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1 Introduction

This paper describes a reduced-form latent-factor arbitrage-free dynamic term structure

model of U.S. Treasury and corporate bond yields that can be used to estimate the credit

risk premiums in credit spreads of U.S. industrial corporate bonds. Specifically, we define the

credit risk premium as the additional premium corporate bond investors demand above and

beyond the expected excess return a risk-neutral investor would demand to assume the same

exposure.

As for its structure, the model relies on the widely used yield curve function introduced by

Nelson and Siegel (1987). However, the model is made theoretically consistent by exploiting

the adjustment derived in Christensen et al. (2011) to ensure absence of arbitrage.

The rest of the paper is structured as follows. Section 2 details the properties of the

yield data and motivates the model structure introduced in Section 3. Section 4 describes

the model estimation and results, while Section 5 contains the analysis of the estimated bond

risk premiums. Finally, Section 6 concludes.

2 Data Description and Model Motivation

In this section, the mechanics of the Nelson-Siegel yield curve model are detailed. Second,

the U.S. Treasury yield data are described and it is explained why the Nelson-Siegel model is

appropriate for that panel of data. Finally, the properties of the corporate bond yield data

for U.S. industrial firms are explored.

2.1 The Nelson-Siegel Model

The model structure used throughout the analysis is closely related to the Nelson and Siegel

(1987) model. In that model, the yield curve at a given point in time is assumed to take the

following simple functional form1

y(τ) = β0 + β1

(1− e−λτ

λτ

)
+ β2

(1− e−λτ

λτ
− e−λτ

)
,

where y(τ) is the zero-coupon yield with τ denoting the time to maturity, and β0, β1, β2,

and λ are model parameters. The three β parameters can be interpreted as factors and

their corresponding factor loadings in the Nelson-Siegel yield curve function are illustrated in

Figure 1.

Due to its flexibility this model is able to provide a good fit to cross sections of yields,

which is the primary reason for its popularity among financial market practitioners. Although

for some purposes such a static representation appears useful, a dynamic version is required

to understand the evolution of the bond market over time. Diebold and Li (2006) achieve

1This is equation (2) in Nelson and Siegel (1987).
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Figure 1: Factor Loadings in the Nelson-Siegel Yield Function.

Illustration of the factor loadings on the three state variables in the Nelson-Siegel model. The value

for λ is 0.55 and maturity is measured in years.

this by introducing time-varying parameters

yt(τ) = Lt + St

(1− e−λτ

λτ

)
+ Ct

(1− e−λτ

λτ
− e−λτ

)
,

where Lt, St, and Ct can be interpreted as level, slope, and curvature factors (given their

associated Nelson-Siegel factor loadings). Furthermore, once the model is viewed as a factor

model, a dynamic structure can be postulated for the three factors, which yields a fully

dynamic version of the Nelson-Siegel model. In the following, it is demonstrated that the

features of this model are relevant for modeling both Treasury bond yields as well as corporate

bond credit spreads.

2.2 The Treasury Bond Yield Data

In the analysis, Treasury yields serve as a proxy for the risk-free rate used to extract the cor-

porate bond credit spreads analyzed subsequently. Furthermore, this assumption establishes

an empirical connection between Treasury and corporate bond markets.

The specific U.S. Treasury bond yields used are zero-coupon yields constructed by the

method described in Gürkaynak at al. (2007).2 The Treasury zero-coupon bond yields consid-

ered have the following 8 maturities: three-month, six-month, one-year, two-year, three-year,

five-year, seven-year, and ten-year, and the sample is limited to end-of-month observations

2The Board of Governors in Washington D.C. updates the factors and parameters of this method daily, see
also the related website http://www.federalreserve.gov/pubs/feds/2006/index.html
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Maturity Mean Std. dev.
in months in % in %

Skewness Kurtosis

3 2.52 2.16 0.36 1.47
6 2.55 2.19 0.36 1.49
12 2.63 2.20 0.35 1.53
24 2.84 2.13 0.32 1.60
36 3.05 2.02 0.29 1.67
60 3.45 1.81 0.24 1.80
84 3.79 1.67 0.16 1.87
120 4.18 1.55 0.05 1.91

Table 1: Summary Statistics for the U.S. Treasury Bond Yields

Summary statistics for the sample of monthly U.S. Treasury zero-coupon bond yields covering the

period from January 31, 1995, to December 31, 2018, a total of 288 observations.
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Figure 2: Time Series of U.S. Treasury Bond Yields

Illustration of the monthly U.S. Treasury zero-coupon bond yields covering the period from January

31, 1995, to December 31, 2018. The yields shown have maturities: three-month, two-year, five-year,

and ten-year.

over the period from January 31, 1995, to December 31, 2018. The summary statistics are

provided in Table 1, while Figure 2 illustrates the constructed time series of the three-month,

two-year, five-year, and ten-year Treasury zero-coupon yields.

In the literature on U.S. Treasury bond yields, researchers have found that three factors

are sufficient to model the time-variation in cross sections of such yields, for an early example

see Litterman and Scheinkman (1991). This applies to the current Treasury bond yield data

as well. However, to get some insights about the characteristics of these three factors, focus on

the eigenvectors that correspond to the first three principal components. They are reported
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Maturity Loading on
in months PC1 PC2 PC3

3 0.39 0.38 -0.49
6 0.39 0.36 -0.25
12 0.40 0.26 0.10
24 0.39 0.07 0.42
36 0.37 -0.09 0.46
60 0.32 -0.31 0.23
84 0.29 -0.46 -0.10
120 0.26 -0.58 -0.49

% explained 96.56 3.12 0.28

Table 2: Loadings on the First Three Principal Components of U.S. Treasury Bond

Yields

Reported are the loadings of each maturity on the first (PC1), second (PC2), and third (PC3) principal

components for zero-coupon Treasury yields. The final row shows the proportion of all bond yield

variability accounted for by each principal component. The data consist of monthly U.S. Treasury

zero-coupon bond yields from January 31, 1995, to December 31, 2018.

in Table 2. The first principal component explains 96.6% of the variation in the Treasury

bond yields and its loading across maturities is uniformly positive. Thus, when there is a

shock to the first principal component, it changes all yields in the same direction independent

of maturity. This is referred to as a level factor. Likewise, it follows from the table that the

second principal component explains about 3.1% of the variation in this data set. This factor

has large negative loadings for the shorter maturities, while it has large positive loadings for

the long maturities. Thus, a positive shock to this factor causes short-term yields to move

higher while long-term yields go down, effectively creating a flattening of the yield curve. In

case of a negative shock to the second principal component we get the reverse movements,

short-term yields go down while long-term yields move up leading to a steepening of the yield

curve. This is referred to as a slope factor as it determines the slope of the yield curve. Finally,

the third principal component explains an additional 0.3% of the variation in the data. Its

factor loading is an inverted U-shaped function of maturity with large negative loadings for

the short and long maturities, while its loading is large positive for medium-term maturities.

Thus, when there is a positive shock to the third principal component, the short and long

end of the yield curve move down while the medium-term yields move up, effectively creating

a hump shaped yield curve. Similarly, a negative shock to this factor will lead to an inverted

hump shaped yield curve. For these reasons this factor is naturally interpreted as a curvature

factor.

In summary, for this sample of Treasury bond yields three factors can easily explain 99.9%

of the total variation. Focusing on the eigenvectors corresponding to the first three principal

components, there is a clear pattern of level, slope, and curvature that is well approximated

by the Nelson-Siegel yield function as illustrated in Figure 1. This explains our focus on that
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BBB A
Mat.

Mean St. dev. Mean St. dev.

3 93.55 69.17 49.97 48.17
6 99.27 69.70 56.64 48.21
12 99.66 68.88 55.85 46.50
24 106.84 65.96 60.54 45.05
36 118.00 70.30 70.02 50.80
60 129.34 66.92 79.49 47.03
84 139.02 62.20 88.45 43.12
120 140.25 55.86 89.15 38.12

Table 3: Summary Statistics for U.S. Industrial Corporate Bond Credit Spreads

Summary statistics for the zero-coupon credit spreads of U.S. industrial corporate bonds across 8

maturities ranging from three months to ten years. The data are monthly and cover the period from

January 31, 1995, to December 31, 2018. All numbers are measured in basis points.

model as a parsimonious and robust representation of the Treasury yield data.

2.3 The Corporate Bond Yield Data

The corporate bond data used in model estimation consist of representative zero-coupon yields

on corporate bonds issued by U.S. industrial firms. The data are downloaded from Bloomberg

and start in January 1995. To match the Treasury data, the sample contains the following 8

maturities: three-month, six-month, one-year, two-year, three-year, five-year, seven-year, and

ten-year.

Since the Bloomberg data are annual discrete interest rates, the corporate bond yields are

first converted into continuously compounded yields (see Appendix A). In order to convert the

continuously compounded corporate zero-coupon bond yields into continuously compounded

credit spreads, we deduct the corresponding observed Treasury zero-coupon yields. Thus, the

credit spreads for each credit rating category c are given by

sct(τ) = yct (τ)− yTt (τ), c ∈ {BBB,A},

where yTt (τ) denotes the corresponding zero-coupon Treasury yield.

Summary statistics for the U.S. industrial credit spreads are provided in Table 3. Clearly,

both the average credit spread and the credit spread volatility at a given maturity increase as

credit quality deteriorates. Unreported results show that this pattern holds for credit spreads

in other sectors as well.

To provide some preliminary, non-parametric evidence of the existence and characteristics

of common factors in the credit spread data, the data for the two credit ratings (BBB, A)

are pooled, a total of 2 × 8 = 16 time series. In a second step, the covariance matrix for

these 16 time series is calculated and used in a principal component analysis. The results
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Maturity BBB A
in months PC1 PC2 PC1 PC2

3 0.30 0.24 0.19 0.40
6 0.31 0.22 0.20 0.36
12 0.31 0.08 0.20 0.25
24 0.30 -0.08 0.20 0.12
36 0.32 -0.14 0.23 0.09
60 0.30 -0.25 0.21 -0.02
84 0.27 -0.35 0.19 -0.12
120 0.22 -0.47 0.15 -0.26

Table 4: Loadings on the First Two Principal Components of Credit Spreads

Reported are the loadings of each maturity on the first (PC1) and second (PC2) principal components

for the zero-coupon credit spreads for U.S. industrial firms rated BBB and A covering the period

from January 31, 1995, to December 31, 2018. The analysis is based on 16 time series, each with 288

monthly observations.

are reported in Table 4. The analysis reveals that the first two principal components explain

91.1% and 5.2%, respectively, of the total variation in these credit spreads. By implication,

a two-factor model may explain as much as 96.3% of the observed variation in these 16 time

series. Beyond these two factors each additional factor contributes very little.

The first principal component has a clear pattern of a level factor across both rating

categories, while the second principal component can be characterized as a slope factor. For

these reasons the credit spreads are modeled with a level and a slope factor in the style of

the Nelson-Siegel model as in Christensen and Lopez (2012). As described below, each rating

category is allowed to load more or less intensely on the two common credit risk factors.

3 The Model of U.S. Treasury and Corporate Bond Yields

In this section, the arbitrage-free model of U.S. Treasury and corporate bond yields is de-

scribed in detail.

To begin the analysis, a model framework is needed. To that end, the model is set within

the reduced-form credit risk model framework3 using the assumption of Recovery of Market

Value (see Duffie and Singleton 1999). Denote the risk-free short rate by rt, the default

intensity by λQt , and the recovery rate by πQt .
4 Under these assumptions the price of a

representative zero-coupon bond is given by

Vt(τ) = EQ[e−
∫ t+τ

t
(rt+(1−π

Q
s )λ

Q
s )ds].

3See Lando (1998) for technical details on the reduced-form approach to modeling credit risk.
4If a jump risk premium exists, the default intensity under the P -measure may deviate by a factor from the

default intensity under the Q-measure. Since we only observe bond yields, the model-implied default intensities
and recovery rates are only meaningful when interpreted under the Q-measure as indicated by the notation.
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Since the loss rate 1 − πQt and the default intensity λQt only appear as a product under the

RMV modeling assumption, their individual components are not econometrically identifiable.

Instead, their product is replaced with the instantaneous credit spread st, which is without

any loss of generality. It is this credit spread process that needs to be specified along with

the risk-free rate rt.

One important thing to note is that the corporate bonds in each credit rating category

are priced in isolation without regard for possible rating transitions. Although this is a

theoretical inconsistency, it is unlikely to prevent the model from extracting any common risk

factors across rating categories, which is the main goal of the empirical model implementation.

Taking the rating transitions into consideration is a second-order effect and refinement that

will not materially change any of the results.

With the general modeling framework settled, the next step is to decide on the assumed

dynamics of the risk-free rate rt and the credit spread process st. The details are provided in

the following subsections.

3.1 The Risk-Free Rate Model

The risk-free rate is modeled using the affine arbitrage-free approximation of the Nelson-Siegel

term structure model presented in Christensen et al. (2011). This is a three-factor model

where the latent state variables, XT
t = (LT

t , S
T
t , C

T
t ),

5 can be given the interpretation of level,

slope, and curvature by imposing a fixed set of restrictions on the Q-dynamics of a canonical

affine three-factor Gaussian term structure model

rt = δ0 + δ′1X
T
t ,

dXT
t = KT,Q(θT,Q −XT

t )dt+ΣTdW
T,Q
t .

The first key assumption is to define the instantaneous risk-free rate as the sum of the level

and the slope factor

rt = LT
t + ST

t .

The second key assumption is that the mean-reversion matrix under the Q-measure must

have the following simple form

KT,Q =




0 0 0

0 λT −λT

0 0 λT


 ,

where λT will be identical to λ in the standard Nelson-Siegel model.

5Superscript T is used to indicate that the primary role of the risk-free rate model is to fit the Treasury
yields in the sample.
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Finally, following Christensen et al. (2011), the mean vector under the Q-measure can be

fixed at zero, θT,Q = 0, which is without loss of generality.

Imposing the above structure on the general affine model, default risk-free zero-coupon

yields will be given by

yTt (τ) = LT
t +

1− e−λT τ

λT τ
ST
t +

[1− e−λT τ

λT τ
− e−λT τ

]
CT
t +

AT (τ)

τ
.

Note that the Nelson-Siegel factor loadings for the level, slope, and curvature are preserved.

In addition, the yield function contains a maturity-dependent term, AT (τ)
τ

, which arises from

imposing absence of arbitrage on the dynamic Nelson-Siegel model.6 Furthermore, building on

the empirical findings reported in Christensen et al. (2011), the volatility matrix is restricted

to a diagonal specification.

3.2 The Credit Spread Model

Krishnan, Ritchken, and Thomson (2007) include the risk-free level, slope, and curvature

factor from their Treasury bond yield analysis in their model of firm-specific credit spreads

and report performance improvements.

Inspired by these results the factors of the risk-free rate are included directly in the

formulation of the instantaneous credit spread process. As the Treasury curvature factor is

absent in the instantaneous short-rate process rTt , it will also be absent from the instantaneous

credit spread process. Thus, the instantaneous credit spread for credit rating category c is

assumed to be a function of the level and the slope factor from the risk-free yield term

structure in addition to two common credit risk factors

sct = αc
0 + αc

LTL
T
t + αc

STS
T
t + αc

LL
S
t + αc

SS
S
t .

This structure implies that each credit rating category c can load separately on each of these

four factors and do so independently of the remaining credit rating categories.

Now, the two common credit risk factors (LS
t , S

S
t ) are assumed to have a Nelson-Siegel

factor loading structure. To achieve this, the dynamics of the common credit risk factors

under the Q-measure are assumed to be given by

(
dLS

t

dSS
t

)
= −

(
0 0

0 λS

)(
LS
t

SS
t

)
dt+

(
σLS 0

0 σSS

)(
dW

LS ,Q
t

dW
SS ,Q
t

)
.

Thus, the dynamics under the Q-measure of the five factors that affect the corporate bond

6The analytical formula for AT (τ)
τ

is provided in Christensen et al. (2011).
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yields are given by the following system of stochastic differential equations




dLT
t

dST
t

dCT
t

dLS
t

dSS
t




= −




0 0 0 0 0

0 λT −λT 0 0

0 0 λT 0 0

0 0 0 0 0

0 0 0 0 λS







LT
t

ST
t

CT
t

LS
t

SS
t




dt

+




σLT 0 0 0 0

0 σST 0 0 0

0 0 σCT 0 0

0 0 0 σLS 0

0 0 0 0 σSS







dW
LT ,Q
t

dW
ST ,Q
t

dW
CT ,Q
t

dW
LS ,Q
t

dW
SS ,Q
t




.

Given this dynamic structure under the Q-measure, the yield of a representative zero-

coupon bond with credit rating c and maturity in τ years can be shown to be given by

yct (τ) = LT
t +

1− e−λT τ

λT τ
ST
t +

[1− e−λT τ

λT τ
− e−λT τ

]
CT
t

+αc
LTL

T
t + αc

ST

1− e−λT τ

λT τ
ST
t + αc

ST

[1− e−λT τ

λT τ
− e−λT τ

]
CT
t

+αc
0 + αc

LL
S
t + αc

S

1− e−λSτ

λSτ
SS
t +

Ac(τ)

τ
.

By implication, the corresponding zero-coupon credit spread is given by

sct(τ) = yct (τ)− yTt (τ)

= αc
LTL

T
t + αc

ST

1− e−λT τ

λT τ
ST
t + αc

ST

[1− e−λT τ

λT τ
− e−λT τ

]
CT
t

+αc
0 + αc

LL
S
t + αc

S

1− e−λSτ

λSτ
SS
t +

Ac(τ)

τ
−
AT (τ)

τ
,

where

Ac(τ)

τ
= −

σ2
LT (1 + αc

LT )
2

6
τ2 − σ2ST (1 + αc

ST )
2
[ 1

2(λT )2
−

1

(λT )3
1− e−λT τ

τ
+

1

4(λT )3
1− e−2λT τ

τ

]

−σ2CT (1 + αc
ST )

2
[ 1

2(λT )2
+

1

(λT )2
e−λT τ −

1

4λT
τe−2λT τ −

3

4(λT )2
e−2λT τ

]

−σ2CT (1 + αc
ST )

2
[ 5

8(λT )3
1− e−2λT τ

τ
−

2

(λT )3
1− e−λT τ

τ

]

−
(σLS )2(αc

L)
2

6
τ2

−(σSS )2(αc
S)

2
[ 1

2(λS)2
−

1

(λS)3
1− e−λSτ

τ
+

1

4(λS)3
1− e−2λSτ

τ

]
.
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The description so far has detailed the dynamics under the pricing measure and, by

implication, determined the functions that are fitted to the observed yield data. The above

structure places no restrictions on the dynamic drift components under the real-world P-

measure beyond the requirement of constant volatility; therefore, to facilitate the empirical

implementation, the essentially affine risk premium specification introduced in Duffee (2002)

is used. In the Gaussian framework, this specification implies that the risk premiums, Γt,

depend on the state variables:

Γt = γ0 + γ1Xt,

where γ0 ∈ R5 and γ1 ∈ R5×5 contain unrestricted parameters. The relationship between the

real-world yield curve dynamics under the P-measure and the risk-neutral dynamics under

the Q-measure is given by

dWQ
t = dW P

t + Γtdt.

Thus, in general, the P-dynamics of the state variables can be written as

dXt = KP(θP −Xt)dt+ΣdW P
t ,

where KP and θP are both allowed to vary freely relative to their counterparts under the

Q-measure.

4 Model Estimation and Results

In this section, we first describe the model estimation based on the standard Kalman filter

before we proceed to a discussion of the estimation results.

Thanks to the affine structure of our model, its measurement equations used in the model

estimation take the form:

yt =

(
yTt

yIndut

)
=

(
AT

AIndu

)
+

(
BT

BIndu

)
Xt + εt.

The data vector yt is a (24× 1) vector consisting of yTt with 8 Treasury yields and yIndut with

16 industrial corporate bond yields. Correspondingly, the constant term consists of an (8×1)

vector AT and a (16× 1) vector AIndu. The loading matrix for the five factors consists of an

(8× 5) matrix BT and a (16 × 5) matrix BIndu.

For identification, the A-rated corporate bond yields are chosen to be the benchmark

credit rating category, that is, its constant αA
0 is set equal to zero, and the factor loadings on

the two spread factors have unit sensitivity for this rating category, i.e., αA
L = 1 and αA

S = 1.

This choice is not restrictive and simply implies that the sensitivities to changes in the two

spread factors are measured relative to those of A-rated firms and that the estimated values

of those factors represent the absolute sensitivity of the benchmark A-rated corporate credit

10



spreads.

For continuous-time Gaussian models, the conditional mean vector and the conditional

covariance matrix are given by

EP[XT |Ft] = (I − exp(−KP∆t))θP + exp(−KP∆t)Xt,

V P[XT |Ft] =

∫ ∆t

0
e−KPsΣΣ′e−(KP)′sds,

where ∆t = T − t and exp(−KP∆t) is a matrix exponential. Stationarity of the system

under the P-measure is ensured provided the real components of all the eigenvalues of KP are

positive. This condition is imposed in all estimations, so we can start the Kalman filter at

the unconditional mean and covariance matrix7

X̂0 = θP and Σ̂0 =

∫
∞

0
e−KPsΣΣ′e−(KP)′sds.

The transition state equation for the Kalman filter is given by

Xti = Φ0
∆ti

+Φ1
∆ti
Xti−1 + ηti ,

where ∆ti = ti − ti−1 and

Φ0
∆ti

= (I−exp(−KP∆ti))θ
P, Φ1

∆ti
= exp(−KP∆ti), and ηti ∼ N

(
0,

∫ ∆ti

0

e−K
P
sΣΣ′e−(KP)′sds

)
.

All measurement errors are assumed to be independently and identically distributed white

noise with an error structure given by

(
ηt

εt

)
∼ N

[(
0

0

)
,

(
Q 0

0 H

)]
.

For parsimony, all Treasury yields are assumed to have a common error standard devia-

tion, and a similar assumption is imposed on all corporate bond yields. The associated four

standard error parameters are denoted σTε and σSε .

The linear least-squares optimality of the Kalman filter requires that the white noise

transition and measurement errors be orthogonal to the initial state, i.e.

E[f0η
′

t] = 0, E[f0ε
′

t] = 0.

7Throughout conditional and unconditional covariance matrices are calculated using the analytical solutions
provided in Fisher and Gilles (1996).
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KP KP
·,1 KP

·,2 KP
·,3 KP

·,4 KP
·,5 θP Σ

KP
1,· 0.0340 -0.0927 -0.0054 -0.1012 -0.0035 0.0602 σ11 0.0067

(0.2441) (0.1978) (0.1567) (0.6311) (0.5784) (0.0240) (0.0003)
KP

2,· 0.6825 0.8843 -0.6593 1.3743 0.4083 -0.0272 σ22 0.0104

(0.4615) (0.3245) (0.2364) (1.3679) (1.1334) (0.0155) (0.0007)
KP

3,· 0.9699 0.1996 1.0280 4.1037 -1.6530 -0.0243 σ33 0.0253

(0.8716) (0.5669) (0.3739) (2.3114) (1.9409) (0.0173) (0.0010)
KP

4,· 0.0699 -0.0424 0.0132 0.0552 -0.2019 0.0126 σ44 0.0027

(0.1012) (0.0799) (0.0674) (0.2645) (0.1929) (0.0055) (0.0002)
KP

5,· -0.0676 -0.0837 0.0866 0.7310 0.5517 -0.0100 σ55 0.0031

(0.1111) (0.0793) (0.0593) (0.3874) (0.3244) (0.0074) (0.0004)

Table 5: Estimated Dynamic Parameters

This table shows the estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix for the

joint five-factor model of U.S. Treasury and corporate bond yields with unrestricted KP matrix. λT is

estimated at 0.5007 (0.0041), while λS is estimated at 0.1895 (0.0096). The maximum log likelihood

value is 36,493.98. The data used are monthly covering the period from January 31, 1995, to December

31, 2018.

Finally, the standard deviations of the estimated parameters are calculated as

Σ(ψ̂) =
1

T

[ 1
T

T∑

t=1

∂ log lt(ψ̂)

∂ψ

∂ log lt(ψ̂)

∂ψ

′]
−1
,

where ψ̂ denotes the optimal parameter set.

Please note that the Gaussian distributional assumption is used here as in most of the

dynamic term structure literature. This assumption presents modeling issues for the Treasury

yields in particular, which have been near the zero lower bound in recent years. However, it

should be noted that it would be straightforward to cast the risk-free rate as a shadow-rate

process that respects a lower bound using the formulas provided in Christensen and Rudebusch

(2015). Thus, such a refinement can easily be achieved with a minimum of modifications to

the model framework as presented.

4.1 Estimation Results

In this section, the results of the model estimation with an unrestricted KP matrix are briefly

summarized.

The model’s estimated dynamic mean-reversion parameters are reported in Table 5. The

table also reports the estimated mean and volatility parameters. For the three Treasury

factors the estimated means and volatility parameters are similar to the results reported by

Christensen et al. (2014b).8 Thus, overall, the estimated factor dynamics are consistent with

those reported in previous studies that have used AFNS models.

8These estimated model parameters are also similar to those reported by Christensen et al. (2011), even
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U.S. industrial credit spreads
Rating

αc
0 αc

LT αc
ST αc

LS αc
SS

BBB -0.0007 -0.0256 -0.1730 1.4568 1.28226
(0.0002) (0.0389) (0.0119) (0.0079) (0.0088)

A 0 -0.0091 -0.0761 1 1
(0.0268) (0.0093)

Table 6: Estimated Factor Loadings in the Corporate Credit Spread Functions

The estimated factor loadings for each of the credit rating categories in the joint five-factor model of

U.S. Treasury and corporate bond yields with unrestricted KP matrix. The data used are monthly

covering the period from January 31, 1995, to December 31, 2018. The numbers in parentheses are

the estimated standard deviations of the parameter estimates.

Table 6 reports the estimated factor loadings of the state variables in the corporate bond

credit spread function for each credit rating category. Note that lower credit quality implies

higher sensitivities to the common credit risk factors. Generally speaking this result indicates

that bonds issued by firms with lower credit quality tend to have higher and steeper credit

spread curves. Furthermore, in terms of the credit spread sensitivity to the Treasury slope

factor, there is another systematic pattern with lower credit rating implying greater credit

spread sensitivity to this factor.9 When the Treasury curve is steep like in the 2009-2015

period, the Treasury slope factor is negative and below its historical mean. In that case, the

credit spread term structures are higher and less steep than what the credit risk factors in

isolation would imply, and this effect is stronger the lower the credit rating.

Table 7 provides statistics for the model’s ability to fit the Treasury and corporate bond

yields. First, the fit of the Treasury yields is good and on par with models of only Treasury

yields, see Christensen et al. (2011). Second, for the corporate bond yields, the reported

mean errors indicate a small overall bias in their fit. Focusing on the root mean squared

fitted errors (RMSEs), we note that the corporate bond yields are fitted with somewhat less

accuracy than the Treasury bond yields as could be expected given the greater heterogeneity

in the corporate bond market.

5 Bond Yield Decomposition

In this section, we describe how we decompose Treasury and corporate bond yields into their

respective expectations and risk premium components.

The term premium of the Treasury yield with maturity in τ years is conventionally defined

as

TP T
t (τ) = yTt (τ)−

1

τ

∫ t+τ

t

EP
t [rs]ds. (1)

though that study used unsmoothed Fama-Bliss Treasury yields.
9Due to the assumed AFNS model structure, the credit spread sensitivities to the Treasury curvature factor

are identical to those of the Treasury slope factor, see the credit spread equations in Section 3.2.
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Mat. in Treasury Corporate yields
months yields BBB A

Mean

3 -1.61 -2.87 -0.41
6 -0.60 0.85 4.80
12 1.40 -1.97 1.56
24 2.32 -1.93 -0.30
36 0.56 1.36 1.25
60 -2.98 0.00 -2.66
84 -2.64 2.96 -1.05
120 3.29 1.94 -3.22

RMSE

3 7.35 13.45 13.30
6 2.92 9.25 10.57
12 6.58 9.68 10.02
24 5.07 8.39 9.54
36 3.48 8.25 11.18
60 5.84 7.29 11.02
84 4.51 10.32 10.11
120 6.41 11.64 12.37

Table 7: Summary Statistics of Fitted Errors

This table provides the mean and RMSE of the model fitted yield errors in basis points.

By extension, it is possible to define a corporate bond yield term premium as

TP
c,i
t (τ) = y

c,i
t (τ)−

1

τ

∫ t+τ

t

EP
t [r

c,i
s ]ds

= yTt (τ) + sct(τ)−
1

τ

∫ t+τ

t

EP
t [rs + sc,is ]ds

where i continues to indicate the rating category and sc,it is the associated instantaneous credit

spread rate. From this formula it follows that we can define a credit spread risk premium as

CRP
c,i
t (τ) = sct(τ)−

1

τ

∫ t+τ

t

EP
t [s

c,i
s ]ds, (2)

so that the corporate term premium can be written as

TP
c,i
t (τ) = TP T

t (τ) + CRP
c,i
t (τ).

In the definition of the credit risk premium, the term 1
τ

∫ t+τ

t
EP

t [s
c,i
s ]ds represents the

expected risk-neutral excess return, while the credit risk premium itself represents the residual

compensation that investors demand above and beyond the expected excess return to assume

long-term exposures in the corporate bond market.

For a start, Figure 3 shows the classic decomposition of the ten-year Treasury yield into
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Figure 3: Ten-Year Treasury Yield Decomposition
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Figure 4: Ten-Year BBB Yield Decomposition

its expectations and residual term premium components.

Figure 4 shows a breakdown of the key components determining the level of the BBB-rated

corporate bond yields in our data.

Finally, Figures 5 and 6 show the decomposition of the BBB- and A-rated credit spreads

into their respective expectations and risk premium components.

Figure 7 shows the resulting two credit risk premium series, where we note that the BBB-

rated credit risk premium is slightly more volatile than the A-rated credit risk premium, but
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Figure 5: Ten-Year BBB Credit Spread Decomposition
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Figure 6: Ten-Year A Credit Spread Decomposition

overall the two series are very similar as one could expect. This implies that the level difference

in credit spreads between A- and BBB-rated exposures are due primarily to differences in the

expected excess returns and not driven by differences in risk premiums across rating categories.
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Figure 7: Ten-Year Credit Risk Premium Comparison

6 Conclusion

In this paper, we introduce a joint five-factor dynamic term structure model of U.S. Treasury

and corporate bond yields that can be used to estimate the credit risk premiums embedded

in corporate bond credit spreads.

The results reveal that the level difference in credit spreads between A- and BBB-rated

exposures are due primarily to differences in the expected excess returns and not driven

by differences in risk premiums across rating categories, which are very similar and highly

positively correlated.

We note that the presented model framework can be extended in numerous ways. For

greater accuracy it may be worthwhile to consider the generalized arbitrage-free Nelson-Siegel

models derived in Christensen et al. (2009). Also, as already noted, issues related to the zero

lower bound of Treasury yields can be handled by casting the risk-free rate as a shadow-

rate using the formulas provided in Christensen and Rudebusch (2015). If stochastic yield

volatility is a requirement, Christensen et al. (2014a) expand the arbitrage-free Nelson-Siegel

model class to accommodate that. Furthermore, the data set can be expanded to encompass

Treasury inflation-protected securities (TIPS) through a joint modeling of nominal and real

yields as described in Christensen et al. (2010). Lastly, liquidity premiums in the bond price

data can be accounted for using the augmented model structure developed in Andreasen et

al. (2018). However, we leave all of these avenues for future research.
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Appendix A: Conversion of Interest Rate Data

The Bloomberg fair-value, zero-coupon yield curves are generated for particular (sector,rating) segments

of the corporate bond market using individual bond prices, both indicative and executable, as quoted by

price contributors over a specified time window. Based on these bond datasets, option-adjusted spreads are

generated, and these adjusted bond yields are converted into zero-coupon yield curves using piecewise linear

functions.

We convert the Bloomberg data for financial corporate bond rates into continuously compounded yields.

The n-year yield at time t, rt(n), the corresponding zero-coupon bond price, Pt(n), and the continuously

compounded yield, yt(n), are related by

Pt(n) =
1

(1 + rt(n))n
= e

−yt(n)n
⇐⇒ yt(n) = −

1

n
ln

1

(1 + rt(n))n
= ln(1 + rt(n)).

For maturities shorter than one year, we assume the standard convention of linear interest rates. For example,

the zero-coupon bond price corresponding to the six-month yield is calculated as

Pt(6m) =
1

1 + 0.5rt(6m)
= e

−0.5yt(6m)
,

and the corresponding continuously compounded yield as

yt(6m) = −2 ln
1

1 + 0.5rt(6m)
= 2 ln(1 + 0.5rt(6m)).
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