What Do \$40 Trillion of Portfolio Holdings Say about the Transmission of Monetary Policy?

Chuck Fang (Drexel) Kairong Xiao (Columbia & NBER)

May 2025

Motivation

• The Federal Reserve exerts a surprisingly large influence on long-term interest rates

- The Federal Reserve exerts a surprisingly large influence on long-term interest rates
- When 1Y Treasury rate drops by 100 bps, 10Y Treasury yield drops by:

- The Federal Reserve exerts a surprisingly large influence on long-term interest rates
- When 1Y Treasury rate drops by 100 bps, 10Y Treasury yield drops by:
 - ▶ 21 bps theoretically, according to expectation hypothesis

- The Federal Reserve exerts a surprisingly large influence on long-term interest rates
- When 1Y Treasury rate drops by 100 bps, 10Y Treasury yield drops by:
 - ▶ 21 bps theoretically, according to expectation hypothesis
 - ▶ 71 bps empirically, on FOMC announcement days

- The Federal Reserve exerts a surprisingly large influence on long-term interest rates
- When 1Y Treasury rate drops by 100 bps, 10Y Treasury yield drops by:
 - ▶ 21 bps theoretically, according to expectation hypothesis
 - ▶ 71 bps empirically, on FOMC announcement days
- "How, in a world of eventually flexible goods prices, is monetary policy able to exert such
 a powerful influence on long-term real rates?"
 - Jeremy Stein, speech at 2013 Banking, Liquidity and Monetary Policy Symposium

Motivation

• This excess sensitivity of long-term yields attenuates by 75% at annual frequency, especially in recent decades (Hanson, Lucca, and Wright, 2021)

- This excess sensitivity of long-term yields attenuates by 75% at annual frequency, especially in recent decades (Hanson, Lucca, and Wright, 2021)
- "...our findings suggest that the recruitment channel may not be as strong as Stein (2013) speculates since a portion of the resulting shifts in term premia are transitory..."
 - Hanson, Lucca, and Wright (2021)

Motivation

• Similarly, quantitative easing and tightening have much larger effects on long-term yields than what textbook models predict

- Similarly, quantitative easing and tightening have much larger effects on long-term yields than what textbook models predict
- "The problem with QE is that it works in practice but it doesn't work in theory."
 - Ben Bernanke, 2014 discussion at Brookings Institution

- Similarly, quantitative easing and tightening have much larger effects on long-term yields than what textbook models predict
- "The problem with QE is that it works in practice but it doesn't work in theory."
 - Ben Bernanke, 2014 discussion at Brookings Institution
- QE effects concentrate on announcement days and attenuate afterwards

Motivation

• Existing literature typically focuses on asset prices

- Existing literature typically focuses on asset prices
- Asset quantities are also informative

- Existing literature typically focuses on asset prices
- Asset quantities are also informative
 - many theories have direct predictions on how quantities should behave

- Existing literature typically focuses on asset prices
- Asset quantities are also informative
 - many theories have direct predictions on how quantities should behave
- We jointly study both using \$40 trillion of granular bond holdings

- Existing literature typically focuses on asset prices
- Asset quantities are also informative
 - many theories have direct predictions on how quantities should behave
- We jointly study **both** using \$40 trillion of granular bond holdings
- How do investors adjust their portfolios in response to monetary policy?

- Existing literature typically focuses on asset prices
- Asset quantities are also informative
 - many theories have direct predictions on how quantities should behave
- We jointly study **both** using \$40 trillion of granular bond holdings
- How do investors adjust their portfolios in response to monetary policy?
- Who absorbs shifts in investor demand and ensures market clearing?

- Existing literature typically focuses on asset prices
- Asset quantities are also informative
 - many theories have direct predictions on how quantities should behave
- We jointly study **both** using \$40 trillion of granular bond holdings
- How do investors adjust their portfolios in response to monetary policy?
- Who absorbs shifts in investor demand and ensures market clearing?
- Quantitatively, how do these demand and supply dynamics shape equilibrium bond yields?

• Stylized fact 1: investors act as a "helping hand" that amplifies the Fed's actions

- Stylized fact 1: investors act as a "helping hand" that amplifies the Fed's actions
 - ightharpoonup Fed cuts rates by 100 bps: investors purchase 0.9% of the bond market (pprox1.6% of GDP)

- Stylized fact 1: investors act as a "helping hand" that amplifies the Fed's actions
 - ▶ Fed cuts rates by 100 bps: investors purchase 0.9% of the bond market (\approx 1.6% of GDP)
 - ▶ Fed buys 1% of the market: investors buy another 0.5%

- Stylized fact 1: investors act as a "helping hand" that amplifies the Fed's actions
 - ▶ Fed cuts rates by 100 bps: investors purchase 0.9% of the bond market (\approx 1.6% of GDP)
 - ► Fed buys 1% of the market: investors buy another 0.5%
- Stylized fact 2: most of increase in investor demand is absorbed by new issuances

- Stylized fact 1: investors act as a "helping hand" that amplifies the Fed's actions
 - ▶ Fed cuts rates by 100 bps: investors purchase 0.9% of the bond market (\approx 1.6% of GDP)
 - ► Fed buys 1% of the market: investors buy another 0.5%
- Stylized fact 2: most of increase in investor demand is absorbed by new issuances
 - ► Dealers play a small role, especially at low frequency

Overview of findings

 Jointly study asset prices and quantities in a Koijen and Yogo (2019) demand system, adding random coefficients (BLP, 1995)

- Jointly study asset prices and quantities in a Koijen and Yogo (2019) demand system, adding random coefficients (BLP, 1995)
 - generate realistic cross-elasticity patterns, important for key transmission channels (e.g. substitution between MBS and Treasuries)

- Jointly study asset prices and quantities in a Koijen and Yogo (2019) demand system, adding random coefficients (BLP, 1995)
 - generate realistic cross-elasticity patterns, important for key transmission channels (e.g. substitution between MBS and Treasuries)
- Quantitatively decompose yield sensitivity to monetary policy into different channels

- Jointly study asset prices and quantities in a Koijen and Yogo (2019) demand system, adding random coefficients (BLP, 1995)
 - generate realistic cross-elasticity patterns, important for key transmission channels (e.g. substitution between MBS and Treasuries)
- Quantitatively decompose yield sensitivity to monetary policy into different channels
 - "Helping hand" from investors can explain a large fraction of the excess sensitivity

- Jointly study asset prices and quantities in a Koijen and Yogo (2019) demand system, adding random coefficients (BLP, 1995)
 - generate realistic cross-elasticity patterns, important for key transmission channels (e.g. substitution between MBS and Treasuries)
- Quantitatively decompose yield sensitivity to monetary policy into different channels
 - "Helping hand" from investors can explain a large fraction of the excess sensitivity
 - Issuances by firms, households and government significantly dampen it, especially at low frequency – not a sign of weak transmission!

- Jointly study asset prices and quantities in a Koijen and Yogo (2019) demand system, adding random coefficients (BLP, 1995)
 - generate realistic cross-elasticity patterns, important for key transmission channels (e.g. substitution between MBS and Treasuries)
- Quantitatively decompose yield sensitivity to monetary policy into different channels
 - "Helping hand" from investors can explain a large fraction of the excess sensitivity
 - Issuances by firms, households and government significantly dampen it, especially at low frequency – not a sign of weak transmission!
- Decompose of bond issuance sensitivity to monetary policy

- Jointly study asset prices and quantities in a Koijen and Yogo (2019) demand system, adding random coefficients (BLP, 1995)
 - generate realistic cross-elasticity patterns, important for key transmission channels (e.g. substitution between MBS and Treasuries)
- Quantitatively decompose yield sensitivity to monetary policy into different channels
 - "Helping hand" from investors can explain a large fraction of the excess sensitivity
 - Issuances by firms, households and government significantly dampen it, especially at low frequency – not a sign of weak transmission!
- Decompose of bond issuance sensitivity to monetary policy
 - ▶ Effect from investor "helping hand" is 3x that of risk-free rate change itself

• The excess sensitivity of long-term interest rates: Gurkaynak, Sack, and Swanson (2005), Hanson and Stein (2015), Nakamura and Steinsson (2018), Hanson, Lucca, and Wright (2021) – focus on asset prices

- The excess sensitivity of long-term interest rates: Gurkaynak, Sack, and Swanson (2005), Hanson and Stein (2015), Nakamura and Steinsson (2018), Hanson, Lucca, and Wright (2021) focus on asset prices
- This paper: study asset quantities using granular portfolio holdings

- The excess sensitivity of long-term interest rates: Gurkaynak, Sack, and Swanson (2005), Hanson and Stein (2015), Nakamura and Steinsson (2018), Hanson, Lucca, and Wright (2021) focus on asset prices
- This paper: study asset quantities using granular portfolio holdings
- Impact of MP on financial institutions: Domanski et al, (2017), Brooks et al (2018), Choi and Kronlund (2018), Anadu et al, (2019), Fang (2023) focus on the mechanism of a particular channel

- The excess sensitivity of long-term interest rates: Gurkaynak, Sack, and Swanson (2005), Hanson and Stein (2015), Nakamura and Steinsson (2018), Hanson, Lucca, and Wright (2021) focus on asset prices
- This paper: study asset quantities using granular portfolio holdings
- Impact of MP on financial institutions: Domanski et al, (2017), Brooks et al (2018), Choi and Kronlund (2018), Anadu et al, (2019), Fang (2023) focus on the mechanism of a particular channel
- This paper: a unified framework to quantify contributions from multiple channels

- The excess sensitivity of long-term interest rates: Gurkaynak, Sack, and Swanson (2005), Hanson and Stein (2015), Nakamura and Steinsson (2018), Hanson, Lucca, and Wright (2021) focus on asset prices
- This paper: study asset quantities using granular portfolio holdings
- Impact of MP on financial institutions: Domanski et al, (2017), Brooks et al (2018), Choi and Kronlund (2018), Anadu et al, (2019), Fang (2023) focus on the mechanism of a particular channel
- This paper: a unified framework to quantify contributions from multiple channels
- **Demand-based asset pricing:** Koijen and Yogo (2019 & 2020), Koijen et al (2021), Bretscher et al, (2024), Darmouni et al (2024), Jansen et al (2024) logit or nested logit and focus on a single market

- The excess sensitivity of long-term interest rates: Gurkaynak, Sack, and Swanson (2005), Hanson and Stein (2015), Nakamura and Steinsson (2018), Hanson, Lucca, and Wright (2021) focus on asset prices
- This paper: study asset quantities using granular portfolio holdings
- Impact of MP on financial institutions: Domanski et al, (2017), Brooks et al (2018), Choi and Kronlund (2018), Anadu et al, (2019), Fang (2023) focus on the mechanism of a particular channel
- This paper: a unified framework to quantify contributions from multiple channels
- **Demand-based asset pricing:** Koijen and Yogo (2019 & 2020), Koijen et al (2021), Bretscher et al, (2024), Darmouni et al (2024), Jansen et al (2024) logit or nested logit and focus on a single market
- This paper: captures cross-market substitution through random coefficients

Roadmap

- Introduction
- 2 Data
- Stylized Fact:
- 4 Asset Demand Systen
- Dissecting Monetary Transmission
- 6 Conclusion

Holdings of debt securities

Investors hold multiple classes of bonds, which need to be jointly studied

Multiple classes of U.S. bonds, jointly studied

- Treasury notes and bonds: CRSP
- Corporate bonds (including agency direct obligations): FISD and TRACE
- Agency MBS (often ignored!): Refinitiv
- Exclude non-agency MBS/ABS, munis, bonds with foreign currency, floating rate, inflation protection, other optionality (e.g. convertible)
- Key criteria: data on yield to maturity, characteristics (credit rating, option-adjusted duration, coupon rate, bid-ask spread) and amount outstanding
- Analyze bond portfolios (e.g. 10Y 5% Treasuries) instead of individual CUSIPs

Roadmap

- Introduction
- 2 Data
- Stylized Facts
- 4 Asset Demand System
- Dissecting Monetary Transmission
- 6 Conclusion

Portfolio responses to monetary policy

• We run the following quarterly time series regression for each investor group i:

$$\Delta q_t^i = \alpha + \beta_1 \Delta r_t^{1Y} + \beta_2 \Delta q_t^{FED} + \epsilon_t$$

Portfolio responses to monetary policy

• We run the following quarterly time series regression for each investor group i:

$$\Delta q_t^i = \alpha + \beta_1 \Delta r_t^{1Y} + \beta_2 \Delta q_t^{FED} + \epsilon_t$$

- ullet Δq_t^i : year-over-year net purchases by investor group i scaled by total market outstanding
- Δr_t^{1Y} : year-over-year change in 1Y Treasury rate
- ullet Δq_t^{FED} : year-over-year net purchases by the Fed scaled by total market outstanding
- ullet total market outstanding: Treasury + MBS + Corporate

- MFs purchase more bonds due to inflows of capital (Brooks et al, 2018; Fang, 2023)
- MFs reach for yield by tilting towards MBS and corporates (Barth et al, 2025)

- ICs have stable cash flows that have low beta on monetary policy
- ICs sell Treasuries and buy corporates more on credit risk later

- Banks purchase more bonds due to inflows of deposits (Drechsler et al, 2017)
- MFs and banks together purchase 0.79% of total market outstanding, or 1.4% of GDP

Stylized Facts

- Dealers trade in the same direction as other investors
- They provide liquidity at higher frequency, albeit still in small quantity quarterly

- Most of investor purchases are absorbed by new issuances of bonds
- Corporations and households issue more than the Treasury department

Portfolio response to 100 bps rate cut – duration

- MBS duration shortens by 0.35 years due to higher repayment propensity
- Mortgage investors (e.g. banks) lengthen duration in other bonds (Hanson, 2014)
- ICs reach for duration more, consistent with liability convexity (Domanski et al, 2017)

Portfolio response to 100 bps rate cut - credit rating

- MFs take more credit risks to attract retail flows (Choi Krunlund, 2017)
- ICs tilt towards safer corporate bonds due to tighter regulatory constraint (Li, 2025)

Portfolio response to 1% Fed purchase – amount

- Investors "helping hand" purchase another 0.50% of total market outstanding
- Most of the Fed and investor purchases are accommodated by new issuances
- Challenges conventional wisdom on portfolio rebalancing

• When the Fed lowers short-term rates or directly purchases bonds:

- When the Fed lowers short-term rates or directly purchases bonds:
- Investor demand acts as a **helping hand**:

- When the Fed lowers short-term rates or directly purchases bonds:
- Investor demand acts as a helping hand:
 - Purchase more bonds to accommodate inflows of retail capital

- When the Fed lowers short-term rates or directly purchases bonds:
- Investor demand acts as a helping hand:
 - ▶ Purchase more bonds to accommodate inflows of retail capital
 - ► Increase duration to counteract MBS / liability convexity

- When the Fed lowers short-term rates or directly purchases bonds:
- Investor demand acts as a helping hand:
 - ▶ Purchase more bonds to accommodate inflows of retail capital
 - Increase duration to counteract MBS / liability convexity
 - Increase credit-risk taking to attract retail flows

- When the Fed lowers short-term rates or directly purchases bonds:
- Investor demand acts as a helping hand:
 - ▶ Purchase more bonds to accommodate inflows of retail capital
 - Increase duration to counteract MBS / liability convexity
 - Increase credit-risk taking to attract retail flows
- Investor demand is mainly absorbed by new issuances, while dealers play a small role

- When the Fed lowers short-term rates or directly purchases bonds:
- Investor demand acts as a helping hand:
 - ▶ Purchase more bonds to accommodate inflows of retail capital
 - Increase duration to counteract MBS / liability convexity
 - Increase credit-risk taking to attract retail flows
- Investor demand is mainly absorbed by **new issuances**, while dealers play a small role
- Quantitatively, how do these demand and supply dynamics shape equilibrium bond yields?

Roadmap

- Introduction
- 2 Data
- Stylized Facts
- 4 Asset Demand System
- Dissecting Monetary Transmission
- 6 Conclusion

Investor demand

Original logit demand in Koijen and Yogo (2019):

$$w_{i,t}(n) = \frac{\text{utility of bond } n}{\text{sum of utility of all bonds}} = \frac{\exp\{\alpha_{i,t}y_t(n) + \beta'_{i,t}\mathbf{x}_t(n) + \epsilon_{i,t}(n)\}}{\sum_m \exp\{\alpha_{i,t}y_t(m) + \beta'_{i,t}\mathbf{x}_t(m) + \epsilon_{i,t}(m)\}}$$

Homogeneous cross-elasticity:

$$\frac{\partial \log w(n)}{\partial y(m)} = -\alpha w(m)$$

n does not enter the equation: when m's price/characteristics change, investors proportionally scale up or down the rest of the portfolio

 \Rightarrow when MBS price/duration changes, investors substitute to Treasuries and high-yield corporate bonds alike

Investor demand

Inspired by Berry Levinsohn Pakes (1995), we allow demand to have random coefficients:

$$w_{i,t}(n) = \int \frac{\text{util. of bond } n}{\text{sum of util. of all bonds}} dP(\text{pref.}) = \int \underbrace{\frac{\exp\{\alpha_{i,t}y_t(n) + \beta'_{i,t}\mathbf{x}_t(n) + \epsilon_{i,t}(n)\}}{\sum_m \exp\{\alpha_{i,t}y_t(m) + \beta'_{i,t}\mathbf{x}_t(m) + \epsilon_{i,t}(m)\}}} dP(\beta_{i,t})$$

Heterogeneous cross-elasticity:

$$\frac{\partial \log w(n)}{\partial y(m)} = -\frac{\alpha}{w(n)} \int \tilde{w}(n)\tilde{w}(m)dP(\beta)$$

When m's price/characteristics change, allocation to n depends on its covariance with m over the distribution of $\beta \sim N(\mu, \Sigma)$

⇒ changes to MBS price/duration primarily affect demand on **similar** bonds (e.g. Treasuries)

Estimated cross-price elasticities (mutual funds), RC versus logit

Random Coefficients

	AA	Α	BBB	BB	В	CCC
AA	-2.42	2.59	1.28	0.11	0.31	0.01
A	1.21	-2.78	2.93	0.87	0.08	0.07
BBB	0.93	1.35	-4.03	2.04	1.49	0.03
BB	0.14	0.18	1.25	-1.96	1.22	1.02
В	0.28	1.27	0.02	2.98	-2.06	1.00
CCC	0.03	0.34	0.94	0.08	1.12	-1.58

"Plain" Logit

	AA	Α	BBB	$^{ m BB}$	В	CCC
AA	-2.40	1.29	1.32	1.36	1.00	0.46
A	0.58	-2.72	1.41	1.34	1.02	0.51
BBB	0.70	1.24	-3.95	1.27	0.87	0.49
BB	0.62	1.24	1.31	-1.92	0.96	0.53
В	0.70	1.18	1.42	1.28	-1.99	0.60
CCC	0.58	1.27	1.46	1.22	0.93	-1.56

• RC generate "local" substitution between bonds with similar credit rating and duration

Estimated cross-price elasticities (mutual funds), RC versus logit

Random Coefficients

	1-3Y	3-5Y	5-7Y	7-10Y	10-15Y	15-30Y
1-3Y	-3.12	2.01	1.98	0.34	0.53	0.54
3-5Y	3.23	-3.54	2.44	1.72	0.11	0.31
5-7Y	1.88	2.44	-4.72	2.90	1.03	0.82
7-10Y	1.32	0.29	1.92	-2.52	1.45	0.06
10-15Y	0.02	0.43	0.44	1.53	-1.27	1.03
15-30Y	0.11	0.03	0.44	0.36	1.34	-0.84

"Plain" Logit

	1-3Y	3-5Y	5-7Y	7-10Y	10-15Y	15-30Y
1-3Y	-3.04	1.12	1.46	1.48	1.05	0.60
3-5Y	1.43	-3.51	1.53	1.57	1.02	0.59
5-7Y	1.42	1.19	-4.64	1.45	0.95	0.65
7-10Y	1.47	1.13	1.62	-2.45	0.96	0.72
10-15Y	1.41	1.04	1.58	1.48	-1.25	0.62
15-30Y	1.45	1.05	1.64	1.56	1.03	-0.79

• RC generate "local" substitution between bonds with similar credit rating and duration

Identification

- ullet Latent demand ϵ is likely correlated with yield and requires instruments
- We use flow-induced trading (FIT) by other investors (Lou, 2012; Gabaix Koijen, 2022)

$$InvestorFlow_{i,t} = a + \sum_{k} b_k PC_{k,t} + InvestorFlow_{i,t}$$

$$Bon\tilde{d}Flow_t(n) = \frac{\sum_{i \neq j} AmountHeld_{i,t-1}(n)Invest\tilde{o}rFlow_{i,t}}{AmountOutstanding_{t-1}(n)}$$

 We include the bond's own FIT as well as its peers' FIT, where peers are defined to be bonds with similar rating and duration

Equilibrium

• In equilibrium, total demand by all investors equals supply for each bond:

$$S_t(n)P_t(n) = \sum_{i=1}^{l} A_{i,t}w_{i,t}(n)$$

where price is $P = \sum_{\tau=1}^{T} C e^{-y\tau} + e^{-yT}$ and yields show up in price P, assets under management A, and portfolio weight w

• Market-clearing bond yields can be numerically derived as an implicit function of amount outstanding (S), characteristics (x), investor AUM (A), demand coefficients $(\theta = (\alpha, \mu, \Sigma))$, and latent demand ϵ :

$$y(S, \mathbf{x}, A, \boldsymbol{\theta}, \epsilon)$$

Roadmap

- Introduction
- 2 Data
- Stylized Facts
- 4 Asset Demand Systen
- 5 Dissecting Monetary Transmission
- 6 Conclusion

• Change one channel c at a time, hold other channels $\{c^-\}$ constant E.g. change investor AUM A due to flows, fix bond supply S, bond characteristics x, demand coefficients (α, μ, Σ) , and latent demand ϵ

- Change one channel c at a time, hold other channels $\{c^-\}$ constant E.g. change investor AUM A due to flows, fix bond supply S, bond characteristics x, demand coefficients (α, μ, Σ) , and latent demand ϵ
- Calculate changes in market-clearing bond yields due to channel c:

$$\Delta y_t(c) = y(c_t, \{c_{t-1}^-\}) - y(c_{t-1}, \{c_{t-1}^-\})$$

- Change one channel c at a time, hold other channels $\{c^-\}$ constant E.g. change investor AUM A due to flows, fix bond supply S, bond characteristics x, demand coefficients (α, μ, Σ) , and latent demand ϵ
- Calculate changes in market-clearing bond yields due to channel c:

$$\Delta y_t(c) = y(c_t, \{c_{t-1}^-\}) - y(c_{t-1}, \{c_{t-1}^-\})$$

Project yield changes to monetary policy rate changes:

$$\Delta y_t(c) = \alpha + \beta \Delta r_t + \gamma X_t + \epsilon_t$$

where Δr_t denotes changes in 1Y Treasury rate, and X_t includes GDP growth, inflation rate, and unemployment rate changes

- Change one channel c at a time, hold other channels $\{c^-\}$ constant E.g. change investor AUM A due to flows, fix bond supply S, bond characteristics x, demand coefficients (α, μ, Σ) , and latent demand ϵ
- Calculate changes in market-clearing bond yields due to channel c:

$$\Delta y_t(c) = y(c_t, \{c_{t-1}^-\}) - y(c_{t-1}, \{c_{t-1}^-\})$$

Project yield changes to monetary policy rate changes:

$$\Delta y_t(c) = \alpha + \beta \Delta r_t + \gamma X_t + \epsilon_t$$

where Δr_t denotes changes in 1Y Treasury rate, and X_t includes GDP growth, inflation rate, and unemployment rate changes

• β : the partial effect of channel c on yield sensitivity to monetary policy

10Y Treasury yield sensitivity to monetary policy, year over year

10Y Treasury yield sensitivity to monetary policy, year over year

- Investor "helping hand" amplify yield sensitivity by 49 bps
- Issuances and redemptions dampen yield sensitivity by 32 bps
- These observed channels can almost entirely explain the observed yield sensitivity

10Y Treasury yield sensitivity to monetary policy, effect of issuances

• Cross-market transmission: Treasury yield sensitivity is dampened by issuances of corporate bonds (16 bps) and MBS (10 bps)

troduction Data Stylized Facts Demand System Dissecting Transmission Conclusion

10Y Treasury yield sensitivity to monetary policy, by investor type

 Main amplifiers: mutual fund flows, life insurer demand for duration, banks' flows and their response to (MBS) duration change

10Y Treasury yield sensitivity, quarterly vs annual

- Hanson et al (2021): yield sensitivity is smaller at lower frequency
- The dampening effect of net issuances is much larger at lower frequency

10Y Treasury yield sensitivity, over time

- Hanson et al (2021): low-frequency yield sensitivity has declined over time
- Issuances by corporations and households have become more elastic over time

BBB credit spread sensitivity to monetary policy

• Corporate bond issuances driven by investor demand for duration contribute to the negative correlation between credit spread and monetary policy

Decomposition of corporate bond issuances

- 0.43%: change in risk-free rate and its expected path
- 1.48%: term premium and credit spread changes due to investor "helping hand"

Decomposition of 10Y Treasury yield response to QE

- Changes in investor demand are more important than Fed purchases themselves
- The yield impacts of QE are reversed by bond issuances as intended!

• "How, in a world of eventually flexible goods prices, is monetary policy able to exert such a powerful influence on long-term real rates?" – Jeremy Stein (2013)

- "How, in a world of eventually flexible goods prices, is monetary policy able to exert such a powerful influence on long-term real rates?" Jeremy Stein (2013)
- This paper: monetary policy stimulates investors' asset demand through fund inflows and duration changes, acting as a helping hand

- "How, in a world of eventually flexible goods prices, is monetary policy able to exert such a powerful influence on long-term real rates?" Jeremy Stein (2013)
- This paper: monetary policy stimulates investors' asset demand through fund inflows and duration changes, acting as a helping hand
- "...our findings suggest that the recruitment channel may not be as strong as Stein (2013) speculates since a portion of the resulting shifts in term premia are transitory..." – Hanson, Lucca, and Wright (2021)

- "How, in a world of eventually flexible goods prices, is monetary policy able to exert such a powerful influence on long-term real rates?" Jeremy Stein (2013)
- This paper: monetary policy stimulates investors' asset demand through fund inflows and duration changes, acting as a helping hand
- "...our findings suggest that the recruitment channel may not be as strong as Stein
 (2013) speculates since a portion of the resulting shifts in term premia are transitory..." –
 Hanson, Lucca, and Wright (2021)
- This paper: elastic issuances reverse the yield impact of investor demand the recruitment channel has become *more* effective over time!

Appendix

US Treasury Yield Curve around 25 bps Hike in 2015

- Before the hike (Nov 2, 2015): 2.16%
- Just after the hike (Dec 16, 2015): 2.30%

Portfolio holdings data

Sector	Source	Asset Granularity	Frequency	Coverage
Mutual funds and ETFs	Morningstar	CUSIP	quarterly	2003-2023
Insurance companies	NAIC	CUSIP	quarterly	2001-2023
Banks	Call Report	asset type and maturity bucket	quarterly	2001-2023
Primary dealers	New York Fed	asset type and maturity bucket	weekly	2001-2023
Federal Reserve	New York Fed	CUSIP	weekly	2003-2023
Treasury securities	CRSP	CUSIP	daily	1961-2023
Agency MBS	Refinitiv	CUSIP	monthly	2000-2023
Corporate bonds	Mergent FISD	CUSIP	monthly	1980-2023

Granular portfolio holdings

- Mutual funds and ETFs targeting U.S. assets
 - domestic funds: CRSP and Morningstar
 - offshore funds (e.g. Luxembourg): Morningstar
- Insurance companies (life and P&C): NAIC
- Banks: call reports (coarse holdings by security types and maturity buckets)
- Federal Reserve: SOMA and SMCCF

Assets

- We work with bond portfolios instead of individual CUSIPs:
 - classes: Treasury, MBS, corporate
 - rating: AA or higher, A, BBB, BB, B, CCC or lower
 - ▶ maturity: 1 or shorter, 2, 3, ..., 30 or longer
 - coupon rate: 0%, 1%, ..., 10% or higher
 - callable or not
- Bond portfolios are indexed by n = 1, ..., N, each with:
 - par amount outstanding $S_t(n)$
 - yield to maturity $y_t(n)$
 - characteristics $x_t(n)$, which include rating, duration, coupon rate, bid-ask spread, and bond class
- Cash and cash equivalents (n = 0) have AAA rating, 0 duration, 0% coupon, 0% bid-ask spread, its yield exogenously set by Fed, its mean utility normalized to 1

Investors

Investors are indexed by i = 1, ..., I:

- mutual funds (bond vs balanced, active vs index)
- insurance companies (life vs P&C)
- banks
- Federal Reserve
- residual investors

"Microfoundation" for random coefficients

- An insurance company sells both short-term and long-term life insurance policies
- It buys short-term bonds to match ST liabilities, long-term bonds to match LT liabilities
- If some long-term bonds become pricier, it can be optimal to substitute to other long-term bonds, instead of short-term bonds
- Random coefficients capture this variation in demand for characteristics *within* the portfolio construction process and therefore achieve realistic substitution patterns

Bond Supply

Supply is potentially responsive to bond prices

$$\Delta \log S_t(n) = \tilde{\alpha} \Delta \log P_t(n) + \tilde{\beta}' x_t(n) + \tilde{\epsilon}_t(n)$$

- ullet Supply elasticity $ilde{lpha}=0$ means issuance is not responsive to bond prices
- ullet Supply elasticity $ilde{lpha}>0$ means issuance is responsive to bond prices

Endogenize AUM

We focus on AUM of the bond portfolio (e.g. exclude stocks):

$$A_{i,t} = (A_{i,t-1} + T_{i,t})R_{i,t}$$

where T denotes net purchases of bonds (including cash):

$$T_{i,t} = \sum_{n} (Q_{i,t}(n) - Q_{i,t-1}(n)) P_{t-1}(n)$$

and *R* denotes return on the bond portfolio, given by:

$$R_{i,t} = \sum_{n} w_{i,t}(n) \frac{P_t(n)}{P_{t-1}(n)}$$

We separate net purchases driven by flows $T_{i,t}^F = A_{i,t-1} F_{i,t}^{\%}$ vs other net purchases $T_{i,t}^O := T_{i,t} - T_{i,t}^F$, where $F_{i,t}^{\%} = F_{i,t}^{\$}/A_{i,t-1}^{total}$.

Estimation

- We want to estimate $\theta = (\alpha, \mu, \Sigma)$ for each investor i each period t
- To simplify computation:
 - \triangleright Σ is diagonal and only non-zero in rating (σ^r) and duration (σ^d)
 - ▶ include adjacent periods to use changes for identification (Nevo, 2000)
- For each guess of (α, μ, Σ) , derive latent demand ϵ via contraction mapping
- Moments are then constructed by interacting estimated latent demand $\epsilon(n)$ with instruments z(n) to form:

$$g(\theta) = \frac{1}{N} \sum z(n)' \epsilon(n)$$

and the GMM problem is:

$$\min_{\theta} g(\theta)' Wg(\theta)$$

Estimating random coefficients (BLP 1995)

Define mean utility as:

$$\delta := \alpha \mathbf{y} + \boldsymbol{\mu}' \mathbf{x} + \epsilon$$

and the random part of demand coefficients as

$$\eta = \beta - \mu$$

We can re-write portfolio weight as:

$$w_{i,t}(n) = \int \frac{\exp\{\delta_{i,t}(n) + \boldsymbol{\eta}'_{i,t} \boldsymbol{x}_t(n)\}}{\sum_{m} \exp\{\delta_{i,t}(m) + \boldsymbol{\eta}'_{i,t} \boldsymbol{x}_t(m)\}} dP(\boldsymbol{\eta}_{i,t})$$

Mean utility δ can be obtained via contraction mapping:

$$\delta^{h+1} = \delta^h + \log(w) - \log(w(\delta^h))$$

Demand Framework

Estimated coefficients on characteristics – Mean μ

- expected regularities e.g. high-yield funds have high demand for credit risk, life insurers have high demand for duration
- significant variation in demand coefficients over time

Estimated coefficients on characteristics – Mean μ (cont'd)

- life insurers prefer high-coupon bonds to match cash flows on the high-income-yield annuities they sell
- banks aversion to bid-ask spread in recent years (Dick-Nielsen and Rossi, 2018)

Estimated coefficients on characteristics – Variation σ

- \bullet $\sigma > 0$: substantial variation in demand for characteristics within the same portfolio
- E.g. Life insurers allocate a portion of their portfolio to short-term bonds to match 1-year term life insurance policies, while other portions are allocated to long-term bonds to match 30-year deferred annuities

Term spread sensitivity to monetary policy: details

Credit spread sensitivity to monetary policy: details

- Investors flows and demand for rating and coupon increase credit spread sensitivity to monetary policy; corporate issuances significantly decrease it
- Opposing effects from demand for rating by insurers vs other investors the importance of capturing investor heterogeneity in a structural framework

Credit spread sensitivity to monetary policy: by investor type

- Monetary easing increases flows into mutual funds and their demand for credit risk, amplifying its impact on credit spreads
- Monetary easing decreases life insurers' demand for credit risk (as duration risk increases), dampening its impact on credit spreads