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Conventional money demand models appear to be un-
stable, and this complicates the problem of conducting
monetary policy. One way to deal with parameter in-
stability is to learn how to adapt quickly when parameters
shift. This paper applies a time-varying-parameter es-
timator to conventional money demand models and evalu-
ates its usefulness as a forecasting tool. In relative terms,
the time-varying-parameter estimator improves signifi-
cantly on ordinary least squares. In absolute terms, we
continue to have difficulty tracking money demand through
_ turbulent periods. '

Adapting to Instability in Money Demand:
- Forecasting Money Growth with a
Time-Varying Parameter Model

According to the quantity theory of money, nominal spend-
ing depends on the supply of money and on velocity, and
velocity is determined by money demand. If money demand
is stable, monetary aggregates can be used as indicators
of fluctuations in nominal aggregate demand. Further-
more, if money demand is functionally invariant to changes
in money supply, then the Federal Reserve may be able
to adjust the money supply in order to offset fluctua-
tions in nominal spending that are due to non-monetary
disturbances.

Conventional models of money demand appear to be
unstable, however, and this greatly complicates the prob-
lem of conducting monetary policy. In particular, since
money demand models are functionally unstable, it is
difficult to interpret the information in monetary aggre-
gates. For example, in recent years, the Federal Reserve
System’s money demand models have consistently under-
estimated M2 velocity. As a consequence, the Federal
Reserve has overestimated the rate of M2 growth needed to
sustain the projected growth in nominal GDP, and there-
fore actual M2 growth has fallen below its target range.
Ordinarily, the unexpected shortfall in M2 growth would
be a sign of serious weakness in the economy. However, in
this case, it simply reflected the fact that velocity turned out
to be higher than expected. Thus instability in money
demand models makes it difficult for the Federal Reserve
to keep money within its target range while still trying to
achieve its goals for the economy.

As a theoretical matter, there is no reason to believe that
conventional money demand models should be stable. For
example, since conventional representations are subject to
the Lucas critique, changes in central bank operating
procedures can alter money demand parameters. Similarly,
financial innovation may alter the relation between velocity
and opportunity costs. Thus it seems appropriate to treat
conventional money demand models as time-varying pa-
rameter models.

Roughly speaking, there are two ways to deal with time-
varying parameters. One is to seek a deeper theoretical
structure whose parameters are time invariant. So far,
monetary economists have had little success with this
approach. Another way to deal with parameter insta-
bility is to learn how to adapt to functional changes
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in money demand by allowing estimated parameters to
change quickly when the model begins to show signs of
instability. This paper takes the latter approach. It explores
a time-varying parameter estimator that gives more weight
to recent data and less weight to older data, so that
estimates can change quickly when parameters change.
The goal is to improve the predictive performance of
money demand models.

This intuition is formalized in terms of discounted
least squares (DLS). The paper applies recursive DLS
to a number of conventional money demand models and
compares its predictive performance with ordinary least
squares (OLS). In relative terms, DLS compares favorably
to OLS. For example, in cases where instability is espe-
cially important, DLS reduces the mean square error of
one-quarter-ahead forecasts by 55 to 60 percent. Thus DLS
can provide an important hedge against gross instability.

In absolute terms, however, conventional money de-
mand models still have a great deal of trouble forecasting
through turbulent periods. Thus DLS represents only a
partial solution to parameter instability. In particular, since
we continue to have difficulty tracking M2 demand, it will
continue to be difficult to use M2 as an indicator of
economic conditions.

I. TimME-VARYING PARAMETERS

This section interprets conventional money demand func-
tions in order to motivate the empirical approach taken in
the paper. In conventional money demand models, demand
for real balances depends on a scale variable, such as
income, consumption, or wealth, and on opportunity cost
variables. For example, Meltzer (1963) studied variations
on the following model: '

In(m,/p) =B+ Byln(r) + Byln(w) + u,

where m, denotes nominal money balances, p, is the price
level, r,is a nominal interest rate, w, is either real wealth or
income, and B, B,, and B, are parameters.

Most of the empirical literature assumes that the param-
eters are time invariant. In practice, however, estimated
money demand models appear to be unstable. For example,
there was the famous “case of the missing money” in the

"mid-1970s (see Goldfeld 1976, or Judd and Scadding
1982). More recently, Feinman and Porter (1992) report
evidence that M2 demand models have gone off course.

From a theoretical point of view, the. instability of

empirical money demand models is not puzzling. On the

contrary, it is exactly what monetary theory predicts. Two
kinds of arguments generate time-varying parameters, one
based on the Lucas critique and another based on financial
innovation.

The first argument concerns identification and is due to
Cooley and LeRoy (1981). Traditional money demand
models describe an equilibrium between money supply
and money demand. In order to interpret the parameters
solely in terms of money demand, however, money sup-
ply must be predetermined or exogenous. This condition
seems dubious. If money supply is endogenous, the esti-
mated parameters will depend at least in part on supply
factors. Furthermore, if there are changes in the determi-
nants of money supply, such as a change in monetary
policy operating procedures, the parameters of conven-
tional money demand models will also change. Thus, when
money supply is endogenous, a necessary condition for
parameter stability is that monetary policy rules not change
during the sample. Since post-war U.S. data probably do
not satisfy this condition, parameter instability is to be
expected.

A second argument emphasizes financial innovation
(e.g., Ireland 1992). For example, in cash-in-advance mod-
els, agents can buy some goods only with money and other
goods with either money or credit. The cash-in-advance
constraint gives rise to a transactions demand for money. A
financial innovation expands the set of goods that can be
bought on credit and thus (other things equal) reduces
demand for real balances. Thus financial innovation alters
the relation between money, interest rates, and expendi-
tures. Since conventional money demand models do not
fully capture the effects of financial innovation, one should
expect parameter instability during periods of financial
innovation.

Recently, a number of authors have argued that financial
innovation may account for the recent bout of instability in
M2 demand. In particular, the increased availability of
mutual funds may have altered the relation between M2
velocity and interest rates (e.g., Feinman and Porter 1992
or Duca 1993). For example, banks have begun to market
mutual funds to retail customers. As these funds become
more accessible, the transactions costs of switching be-
tween M2 and various non-M2 securities are reduced. This
increases the substitutability between M2 and stock and
bond funds and thus increases the interest elasticity of M2
demand. The unusually steep yield curve of the last few

~ years also may have induced some investors to switch into

mutual funds.

These arguments suggest that we should treat conven-
tional money demand functions as time-varying parameter
models. Broadly speaking, there are two ways to deal with
time-varying parameters. One is to seek a “deep struc-
tural” model of money demand, i.e., one that is invar-
iant to financial innovation and monetary policy regime
changes. In order to achieve invariance, however, a deep
structural model would have to incorporate decision rules



that govern financial innovation as well as rules that govern
monetary policy regime changes. This approach is attrac-
tive in principle, since it would enable economists to
evaluate the effects of policy changes. But this route does
not seem promising at present, since monetary theory has
not yet advanced to the point where it can deliver em-
pirically useful representations for these decision rules.
Given the state of knowledge, it may be worthwhile to seek
an alternative solution.

Another approach is to learn to adapt to functional
instability. There are at least two ways to think about
adaptation. The most common approach is to respecify the
model’s functional form when it goes seriously off course.
For example, recent efforts to respecify M2 demand mod-
els are described in Feinman and Porter (1992) and Duca
(1993).1 Another approach is to apply time-varying param-
eter estimators to conventional models in order to allow
parameter estimates to adapt quickly when shifts occur.
The time-varying parameter approach may prove useful for
forecasting, even if its role in evaluating proposed changes
in policy rules may be limited.

These two approaches should be regarded as comple-
mentary. Functional respecification is an ex post activity
and therefore is not useful at the onset of a turbulent
period. It generally takes many years to recognize model
instability and to correct the problem, and the time-varying

parameter approach may pay important dividends in the .
- interim. Furthermore, when a model is respecified, it may

be worthwhile to re-estimate by a technique that gives
greater weight to recent data and less weight to older
data, and this is precisely what time-varying parameter
estimators do. On the other hand, if new financial instru-
ments are introduced or if there are important omitted vari-
ables, time-varying parameter estimators may never fully
adapt, and functional respecification may be necessary.

This paper concentrates on the potential usefulness of
time-varying parameter estimators and does not explore
functional respecification. My goal is to provide some
insight into the marginal value of time-varying parameter

estimators, but I do not claim that this is the only way

to proceed.

HI. RECURSIVE ESTIMATORS

Inreal time, Federal Reserve economists reestimate money
demand models as new data become available. Since I want
to study the reestimation process, it is useful to pose the

1. Feinman and Porter investigate alternative measures of opportunity
cost with an emphasis on modeling effects of the steep yield curve. Duca
proposes that mutual funds be added to M2 in order to internalize
portfolio substitutions.
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problem in terms of recursive estimators. Begin by writing
the model as

ytle{bt—f- ut’

where x, and b, are kx1 vectors, y, and u, are scalars. The
vector b, denotes the OLS parameter estimate based on
data available through date . If the model is reestimated by
OLS each period, then b, evolves as

b,=b,_,+ P,_x,(y, - x;bt—l)/(l + x; P,_yx),

P=P_,—P_ix,x;P,_;/(1 +x;,P,_;x,),

where P, = (X,/X,)"'and X, = (x;, . . ., x,)'. This is
simply the formula for recursive OLS.

Recursive OLS might be appropriate if b were time
invariant. However, theory and experience do not support
time invariance. We regularly experience parameter shifts
in money demand models. After a shift, the model tracks
real balances poorly for a while, until the OLS recursions
catch up with the parameter shift. The problem with
recursive OLS is that it takes too long to catch up. Thus it
seems worthwhile to consider alternative estimators that
catch up more quickly.

Recursive OLS gives the same weight to all observations
in the sample. When the model is subject to parameter
shifts, it may be more sensible to give more weight to
recent observations and less weight to distant ones. This
intuition can be formalized in terms of discounted least
squares (DLS) (Harvey 1981). That is, choose the vector b
which minimizes the discounted sum of squared errors:

T
DSS = 2 87~ (y, — xb.

The parameter & is a discount factor. If 8 = 1, each
observation is given equal weight, and this simplifies to
OLS. If 8 < 1, observations close to the end of the sample
(i.e., those close to the present) get more weight than those
in the distant past. If the model is reestimated period by
period by DLS, the parameter vector evolves as follows:

l;t = Bt—l + pt—lxt(yt - xt’Et—l) / (6 + xtlpt—lxt)’

=98-1P,_, — 8 1P,_ xxP,_ 1/(8+x, —1Xps

where b, denotes the DLS estimate based on data available
through period z and P,~! = 3_ 8 ~Jx;x]. When d = 1,
these recursions sxmphfy to recursive OLS When 3 < 1,
the most recent observation gets more weight in the updat-
ing formula than it does under OLS.2

2. This technique is similar to the random walk parameter model of
Cooley and Prescott (1976). One advantage of the Cooley-Prescott



38 FRBSF Economic REVIEwW 1993, NUMBER 3

The rationale for using DLS is that it will adapt more
quickly to a parameter shift than will recursive OLS. But
this comes at the expense of a loss in precision. For
example, if the parameters were time invariant, DLS
would discount useful information contained in the early
observations, and this would increase the variance of the
. estimates. The parameter 3 controls the terms of the trade-
off. A value close to 1 favors precision over adaptability. A
value far from 1 allows the model to adapt quickly but may
produce highly variable estimates even when no shift has
occurred. The discount factor must be chosen to balance
adaptability against precision.

III. EXPERIMENTAL DESIGN

Robert Lucas warns economists to ‘“‘beware econometri-
cians bearing free parameters,” and the DLS algorithm has
a free parameter. Thus it is important to impose some
discipline on the choice of &. In particular, 3 must be
chosen based on information that is available before the
forecast period begins. This section explains how d is
chosen and how the DLS algorithm is evaluated.

I divide the sample into three subperiods. The first
covers the period 1954 to 1980 and is used to generate
initial parameter estimates. M2 was redefined in 1980, and
one of the criteria was that the new aggregate have a stable
demand function (see Judd and Trehan 1992). Since param-
eter instability is not a problem for this subperiod, initial
estimates are computed by OLS.

The second subperiod covers 1981 to 1988, and it is used
to determine an optimal value for 8. I experiment with
values of & ranging from .8 to .99 and choose the value that
minimizes the mean square error of recursive DLS fore-
casts.3 M2 demand functions were relatively stable during
this period. By choosing & to optimize goodness of fit over
this period, we ensure that the DLS algorithm produces
reasonably stable parameter estimates during stable times.
This is an important criterion. An algorithm that produced
unstable estimates during stable periods would be of no use
to anyone. '

Some data are saved at the end of the sample to test
the DLS algorithm. For the period 1989 to 1992, re-

approach is that it implicitly allows different discount rates for different
parameters. However, this would violate Lucas’s dictum to avoid
proliferating free parameters. When the Cooley-Prescott model is
restricted so that there is only one discount factor, it is basically the same
as DLS. I prefer DLS because it is more intuitive.

3.1 also experimented with an a priori choice for 8, which was
determined by the criterion that the discount function have a half life of 5
years. In general, this produced out-of-sample results that were superior
to OLS but inferior to the data-determined value of &.

cursive DLS estimates are computed using the discount
factors determined above, and they are compared with
recursive OLS estimates. The principal reason for choos-
ing 1989 as the beginning of the test period is a desire to
have several years of data available for evaluating the time-
varying parameter forecasts, and the results are not sensi-
tive to the precise choice of sample split. Conventional M2
demand functions were unstable over this period. If my
intuition is correct, the DLS algorithm should adapt more
quickly than OLS, and recursive DLS forecasts should
therefore have lower mean square error than recursive OLS
forecasts.

IV. RECURSIVE ESTIMATES
OF MoNEY DEMAND

Basic Specification

This section applies recursive OLS and DLS to a number of
standard money demand models. I assume that- all the
relevant variables are integrated processes and that there is
a stable long-run relation between real balances and the
scale variable.# Given these assumptions, money demand
can be expressed as an error correction model. I consider a
number of simple specifications which differ according to
their scale and opportunity cost variables. The general
specification is as follows:

In(m,/p) = ay + dl In(w) + z,,

bo(L)Aln(m,/ p,) = b; + by(L)s, + bs (L)Aln (w,)
+ byz,_, + u,,

where s, is a vector of interest rate spreads and z, is the long-
run “equilibrium error,” in the language of Engle and
Granger (1987). The first equation’ defines the long-run
equilibrium relation between real balances and the scale
variable.> Interest rate spreads are stationary and thus do
not belong in the cointegrating relation. The second equa-
tion describes the short-term dynamics. The presence of
the long-run “equilibrium error” in the second equation
ensures that the short-run adjustments in money growth
ultimately lead back to the long-run equilibrium level of
real balances; hence the name “‘error correction” model.6

" 4. The data do not contradict these assumptions.

5.1 also examined imodels in which a; was set equal to one. This
restriction implies that velocity is stationary and is equal to z,. This had
little effect on the result. '

6. See Mehra (1991) for a more detailed exposition of error correction '
models of money demand. :



One can write this as a single equation by substituting z,
from the first equation into the second.

I consider various combinations of scale and opportu-
nity cost variables. The opportunity cost of holding M2
depends on the spread between returns on alternative
assets and the own rate of return on M2. The latter is
calculated by the Federal Reserve Bank of Richmond as a

weighted average of the returns on the components of M2
(e_g' R Mehra 1001 ) For Q]fprqaﬁvn rates T nvhov-;ment With
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the six-month commercial paper rate and the 10-year
Treasury bond rate.

For scale variables, I experiment with GDP and personal
consumption expenditures. GDP is the standard scale
variable in the money demand literature. Consumption can
‘be motivated in two ways. First, consumption is the ap-
propriate scale variable in cash-in-advance models (e.g.,
Lucas 1988). Second, as an empirical matter, various
authors have emphasized that permanent income performs
better than current income (e.g., Meltzer 1963), and con-
sumption is a natural, observable proxy for permanent
income. : : :

To complete the specification, each version of the model
also includes dummy variables for the second and third
quarters of 1980, during which credit controls were bind-
ing, as well as a dummy variable for the first quarter of
1983, when MMDA accounts were introduced. Finally, the
lag polynomials in the second equation are assumed to be
of order 1. This is sufficient to capture the dynamics of real
M2 growth during the initial estimation period.”

The Experimental Period

Each of these models was estimated by recursive OLS and
DLS, using quarterly data, and the results are reported in
Table 1. The first two columns report the mean square error
of recursive one-quarter-ahead forecasts for the various
models and time periods. Mean square error is standard-
ized by dividing by the variance of the dependent variable;
thus R? statistics are equal to 1 minus the mean square
error. R? statistics are useful for evaluating absolute per-
formance, and mean square error is useful for evaluating
relative performance. - '

The first column of Table 1 reports results for the ex-
perimental period 1981-1988. During this period, the
various models accounted for roughly 35 to 65 percent of
the variation in real balance growth. GDP appears to be
superior to consumption, reducing the mean square fore-
cast error by roughly 20 percent. Furthermore, the short-

7. Formally, this is sufficient to generate white noise residuals during
this period. -
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TABLE 1

- PrebicTive POWER AND Bias

MSE(81-88) MSE(89-92) Bias(89-92)

1. Six-Month Commercial Paper Rate

GDP
& =1.00 0.471 3.655 - —5.42 (.000)
5= 0.82 0.358 1.430
Consumption
& = 1.00 0.601 1.564 —3.14 (.002)
3 = 0.80 0.510 1.316

2. Ten-Year Treasury Bond Yield
GDP :
8 =1.00 0.637 1.267 —1.35 (.176)
& =0.99 0.638 1.270
Consumption
3 = 1.00 0.679 1.290 —1.42 (.154)
4 =0.99 0.681 1.269

3. Six-Month Commercial Paper and Ten-Year Treasury Bond Rates

Gbp

8 =1.00 0.482 3.768 —5.47 (.000)
8 =0.280 - 0.361 1.704

Consumption

3 =1.00 0.648 1.149 ~-2.71 (.002)
5 =10.93 0.613 1.109 '

Norte: The first two columns report the mean square error of recur-
sive prediction errors scaled by the variance of real M2 growth. The
third column reports the statistic \/I?E(v,)/ o, with normal probability
values shown in parentheses. When 8 = 1, this corresponds to recur-
sive OLS.

term interest rate appears to perform better than the
long-term rate. For example, when GDP is the scale
variable, the mean square error for the short-rate model is
approximately 35 percent lower than the mean square error
for the long-rate model. Including long rates as well as the
short rate has no effect on forecast performance. Thus,
during the experimental period, the two best models were
the ones based on GDP and short-term interest rates.

Even during this period, when M2 money demand was
relatively stable, recursive DLS often worked significantly
better than recursive OLS. In particular, for the models that
include short rates, DLS reduces mean square error by an
average of approximately 15 percent. In the long-rate
models, the optimal discount factor turns out to be .99, so
there is essentially no difference between DLS and OLS.
Recall that DLS trades precision for adaptability. Even
during the relatively stable subperiod, the gain from adapt-
ability often outweighed the loss of precision.
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The Test Period

The second and third columns of Table 1 report results for
the test period 1989-1992. These columns reveal four
results. First, when estimated by recursive OLS, the per-
formance of all the models deteriorates badly. The mean
+ square error of recursive OLS forecasts increases dramat-
ically, and ““out-of-sample” R? statistics are negative in
every case (see the second column).®
Second, during the test period, the recursive OLS mod-
els consistently overestimated real M2 growth. One can
test for bias in recursive OLS by computing the mean of
normalized OLS prediction errors:

v, =, — x b_)1f¥?,

where f,= (1 +x,P,_,x,). If the model is stable, v, has mean

zero, is serially uncorrelated, and has the same variance as
the regression disturbance. Further, if the regression dis-
turbance is normally distributed, then v, is also normally
distributed (see Harvey 1981). Let E(v,) denote the mean of
v, over the test period: E(v,) = (1/k)2 L, v, Given these
assumptions, E(v,) is normally distributed with mean zero
and variance equal to o2/k. Thus VEE(v,)/ o is distributed
as a standard normal random variable.®

Bias statistics are reported in the third column of Ta-
ble 1. The mean recursive residual is negative in all mod-
els, and the means are statistically significant in four of the
six cases. Since stable models have unbiased recursive
residuals, this result confirms our belief that conventional
money demand models should be treated as time-varying
parameter models. 10

Third, compared with OLS, DLS performs relatively

well, and the percent improvement appears to be positively -

related to the degree of model instability. For example, the
two models that had the lowest mean square error during
the period 1981-1988 (i.e., the GDP-short-rate models)
turn out to have the highest mean square error during the
test period. For these models, DLS reduces the mean
square error of one-quarter ahead forecasts by 55 to 60 per-
cent. Thus DLS can be an important hedge against gross
instability.

8. Recall that R? equals 1 minus mean square error. Recursive prediction
errors do not necessarily have mean zero, so their mean square error can
be larger than the variance of the dependent variable.

9. E(v,) is asymptotically normal even if the regression etror is not
normally distributed, provided that the regression error satisfies a
mixing condition (e.g., White 1984). Thus, VKE(v,)/o is approximately
normal for reasonably large k.

10. This result contrasts with Mehra (1992), who fails to reject param-
eter stability in a similar model. '

Figure 1 illustrates one of these cases. This is derived
from the model that uses GDP as the scale variable and the
six-month commercial paper rate as the opportunity cost
variable (i.e., the first model in Table 1). The solid line
shows real M2 growth, and the dotted lines show forecasts
generated by recursive OLS and DLS, respectively. In the
second half of 1989, both models systematically begin
to overestimate real M2 growth. Recursive OLS is slow to
catch on to the apparent structural shift, and it continues
to overestimate real M2 growth until the end of 1992.
Recursive DLS is more adaptable. It begins to recognize a
structural shift around the second quarter of 1990, and its
forecasts begin to edge downward. By the second half of
1991, this model seems to be back on track. Whether it
stays on track remains to be seen. In this model, recursive
DLS reduces mean square error by 60 percent relative to
recursive OLS.

DLS is least useful in models that are relatively stable.
For example, in models that omit the short-term interest
rate, DLS and OLS produce basically the same results. It is
worth noting DLS does not significantly hurt forecast
performance when applied to relatively stable models, so
discounting appears to be essentially costless.

Fourth, despite the relative improvement due to DLS,
the absolute performance of the DLS models also deterio-
rated badly during the test period. These models also
consistently overestimate real M2 growth and also have
negative out-of-sample R? statistics. Thus, while DLS is

FIGURE 1
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better than OLS, it does not appear to generate enough
improvement to revive the use of M2 as an indicator of
short-term fluctuations in nominal aggregate demand.

In retrospect, it is clear that completely naive, atheoreti-
cal forecasts would have worked about as well as any of
these money demand models over the period 1989-1992.
For example, forecasts based on a random walk model
of real balance growth would have produced a mean square
error of -1.387 over this. period, which is comparable
to the performance of these models. This simply highlights
the difficulty of using historical relationships to forecast
during turbulent periods.

V. CONCLUSION

Conventional money demand models often exhibit param-
eter instability, and this complicates the implementation
of monetary policy. Applied macroeconomists might re-
spond to this in two ways. They might seek time-invariant,
deep structural representations, or they might apply time-
varying parameter estimators to conventional representa-
tion in order to allow parameters to adapt quickly when
shifts occur. This paper takes the latter approach, exploring
the properties of recursive discounted least squares. This
technique is designed to give greater weight to more recent
data and less weight to older data, and this makes it more
adaptable than recursive OLS.

The results suggest that DLS may have a useful but
limited role to play in policy modeling. During unstable
subperiods, DLS works better than OLS, and the gains can
be substantial. For example, in a standard money demand

model, in which the scale variable is GDP and the opportu-.

nity cost variable is the spread between commercial paper
rates and the own return on M2, DLS reduces the mean
square error of one-step-ahead forecasts by 60 percent. On
the other hand, the absolute performance of DLS estima-
tors also deteriorates badly over the last few years, and the
models do not deliver reliable forecasts of M2 money
demand. Thus it will continue to be dlfﬁcult to interpret
fluctuations in money growth.
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