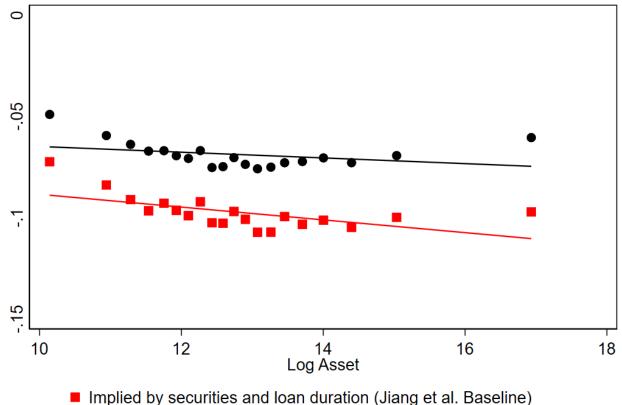
- Banks do not hedge asset interest rate exposure
- Most banks can survive in the absence of the RUN
- But unhedged exposure can trigger bank runs → FV collapses

This Paper:

- Further evidence that banks take interest rate risk
- Even in no-run equilibrium, measured franchise value does not help hedge bank equity value
- A lower bound for bank interest rate risk
- → much higher than prior literature claims


Bank Loss in 2023

- The loss on FV and securities combined is 6% of assets
 - Positive FV duration → no offsetting value changes
 - High FV duration is associated with more holdings of longduration securities


- Existing FV is sufficiently high to make banks on-going solvent
 - High Continuation Value (level of FV) → capital buffer

Bank Loss in 2023

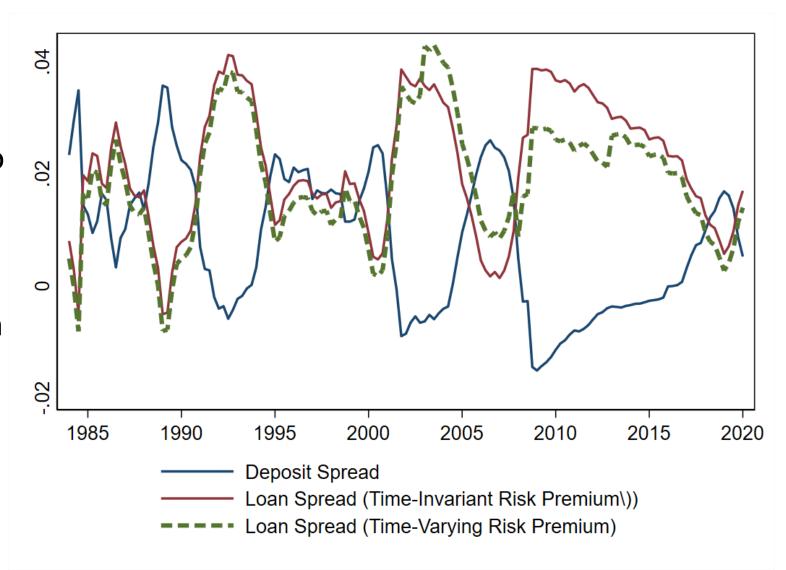
Figure 8 of the paper

Reproduced using Jiang et al. measures

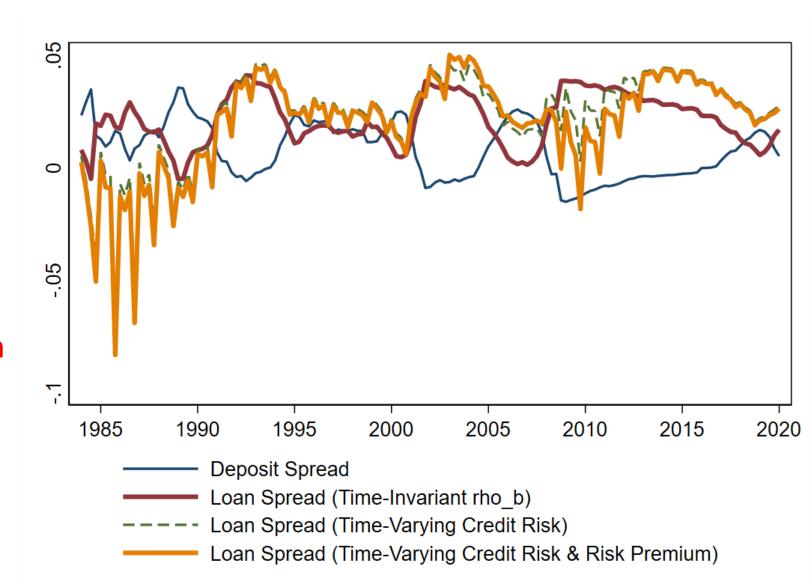
• Implied by securities and loan duration (Jiang et al. Conservative)

Bank Loss in 2023

- The loss on FV and securities combined is 6% of assets
 - In the ballpark of estimates in Jiang et al (2023)
- Existing FV is sufficiently high to make banks on-going solvent
 - In line with Jiang et al (2023): most banks can survive current level of interest rates in the absence of the RUN


Other Comment: Loan Franchise Estimation

- Banks' value creation: deposit-taking and loan-making
 - Value creation from deposit-taking: $r^* r^D$
 - From loan-making: $r^L r^*$ (* discuss later)
 - Don't create value by holding securities (T/B)
- Loan spread:


$$r_{t,b}^{L} = \frac{Interest\ Income_{t,b}}{L_{t,b}} - \rho_{b}$$

- ρ_b : risk-neutral expected credit losses
- Time varying vs non-time varying: $\rho_{b,t}$ vs ρ_b ?
 - Banks' risk-taking behavior may change over time (expected credit losses)
 - Risk premium changes over time (Berndt et al., 2018)

- Blue & Red Solid Lines:
- Replication of Figure 1
- Risk premium calibrated to match Figure 1
- Green Dash Line:
- Time-varying risk premium from Berndt et al. (2018)
- Invariant loss-provision

- Blue & Red Solid Lines:
- Replication of Figure 1
- Risk premium calibrated to match Figure 1
- Green & Orange Lines:
- Time-varying loss-provision
 & risk premium from
 Berndt et al. (2018)

Nevertheless, main finding about positive duration holds.

	Intercept ϕ_0	Fed Funds ϕ_r	Term Swap ϕ_1	Term Swap $oldsymbol{\phi}_5$
Deposit Spread	<mark>0.002</mark>	<mark>0.31</mark>	<mark>-0.34</mark>	<mark>-0.27</mark>
Loan Spread	<mark>0.021</mark>	<mark>-0.21</mark>	<mark>0.29</mark>	<mark>0.40</mark>
Time varying risk premium	0.019	<mark>-0.19</mark>	<mark>0.18</mark>	<mark>0.37</mark>
Time varying loss provision v1	0.045	-0.50	0.26	-0.20
Time varying loss provision v2	0.044	-0.50	0.21	-0.30
Total Spread	<mark>0.015</mark>	<mark>0.13</mark>	<mark>-0.13</mark>	<mark>-0.03</mark>
Time varying risk premium	0.013	<mark>0.14</mark>	<mark>-0.20</mark>	<mark>-0.05</mark>
Time varying loss provision v1	0.028	-0.02	-0.16	-0.37
Time varying loss provision v2	0.027	-0.02	-0.20	-0.42

Main finding about positive duration holds.

• Less emphasis though important $(\phi_0 > c \text{ or } \phi_0 < c)$

• Conceptually, why is it better *not* to use concurrent credit loss provision?

• Empirically, how is ρ_b constructed (e.g., what is the risk premium applied, time-varying or not, all sector or finance sector, etc.)?

Conclusion

- Useful empirical measures/estimation
 - A lower bound for bank interest rate risk
 - FV does not hedge equity value
- Clarifies important concepts

• Further evidence for banks' exposure to interest rate risk