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Abstract
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1 Introduction

Many jurisdictions around the world have started to implement climate policy, such as

emissions trading systems (ETS) and renewable portfolio standards (RPS), that target

emissions-intensive firms in the energy and utilities sectors. While there are plentiful

studies on the damages associated with carbon emissions1, far less research has been

done on the abatement costs that these firms have to bear, i.e. the cost of climate policy

to capital. But having causal estimates of the policy impact on investors’ forecasts of

abatement costs and risks is crucial for understanding the long-run implications for

investments and welfare2, as well as for addressing financial regulatory concerns about

transition risks 3

To this end, we estimate the response of bond markets to renewable portfolio stan-

dards (RPS), the main climate policy covering power firms in 40% of the major carbon-

emitting countries globally, including the US, India, and South Korea.4 Because power

firms or utilities rely on debt to finance their investments, we have plentiful data on

bond yields with which to measure the response of investors in bond markets to RPS,

which requires firms to switch from fossil fuels toward more expensive renewables,

typically solar and wind farms.

Since an empirical challenge is that the enactment of climate policy is endogenous

and dependent on underlying economic conditions that also affect firms’ cost of capital,

a key step in our approach is to exploit institutional features of the RPS system in

the United States to estimate the causal effect of climate policy on firms’ financial

1See, e.g., Deschênes and Greenstone (2007), Schlenker and Roberts (2009), Dell et al. (2012), Dell
et al. (2014), and Bilal and Rossi-Hansberg (2023).

2For instance, these abatement costs are a key outcome in integrated assessment models (Nordhaus
(2017), Golosov et al. (2014), Jensen and Traeger (2014), Barnett et al. (2020),Hong et al. (2023)).

3For policy discussions of transitions risks, see (Task Force Climate-Related Financial Disclosures,
European Systemic Risk Board, and De Nederlandsche Bank and Jung et al. (2021).

4Emissions trading systems and renewable portfolio standards are two types of regulations used for
emissions-intensive sectors, while national carbon taxes are enacted to address gaps for other sectors
(see, e.g., Carhart et al. (2022) for overview of climate policy globally).
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health. Of the 32 states in the US that enacted RPS over the period of 1991-2020, 14

of them require investor-owned producers to meet RPS targets, but exempt municipal

producers. The municipal producer exemption allows us, in a panel regression setting,

to address implementation timing or endogeneity concerns by using firm and state-by-

year fixed effects.

By combining carbon emissions and bond-issue data with our novel identification

strategy for RPS in the US to identify the reduction in carbon emissions, we are able

to estimate the elasticity of credit spreads to a reduction of carbon emissions. We find

the benefits of RPS in terms of lower carbon emissions come at a significant cost to

capital in terms of higher credit spreads. Our conservative estimate is that RPS leads

to a reduction of carbon emissions of around 2.7 million tons per year for a typical

producer, which comes at a cost to capital of around 66 bps wider credit spreads.

Our emissions reduction figure is consistent with, but more conservative than, ear-

lier RPS studies (Greenstone and Nath (2020), Upton Jr and Snyder (2017), Deschenes

et al. (2023)). There are two reasons for this. First, we use a different identification

strategy. These studies exploit the staggered implementation of RPS across states

along with state-level controls to address endogeneity concerns. Second, measuring

emissions using plant level data is complicated since firms can meet RPS standards

through the purchase of renewable energy certificates (RECs). We get around this is-

sue by using RPS enforcement outcomes at the state level by producer type to estimate

the emissions reduction by a typical producer.

To arrive at our credit spreads findings, we run four sets of distinct analyses using

bond-issue data. The first is a difference-in-differences design that pools states with

municipal-producer exemptions and has state by year fixed effects. Rather than pooling

observations from all these states, we also run our difference-in-differences analysis for

each individual state, since our control firms are municipal producers in the same state
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(Sun and Abraham (2021), Goodman-Bacon (2021)). The second is an event-study

design where we can assess the pre-trends and the persistence of the treatment effects

over time.

The third is a placebo analysis, where we implement the same procedure as in

our main analysis but using bond issues from firms in the 18 states that passed RPS

without a municipal exemption. Finally, we pool observations from exempt and non-

exempt states and run a panel regression specification that compares the estimates

for exempt versus non-exempt states — a triple difference estimate. The latter two

designs address concerns that unobserved differences in features of bonds are somehow

correlated with the timing of RPS implementation.5

Treatment with RPS significantly elevates bond issuance and the characteristics-

adjusted bond yield spreads of treated utilities by around 100 bps compared to non-

treated municipals in the same state.6 There are no pre-trends; and the effect of

RPS on bond issuance and yield spreads persists over several years. We expect and

indeed find in our ‘placebo’ analysis that the effects we documented in the states

with municipal exemptions are absent in these states without exemptions. Our triple

difference estimate of 66 bps is more conservative than the 100 bps from our difference-

in-difference estimates. Our paper is the first causal estimate that links emissions

reduction to asset prices in the climate finance literature (Hong et al. (2020), and

Giglio et al. (2021)).7

We then use a structural corporate bond-pricing model (Merton (1974), Longstaff

and Schwartz (1995), Leland and Toft (1996)) — that maps yield spreads to the tax

5Bonds differ in many features such as callability that are not easily controlled for due to potential
missing data.

6These yields are adjusted for issue-level characteristics including credit ratings, maturity, and in
the case of municipal debt, its purpose and tax treatment.

7Studies have typically examined the response of asset prices to the Paris Treaty Agreement, which
is non-binding (see, e.g., Seltzer et al. (2022)). Several papers have examined the effects of regional
cap-and-trade programs or greenhouse gas policies (Kumar and Purnanandam (2022), Ivanov et al.
(2023)). They suggest that banks might reduce lending but find no effects on asset prices.
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burden of RPS through a distance to default channel — to infer the abatement costs

per ton of emissions.8 Investor-owned firms subject to RPS have wider credit spreads

compared to firms not subject to RPS because abatement costs, all else equal, reduce

firm cash flow and hence asset value, which then brings the debt of the firm closer to

default.

Using post-RPS data, we estimate the model to match credit spreads for our bonds

from the power sector, that already reflect the effects of the RPS, as well as the spread

differences in yields between treated and control firms. A key assumption in this

comparison, which is true in practice, is that investor-owned and municipal producers

compete in different and segmented markets. To match our credit spread findings, we

estimate an abatement cost to capital stock ratio of 1.3%. This translates to a cost of

$50 to reduce emissions by one ton.

Our abatement cost estimate is larger than the roughly $10 per ton that Meng

(2017) estimates using the differential response of equity prices of firms granted versus

not granted free permits under the proposed 2009-2010 Waxman-Markey Bill that

passed the House but failed in the Senate. Our sizeable expected abatement cost is

consistent with a marginally statistically significant increase in electricity prices of

around 4%.

That is, producers seem to bear more of the cost of RPS than consumers. This

finding is different from conclusions of climate policy such as carbon taxes or ETS

in Europe where the impact of producers is mild and consumers bear most of the

cost (Känzig (2021), Metcalf and Stock (2020), Känzig and Konradt (2023)). These

studies look at equity prices as opposed to debt prices and do not have identification

strategies that utilize exemptions. Furthermore, the electricity price increases in the

8In our quantitative analysis, we ignore the mitigation benefits of decarbonization for risk premia
(Hong et al. (2021)) as such an effect is likely to be small in our sample since aggregate reduction in
carbon emissions due to RPS is small.
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power sector are determined by regulators. Since rate setting in the power sector of

most countries are determined by regulators, our estimates suggest that conclusions

on whether producers or consumers bear the cost of climate policy will differ across

emissions-intensive versus non-emissions intensive sectors.

2 Data

Our analysis merges a number of sources of data that are required to measure the RPS

intervention on output, electricity prices and emissions by different types of producers,

as well as the endogenous response of corporate debt issuance and credit spreads.

RPS. At the broadest level, we have state level data on RPS in the US from Barbose

(2021). For each state, the data gives the year of implementation, the required amount

of output that has to be produced from renewables, the year when firms in that state

are to have reached that requirement, and most importantly for us, the types of firms

that are covered by the RPS in the state. One of the major groups of firms that are

exempt in a fraction of states are municipal producers (see Section 3.1). But in general,

state exemptions can apply even to a single name, though these instances are rare.

Producers. Using the U.S. Energy Information Administration’s Annual Electric

Generator Report (Form EIA-860), we collect information on the electric utilities in the

United States. This annual form gives information on ownership type (e.g. investor-

owned versus municipal producer), where the utilities operate, along with a host of

variables including total sales, megawatt capacity in different types of fuel sources, and

the cost of installing these different types of capacity.
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Renewable capacity. In order to meet RPS, firms respond in one of two ways: they

buy renewables from a supplier (via a Renewable Energy Certificate, or REC), or build

solar and wind farms. Data on the former is spotty, while we can precisely track firm

investments in renewable plants.

CO2 emissions. We calculate the CO2 emissions of the investor-owned firms and

municipal utilities (separately) in our sample of states from 2001 to 2020. We use a

different methodology for calculating the emissions of the two sectors. For investor-

owned utilities in our sample that are subject to the RPS mandates, we need to take into

account that they can meet these mandates either by cutting back emissions from their

own electricity generation or they can buy RECs. Our methodology for calculating the

emissions of investor-owned utilities needs to take into account these RECs, but for

the municipal utilities that are not subject to the RPS mandates, we can ignore them.

For the investor-owned utility sector, we calculate CO2 emissions by first measuring

the amount of electricity sales in this sector each year by state that is not constrained

by the RPS mandate. From EIA State Electricity Profiles, we know the total sales of

investor-owned utilities each year (measured in MWhr). From Barbose (2021) we know

the RPS mandate (measured in percentage of sales) for each state and year and the

average compliance rate of firms.9 This compliance rate takes into account the change

in emissions made by the utilities and their purchases of RECs. Thus, the amount of

sales not covered by the mandate is equal to total sales multiplied by one minus the

RPS mandate times the compliance rate.

We next need to convert this state/year measure of the non-green electricity sales of

investor-owned firms (measured in MWhr) into a measure of CO2 emissions (measured

in tons). For this, we use a similar methodology to Greenstone and Nath (2020).

9We only have information on compliance rates at the state/year/sector level. This is why our
measure of emissions is also at that level.
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Using EIA Forms 906 and 923, we can calculate for each year the average mix of fossil

fuels that utilities use to generate non-green electricity.10 Assuming that investor-

owned utilities generate non-green electricity using this average fossil fuel mix, we can

calculate how much of the sector’s non-green electricity sales are produced with each

type of fossil fuel. The EPA estimates carbon conversion factors for every fossil fuel,

allowing us to calculate the amount of CO2 (measured in ton) released by every state

investor-owned utility sector each year.11

For the municipal utility sector in our sample of states, we do not need to worry

about them meeting RPS mandates through RECs; therefore, we measure their CO2

emissions in a simpler way. We measure for every municipal utility in our sample the

fossil fuel use of their plants by type (again from EIS forms 906 and 923). With this

information, we again use the EPA conversion factors to calculate the CO2 emissions

of the plants. We then sum up those emissions to state/year/sector observations.

Electricity prices. We collect yearly data on the average retail price of electricity

from investor-owned and municipal utilities (separately) from 2001 to 2021.12 These

data come from various years of EIA State Electricity Profiles and are measured as

cents/KWhr. Data on retail prices allows us to assess the degree of cost passthrough

from firms to consumers in the wake of RPS passage, which we discuss in Section 3.2.

Corporate debt. We draw our data for corporate bonds from Mergent FISD, a

standard corporate bond database. This dataset contains information on the yields,

maturity, issue amount, bond rating, industrial sector, and issuer name of corporate

10We calculate this mix every year because over our sample period utilities have been moving away
from using coal as the main fossil fuel in electricity generation towards natural gas. Coal use generates
more CO2 emissions than natural gas, so we want to adjust our emissions measures over time for this
shift.

11The carbon factors are estimated by the U.S. Environmental Protection Agency, Inventory of U.S.
Greenhouse Gas Emissions and Sinks: 1990-2021.

12Data for electricity prices is not broken down at the producer level.
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bond issues in the United States, plus a host of other issue-relevant variables.

We filter on firms in the power sector. Although this data contains information on

the state of the head office of the issuer, it does not typically contain information on

the state or states in which the issuer operates.

To address this issue, we integrate our bond data with our dataset on utility oper-

ations, the details of which are outlined above. We match these two databases using

the legal name of the issuer, as given in the ‘Bond Issuers’ dataset within Mergent, and

perform a string distance match to our dataset on production. We are able to perform

an exact match to roughly a third of issuers from Mergent, though these issuers make

up roughly 72% of all issues in our dataset. When we cannot match exactly, we assume

that the state of operation is the same as the state of the head office.13 In a robustness

check, we run our analysis on only the issuers we are able to match exactly; our results

are essentially unchanged.

One technical issue with analyzing at the issue level is that many investor-owned

utilities operate across several states. To resolve this problem, and ensure that issues

are appropriately assigned to states, we perform the following procedure: first, we

calculate the average exposure of an investor-owned utility in each of the states where

it has a presence by taking the time-series total of sales in each state and dividing by

the total sales. For a utility with a presence in only one state, this results in a value

of 1.

We then replicate any issues for utilities that operate in multiple states, but weight

that observation by the previously calculated exposure. Therefore, if utility ‘A’ op-

erates in, for example, Kansas, Kentucky, and Tennessee, and has sold roughly 20%,

20%, and 60% of its output in each state respectively, then an issue from utility ‘A’

appears three times in our dataset, with one assignment to each state, where each

13By looking at the discrepancy between the state of operation and state of the head office in our
exact matches, we find that this assumption is correct roughly 87% of the time.
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observation is weighted by 0.2, 0.2, and 0.6 respectively.

Municipal bonds. For municipal bonds, we use the SDC Muni database. This

dataset contains information on the yields, maturity, issue amount, bond rating, in-

dustrial sector, state, and issuer name of municipal bond issues in the United States,

plus a host of other issue-relevant variables.

Given our interest in assessing the impact of RPS, we restrict attention to municipal

bond issues in the ‘Electric & Public Power’, ‘Combined Utilities’, and ‘Gas’ sectors.

Across our sample period of 1990 to 2021, we find complete data on 2,049 municipal

issues.

3 RPS Exemptions: Renewables, Carbon Emissions

and Electricity Prices

3.1 States with and without Municipal Producer Exemptions

In Table 1, we report the RPS details for the 14 states that exempted their municipal

producers. The details of our classification procedure are in the Appendix Section A.

Many states implemented their RPS in the mid-to-late 2000s. Investor-owned produc-

ers are allowed to gradually ramp up their mix of renewables before hitting the required

or steady-state amount.

Consider the state of Illinois, which implemented its RPS in 2007. It gave firms

a runway of around 20 years to reach a required renewable mix of 25% of output.

Hence, investor-owned producers had to increase their mix by roughly a percent a year.

States typically vary the length of the transition period to a steady-state requirement

depending on how stringent those requirements are. There is variation across states in
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Table 1: Summary of RPS Legislation in States with Municipal Exemptions

This table presents summary details of the passage of Renewable Portfolio Standards regulation
in the 14 states that have thus far enacted the legislation with municipality exemptions. Note
that Virginia also has an exemption for its small investor-owned producers. For the number
of municipal and investor-owned suppliers, and their sales in gigawatt hours, we take the time
series average.

State Mandate
Start

Maximum
Renew-
able %

Year Max
Achieved

No. Mu-
nicipal

No.
Investor-
Owned

Municipal
Sales
(gwhrs)

Investor-
Owned Sales
(gwhrs)

Arizona 2001 15 2025 0 2.9 0 37,785
Colorado 2004 30 2020 8.4 1.65 4,780 28,987
Hawaii 2004 100 2045 0 3.1 0 9,393
Iowa 1991 1 2000 57.3 2.15 4,201 33,160
Illinois 2007 25 2026 18.4 4.2 3,580 15,599
Kansas 2009 20 2020 45.9 4 5,914 25,839
Minnesota 2007 30 2020 46.15 3.65 6,124 42,171
Missouri 2008 15 2021 2.05 2 427 22,663
North Carolina 2007 12.5 2021 2.95 3 2,490 96,816
New Hampshire 2007 12.8 2025 1 1.8 19 7,846
New Mexico 2004 80 2040 2.55 3 1,663 14,861
Ohio 2008 8.5 2026 14.75 8.25 5,148 85,027
Oregon 2007 50 2040 1 4.6 2,624 33,212
Virginia 2020 100 2050 8.55 3.2 3,397 90,430

terms of this stringency, which can be as high as 100 percent in Hawaii (in 2045) and

Virginia (in 2050).

In Table 2, we report summary statistics for the other 18 states that do not exempt

their municipals. Other than the municipal exemption, the distributions of mandate

start dates, maximum green requirements and year the maximum target is achieved

are not dissimilar to those from the 14 states with exemptions.

The literature on the determinants of RPS finds that political ideology aligned

with concerns about global warming and affluence of households in the state predict

whether a state implements an RPS (Lyon and Yin (2010), Carley and Miller (2012)).

Local economic concerns play a minor role. That is, policymakers in these states are

driven by a desire to contribute to carbon abatement to mitigate the risks of global

warming. Justifications for the exemption include that municipal producers do not

cause as much damage to the climate in the first place; or they might not have the
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Table 2: Summary of RPS Legislation in States without Exemptions

This table presents summary details of the passage of Renewable Portfolio Standards regulation
in the 18 states that have thus far enacted the legislation without municipality exemptions. For
the number of municipal and investor-owned suppliers, and their sales in gigawatt hours, we
take the time series average for a given year.

State Mandate
Start

Maximum
Green %

Year Max
Achieved

No. Mu-
nicipal

No.
Investor-
Owned

Municipal
Sales
(gwhrs)

Investor-
Owned Sales
(gwhrs)

California 2002 60 2030 13.15 7.55 38,027 190,115
Connecticut 1998 40 2030 1.65 1.7 387 2,718
District Columbia 2005 90 2041 0 0 0 0
Delaware 2005 21.5 2026 1.82 0 222 0
Maine 1999 84 2030 0 1.83 0 1,689
Maryland 2004 50 2030 1.6 0 284 0
Massachusetts 2002 100 2090 8.85 3.55 2,829 15,156
Michigan 2008 15 2021 18.05 8.75 4,631 91,907
Montana 2005 15 2015 0 2.1 0 1,076
Nevada 1997 50 2030 0 3.65 0 30,303
New Jersey 1999 52.5 2045 1 3.7 627 46,869
New York 2004 70 2030 4.25 9.25 951 95,247
Pennsylvania 2004 7.5 2020 1 7 292 27,979
Rhode Island 2004 100 2033 0 1 0 11
Texas 1999 5 2025 11.8 4.55 40,173 47,342
Vermont 2015 75 2032 4.75 2.2 529 4,244
Washington 2006 15 2020 3 3.95 14,204 32,038
Wisconsin 1999 10 2015 9.9 8 2,068 50,272
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Table 3: Producer-Type Summary Statistics

This table presents summary statistics for our data at the producer-type level. This data covers
all 14 states that passed RPS with a municipal exemption. The left three columns refers to data
for investor-owned suppliers. The right three columns show the same summary statistics for
municipal suppliers. We have N = 200 investor-owned-type-by-year observations and N = 167
municipal-type-by-year observations.

Investor-Owned Municipal
Variable N Mean SD N Mean SD
Number of Producers 200 2.4 1.1 167 23 21
Observations in Post Period 200 0.71 0.45 167 0.72 0.45
Renewable/Non-Renewable Capacity 200 0.014 0.039 167 0 0
Per Firm CO2 Emissions (metric tons) 200 5,998,148 4,685,296 167 253,942 476,152
Electricity Prices (per KWhr) 200 $0.10 $0.49 167 $0.11 $0.73

resources to implement an aggressive abatement plan. Such ideological motivations are

similar to the sorts of policy variations used in the studies of European climate policies

by Känzig (2021) and Metcalf and Stock (2020) for identification.

Numbers and sales by producer type. In Table 1, we also report for each state

the time-series average of the number of producers of each type and the time-series

average of the total sales of the two types of producers. Investor-owned firms mostly

operate in one state, but around 5.4% operate in more than one state. While there are

a greater number of municipal producers compared to investor-owned ones, investor-

owned producers’ sales are much higher than those of the municipal producers. For

instance, in the state of Illinois, there are on average in a typical year around 4.2

investor-owned producers who generate 15,599 gigawatt hours. There are 18.4 munic-

ipal producers who generate 3,580 gigawatt hours.

3.2 Renewables, Carbon Emissions and Electricity Prices

Earlier work (Greenstone and Nath (2020), Upton Jr and Snyder (2017), Deschenes

et al. (2023)) uses the staggered timing of RPS introduction across all 32 states along
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with state level controls to show that in the wake of RPS, ratios of renewable to non-

renewable capacity go up, emissions intensities go down, and consumer prices increase.

Using states with municipal producer exemptions, we examine the extent to which

RPS affects these same variables using just the 14 states that exempt their municipal

producers. This affords us a control group that offers within state-year variation.

Hence, we can implement a restrictive identification procedure whereby we control for

a state-year fixed effect. This inclusion directly addresses the concern that unlike states

will be compared to one another.

Table 3 reports the summary statistics for our variables of interest at the producer-

type-state-year level. To test the impact of RPS, we use a difference-in-differences

approach, wherein we estimate the following expression:

yi,s,t = αs,t + β0corpi + β1 (corpi × posts,t) + ei,s,t, (1)

where yist represents the variable of interest. The indicator variable corpi equals one

if the observation is for the investor owned producer type and subject to the RPS and

zero otherwise. The key independent variable of interest is interaction of corpi with

the indicator postst which equals one if state s has an RPS policy in place at time t.

We always include a state-year fixed effect αs,t that allows us to restrict our compar-

ison to corporate and municipal suppliers operating in the same state at the same time.

We also include the investor-owned dummy to capture any fixed systematic differences

between investor-owned and municipal suppliers.

The findings are presented in Table 4. In column (1), we find that RPS leads to an

increase in the renewable to non-renewable capacity ratio of treated firms by 0.0224,

which is statistically significant at the 1% level. This is similar to the finding in the

literature that RPS is enforced and had a significant effect on the build up of renewables
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Table 4: Firm/Producer-Type Level Difference in Differences

This table presents results from a difference-in-differences estimation design that examines the
impact of RPS on three producer-type variables. In Column (1), we look at how the ratio
of renewable to non-renewable capacity ratio of investor-owned suppliers changed relative to
exempt municipal suppliers in the post-RPS period. In Column (2), we compare the average firm
CO2 emissions in metric tons of corporate producers within a state to that of exempt municipal
peers. In Column (3), we compare the log of the average consumer prices for corporate to the
log average of consumer prices for municipal producers.

Dependent Variables: Renewable/Non-Renewable Ratio Average Firm Emissions (CO2) Log of Electricity Prices
Model: (1) (2) (3)

Variables
corp 0.0006∗∗ 7,756,508.5∗∗∗ -0.0974∗∗∗

(0.0003) (826,846.7) (0.0175)
corp × post 0.0224∗∗∗ -2,701,193.7∗∗∗ 0.0416∗

(0.0044) (904,025.5) (0.0237)

Fixed-effects
State-Year Yes Yes Yes

Fit statistics
Observations 367 367 367
R2 0.56537 0.77278 0.95976
Within R2 0.18555 0.63509 0.15853

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

capacity.

In column (2), the dependent variable is the average firm emissions in tons of CO2

for investor-owned and municipal producers. We find that investor-owned producer

types reduce their emissions by roughly 2.7 million tons after passage of RPS.

In column (3), the dependent variable is the average electricity price for investor-

owned versus municipal producers. RPS leads to around 4% higher electricity prices,

with a statistical significance at the 10% level. This value is slightly more conserva-

tive than the figures reported previously in the RPS literature (around 11% in both

Greenstone and Nath (2020) and Upton Jr and Snyder (2017)). In other words, some

of the cost is passthrough to consumers, which is similar to findings for other types

of climate policy such as the European ETS (Känzig and Konradt (2023)). However,

this price effect appears smaller in magnitude than for these policies, suggesting that

producers bear relatively more of the cost associated with RPS.
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4 Bond Issue Level Analysis: Impact of RPS on

Credit Spreads

Having established existing results regarding the benefits of RPS in terms of carbon

emissions reduction through building renewables capacity and the passthrough of some

of these costs to consumers, we next turn to the effect of RPS on cost of capital for

producers. We address this question using bond issue level data as firms need to issue

debt to finance their investments in renewables capacity. Hence, we can see if RPS has

any effects on firm financial health, either in terms of debt issuance or credit spreads.

4.1 Comparing investor-owned versus municipal producer debt

Unsurprisingly, municipal bond issues differ in systematic ways from investor-owned

bond issues. Table 5 reports the mean and standard deviation of the variables of interest

by municipal versus investor-owned issues. First, we have 322 issues by municipals,

versus 1,739 corporate issues. For both types of producers, we find there are more debt

issues for investor-owned utilities than municipals post RPS — 39% compared to 27%.

The typical municipal debt issue is 54 million dollars with a standard deviation

of 103 million dollars. For investor-owned, the mean is 241 million dollars, with a

standard deviation of 231 million dollars. Municipals borrow at longer maturities —

19 years, compared to 16 years for investor-owned.

The mean yield of municipal issues is 4.3%, while it is 5.8% for investor-owned.

The standard deviation of yields is also larger for investor-owned, 1.9% compared to

1.4% for municipals. This difference in yields reflects the fact that municipals typically

have a higher Moody’s rating, 1.3 compared to 6.7 for investor-owned.14 All municipal

14Here a value of 1 corresponds to Aaa, and a value of 17 corresponds to Caa1. A value of 7 indicates
a Moody’s rating of A3.
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debt is investment grade, while 95% of the investor-owned debt is investment grade.

Characteristics-adjusted bond yields and issue amounts. Since systematic

differences exist between municipal and investor-owned issues that could distort our

findings, we perform an adjustment to bond yields, issue amounts, maturity, and bond

rating at issuance using a characteristics-based benchmarking as in Daniel et al. (1997).

Specifically, we form 5x5x5 portfolios based on Moody’s ratings, maturity, and issue

size for adjusting yields. For each of these 125 portfolios, we calculate the median yield

at issuance. We then subtract this median yield from the yields of all bonds within the

same grouping. The means and standard deviations of these characteristics-adjusted

yields are also given in Table 5.

We conduct a similar benchmark adjustment for issue amounts, but we base the

adjustment on Moody’s ratings, maturity, and yields. The resulting distributions are

shown in Figure 1. This figure shows that for both yields and issue amounts, the two

distributions after adjustment are not too far apart from each other.15

In addition to issue amount, maturity yield, and credit rating information, we also

have information on the tax treatment of the various bonds as well as the security type.

We include these additional variables as covariates in our issuance and yield regressions

below. As corporate bonds do not vary in their tax codes, nor do they have specified

purposes as is the case for municipal bonds, we simply assign a single tax and security

type identifier to these issues.

15An additional significant distinction between municipal and corporate bonds lies in their callability.
Although adjusting for this difference can be challenging, it should not impact the identification process
as long as the rates of callability remain relatively stable over the period in question.
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Table 5: Summary Statistics of Bond Issue Level Data

This table presents summary statistics on our final dataset of bond data. The data we collect
runs from 1990 to 2021. Adjusted Yields are constructed using a characteristic benchmarking
approach as described in Section 4.1. Tax code refers to one of four options: CB is taxable
corporate bond, E is municipal bond exempt from federal tax, A is municipal bond taxable
subject to AMT (Alternative Minimum Tax), and T is taxable municipal bond. Security Type
refers to one of three options: CB is simply for corporate bonds, GO is general obligation
municipal bond, and RV is revenue municipal bond.

Municipal Investor-Owned
Variable N Mean SD N Mean SD
Yield 322 0.043 0.014 1739 0.058 0.019
Maturity (years) 322 19 7.1 1739 16 11
Issue Amount ($mn) 322 54 103 1739 244 233
Moody Rating (rank) 322 1.3 0.98 1739 6.7 2.5
Investment Grade 322 1 0 1739 0.95 0.21
Observations in Post Period 322 0.27 0.44 1739 0.39 0.49
Adjusted Yield 322 -0.0063 0.013 1739 0.0011 0.013
Adjusted Issue Amount ($mn) 322 15 84 1739 39 141
Year 322 2002 5.6 1739 2004 9.6
Security Type 322 1739
... CB 0 0% 1739 100%
... GO 32 10% 0 0%
... RV 290 90% 0 0%
Tax Code 322 1739
... A 14 4% 0 0%
... CB 0 0% 1739 100%
... E 275 85% 0 0%
... T 33 10% 0 0%
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Figure 1: Distributions of Adjusted Yields and Issue Amounts

This figure plots binned kernel density estimates of the distribution of the adjusted yield and
issue amount of bond issues from municipal and investor-owned utilities, adjusted using a
characteristic benchmark approach similar to Daniel et al. (1997). We construct benchmarks by
forming 5x5x5 portfolios on Moody’s rating, maturity, issue size, and yields. We then subtract
the median yield/issue amount/maturity/bond rating in each portfolio from the actual value
for each issue inside that portfolio.
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4.2 Difference-in-Differences

We first conduct a difference-in-differences estimation design that focuses on the bond

issue level measures. We compare how yields and issue amounts change relative to

municipal issuers in the post RPS period. Yields and issue amounts are adjusted using

the approach outlined in Section 4.1.

In each case, our estimation follows the same basic specification described by Equa-

tion 2:

yi,j,s,t = αs,t + ϕj + τj + φi + β (corpi × posts,t) + ΨKi,j,t + ei,s,t, (2)

where the subscript i indicates firm and subscript j indicates the bond issue. We

always include a state-year fixed effect, αs,t, that allows us to restrict our comparison

to corporate and municipal suppliers operating in the same state at the same time. We

also include a firm fixed effect (φi), a security type fixed effect (ϕj), and a tax code

fixed effect (τj).
16

For both yields and issue amounts, we control for the log of maturity, and an

indicator for the rating band that the bond is assigned by Moody’s, I(ratingi,j,t ∈ g).17

These bands group bond ratings into similar risk profiles, and allow us to non-linearly

control for the impact of bond rating on yield. These bands distinguish between high

investment grade, low investment grade, and various junk bond statuses, which are

likely to have strongly discontinuous impacts on bond yields, thus justifying the use

of the non-linear specification. When estimating the impact on yield spreads, we

also control for the log of issue amount. We include both raw controls, and controls

interacted with the corporate dummy.

16The security type of issue j takes a value of CB for corporate bonds, GO for general obligation
municipal bonds, and RV for revenue municipal bonds; the tax code takes a value of CB for corporate
bonds, A for municipal bonds taxable subject to AMT (Alternative Minimum Tax), E for municipal
bonds exempt from federal tax, and T for taxable municipal bonds.

17We make one adjustment to these bands, which is to include ‘Aaa’ rated bonds with ‘Aa1’, ‘Aa1’,
and ‘Aa3’ bonds.
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Table 6: Bond Issuance and Credit Spreads Difference in Differences

This table presents results from a difference-in-differences estimation design that examines the
impact of RPS on bond issue-level variables. In Column (1), we assess the impact on adjusted
yields, and in Column (2), on adjusted issue amounts. We include state-year, and issuer fixed
effects in all three regressions. In columns (1) and (2), we control for Moody’s ratings band
and the log of maturity. In column (1) we also control for the log of issue amount.

Dependent Variables: Adjusted Yields Adjusted Issue Amount
Model: (1) (2)

Variables
corp × post 0.0099∗∗∗ 51.66

(0.0026) (32.70)

Controls Yes Yes

Fixed-effects
State-Year Yes Yes
Issuer Yes Yes
Security Type Yes Yes
Tax Code Yes Yes

Fit statistics
Observations 2,050 2,050
R2 0.76049 0.67895
Within R2 0.19169 0.05921

Clustered (state-year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Our results are shown in Table 6. We find evidence that RPS led to higher yield

spreads for corporate issuers of around 99 basis points. The coefficient on issue amounts

is positive, though statistically insignificant.

State by state estimates. Given that states that pass RPS with exemptions for

municipal producers have a natural treatment and control group, we can also estimate

bond market effects for each state separately and then aggregate. We do this by running

the following specification for each of the 14 states with municipal exemptions in our

sample:

yi,j,t = φi + τt + βs (corpi × postt) + ΨKi,j,t + ei,j,t (3)
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Note that we no longer include a state-time fixed effect, as we are comparing within

state by construction. We use the same set of controls as in Section 4.2. This procedure

generates a set of fourteen {βs} coefficients.

We aggregate by taking a weighted average using one of two procedures: (i) we

weight by the number of observations, and (ii) we weight by the inverse of the stan-

dard error of the coefficient (precision weighting). When weighting by number of

observations, we construct standard errors by bootstrapping over the estimated co-

efficients. When weighting by precision, we construct the standard error using the

following formula:

Variance of the weighted average =

∑
(w2

i · σ2
i )

(
∑
wi)2

(4)

where wi is the weight for the i
th estimate, i.e. the precision weight (the inverse of the

variance, σ2
i ), and σ

2
i is the variance of the ith estimate.

Details can be found in Table 7. We find statistically significant and positive

coefficients in both cases, with a magnitude very similar to our findings using the

entire sample and controlling for a state-year fixed effect as in the standard difference-

in-differences approach (Table 6).
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Table 7: State-by-State Results

This table presents results from a difference-in-differences estimation design that aggregates
individual state-level regressions into a weighted average. We estimate Equation 3 for each of
the 14 states that passed RPS with a municipal exemption, and then aggregate using either
the number of observations or the precision of the estimates as weights. Standard errors are
constructed with bootstrapping for observation weighting, and using the formula in Equation
4 for precision weighting.

Dependent Variables: Adjusted Yields Adjusted Issue Amounts
Weighting: Observations Precision Observations Precision

Variables
corp × post 0.0084∗ 0.0114∗∗∗ 28.74 104.69∗∗∗

(0.0044) (0.0029) (58.65) (30.34)

Controls Yes Yes Yes Yes

Fixed-effects
Year Yes Yes Yes Yes
Issuer Yes Yes Yes Yes
Security Type Yes Yes Yes Yes
Tax Code Yes Yes Yes Yes

Standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

4.3 Panel Regression Specifications

We run the following issue-level regression, where rj,s,t denotes the year of the issue

relative to the passage of RPS in state s:

yi,j,s,t =φs,t + αi + ϕj + τj + β−5Drs,t≤−5 × corpi

+
∑

−4≤rj,s,t≤−2

βrDr × corpi +
∑

0≤rj,s,t≤8

βrDr × corpi

+ β9Drj,s,t≥9 × corpi +ΨKi,j,t + εi,j,t (5)

Here yi,j,s,t is a measure of the issue j, by firm i, operating in state s, in year t; φs,t is

a state-year fixed effect; ψi is a firm fixed effect; ϕj and τj are fixed effects for security

type and tax code of issue j respectively; corpi is an indicator taking a value of 1 if the
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firm i is a corporate/investor-owned firm; Dr is an indicator that takes a value of one if

the year of the issue t, is r years relative to the passage of the RPS legislation in state

s. Note that, as before, we bin all observations 3 years before and all observations 7

years after passage.

We also include a vector of issue-level controls, Ki,j,t. We control for the log of

the maturity in years of the debt issuance, the log of the value of the issuance in

$mns, and an indicator for the rating band that the bond is assigned by Moody’s,

I(ratingj,s,t ∈ g).18 These bands group bond ratings into similar risk profiles, and

allow us to non-linearly control for the impact of bond rating on yield. These bands

distinguish between high investment grade, low investment grade, and various junk

bond statuses, which are likely to have strongly discontinuous impacts on bond yields,

thus justifying the use of the non-linear specification.

We remove a control when it measures the same bond level characteristic as the

dependent variable, i.e. the regression for issue amounts does not include the log of the

issue amount as a control. In all cases, we include both the control, and the control

interacted with the corpi indicator.

We plot the event studies from our estimations for states with and without exemp-

tions in Figure 2. Specifically, we plot the values of the fitted coefficients, {β−3, ..., β7},
that capture the differential response of corporate (treated) to municipal producers

(exempted) from the RPS mandates.

The figures in the left column show our findings at the issue-level for states that

instituted municipal exemptions. We plot coefficients for the yields and bond issue

amount, respectively. Reassuringly, we find limited evidence of significant pre-trends

in all our specifications. The figures in the right column show the same results found

using bond issues in states that instituted RPS without exemptions.

18We make one adjustment to these bands, which is to include ‘Aaa’ rated bonds with ‘Aa1’, ‘Aa1’,
and ‘Aa3’ bonds.
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Figure 2: States with and without exemptions– Event Study

In this figure we plot the results of our event study specification. We include results for states
with municipal exemptions (left column, in blue) and without exemptions (right column, red).
The top row shows results for yields, and the bottom row for issue amounts. We adjust these
dependent variables using the procedure outline in Section 4.1. We winsorize adjusted yields
and adjusted issue amounts at the 5% level. Confidence bands are given at the 95% level.
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For states with municipal exemptions, we see economically and statistically signif-

icant impacts across all variables of interest. First, there is a spike in characteristics-

adjusted bond yields coinciding with debt issuance in the early years.

Second, bond issue amount increases significantly following RPS treatment. In the

years before treatment, the coefficient of interest is close to zero, indicating that bond

issuance by investor-owned firms did not differ from their municipal counterparts. But

there is a very rapid increase in bond issuance following treatment, peaking at around

4 years after treatment. There is a reversion in years 6 to 7 from the peak, but the

mean of these years is still far above the pre-treatment years. However, the standard

error bands on these later years are wider than the early years following treatment.

4.4 Placebo Analysis: States without Municipal Exemptions

Our identification strategy supposes that investor-owned issuers affected by RPS legis-

lation are comparable to municipal issuers in the same state-year that are exempt from

the legislation. As a test of the validity of this result, we run the same exercises as in

our main analysis, but restrict to the states that did not allow municipal exemptions.

If our main finding is robust, we should not see a significant difference in the yields or

issuance of investor-owned relative to municipalities in the same state-year in the wake

of the RPS legislation.

There are 18 states that enacted RPS legislation without municipality exemptions,

so in this exercise we restrict to municipal and investor-owned bond issues in these 18

states. Our specification is the same as in our main analysis.

Finally, consistent with the validity of our identification strategy, we do not observe

any significant response in the investor-owned to municipal spread in states without

municipal exemptions.
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4.5 Triple Difference-in-Differences

We conduct a triple difference-in-differences estimate of the credit spread and issue

amount by taking advantage of the fact that many states passed RPS without municipal

exemptions. This additional difference allows us to compare the yield spread between

corporate and municipal suppliers post RPS passage of states with exemptions, versus

states without exemptions. Specifically, we estimate the following expression, using all

issuances in the 32 combined states:

yi,j,s,t =φs,t + αi + ϕj + τj + β0 × corpi × posts,t

+ β1 × exempts × corpi × posts,t + ΛKi,j,t + νi,j,t (6)

where yi,j,s,t is the yield of issue j, by firm i, operating in state s, in year t; φs,t is a

state-year fixed effect; ψi is a firm fixed effect; ϕj and τj are fixed effects for security

type and tax code of issue j respectively; corpi is an indicator taking a value of 1 if

the firm i is a corporate/investor-owned firm; posts,t is an indicator that takes a value

of one if the issue occurs after RPS passage in that state; exempts is an indicator that

takes a value of 1 if the state that the firm operates in instituted a municipal exemption

as part of RPS legislation; and Ki,j,t is a vector of issue level controls identical to those

in our main specification (Equation 5).

The key coefficient of interest is β1, i.e. the one associated with interaction term,

exempts × corpi × posts,t. This coefficient tells us the difference in corporate-to-

municipality spreads/issue amounts between states with and without exemptions. Note

that the coefficient β0 captures the impact of RPS legislation on corporate to munici-

pal yield spreads in states without municipal exemptions. A test of our identification

strategy is that β0 is not statistically different from zero.

Our results from the triple difference-in-differences are presented in Table 8. Once
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Table 8: Triple Difference-in-Differences for States with and without Exemptions

This table presents results of our triple difference-in-differences estimation. Here we pool issue
level observations from all 32 states that passed RPS legislation. We include an indicator,
exempts, that takes a value of 1 if the state instituted a municipal supplier exemption. The
coefficient on corp×post captures the change in post RPS legislation spreads between corporate
and municipal suppliers in states without municipal exemptions, and the coefficient on exempt×
×post captures the differential effect in states with exemptions.

Dependent Variables: Adjusted Yields Adjusted Issue Amt.

Variables
corp × post 0.0029 57.98∗∗∗

(0.0018) (18.60)
exempt × corp × post 0.0066∗∗ 4.764

(0.0032) (35.96)

Controls Yes Yes

Fixed-effects
State-Year Yes Yes
Issuer Yes Yes
Security Type Yes Yes
Tax Code Yes Yes

Fit statistics
Observations 6,668 6,668
R2 0.77530 0.70137
Within R2 0.13157 0.03803

Clustered (State-Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

again, consistent with our identification, we do not find a significant impact on corpo-

rate to municipal spreads in states without exemptions. By contrast, we find a positive

and statistically significant coefficient for adjusted yields in exempt states of 66bps.

5 Quantitative Analysis

In this section, we combine our reduced-form estimates with a structural corporate-

bond pricing model from Longstaff and Schwartz (1995) to impute the annual abate-

ment costs to firms to meet RPS. This abatement cost is a key quantity in the evaluation

of climate policy.
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5.1 Model

The value of a firm’s assets (V ) evolves according to a geometric Brownian motion:

dV = μV dt+ σV dZ1, (7)

where σ is a constant representing asset volatility, and Z1 is a standard Wiener process.

The short-term riskless interest rate is defined by the following process:

dr = (ζ − βr)dt+ ηdZ2 (8)

where ζ, β, and η are constants and Z2 is another standard Wiener process.

We first construct the value of a hypothetical riskless discount bond, D(r, T ), with

short-term riskless interest rate r and maturity T following Vasicek (1977):

D(r, T ) = exp (A(T )− B(T )r), (9)

where A(T ) =
(

η2

2β2 − α
β

)
T +

(
η2

β3 − α
β2

)
(exp (−βT )−1)−

(
η2

4β3

)
(exp (−2βT )−1) and

B(T ) = 1−exp (−βT )
β

.

We then construct the value of a risky discount bond, P (X, r, T ), in the following

way:

P (X, r, T ) = D(r, T )− ωD(r, T )Q(X, r, T ), (10)

where ω represents the proportion of the debt not recovered in the case of default,

Q(X, r, T ) is a measure of the cumulative default probability, and X represents the

distance to default, which is defined as the ratio of firm value at issuance (V ) to the

lower bound value of the firm that triggers default (V ), which is assumed to be constant.

When X = 1, the firm defaults. We construct Q(X, r, T ) using the same method as in
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Longstaff and Schwartz (1995).

To price coupon bonds, we simply construct a compound portfolio of risky discount

bonds, each with a face value equal to the coupon rate, C. We do this by creating

several bonds with increasing maturities and face value C, and then form a composite

cash flow portfolio that covers the entire range of the maturity of the coupon bond,

including the final face value payment. Formally:

P c(C,X, r, T ) = P (X, r, T ) + C
TN∑
j=1

P

(
X, r,

j

N

)
(11)

We select a value of N that is sufficiently large to approximate continuous time com-

pounding, in our case 200. This gives us P c(C,X, r, T ). Then, we can calculate the

yield-to-maturity that equates the present value of a coupon bond to its price as de-

fined by P c(C,X, r, T ), and subtract this from the same object for a risk-free coupon

bond equivalent to calculate the implied yield spread, y(C,X, r, T ).

To better connect the hit to credit spreads from climate policy, we consider a tax

representation of RPS. Let τ be the annual tax rate expressed as a fraction of asset

value, i.e. the abatement cost to meet RPS. We convert these annual taxes into a lump

sum impact on the initial value of firm assets, V0. We assume a N-year distance from

V0, and discount the annual tax impact, τ , over this period to arrive at V τ
0 . As such, we

construct the tax impact of RPS by adjusting our estimated model to a hypothetical

in which the firm was not subject to RPS restrictions: i.e. did not face the tax. We

construct this adjustment in the following way:

V τ
0 = (1 + δτ )V0 (12)

δτ = τ

N∑
t=1

(1 + r)−t (13)
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Given that the expected value of V is linearly related to V0, and X is simply the ratio

of V to the constant default boundary, V , this adjustment can then be directly applied

to X to give the implied valuation of the firm after RPS, Xτ = (1 + δτ )X. The yield

spread impact of RPS relative to the counterfactual bonds that are not taxed (i.e.

municipal bonds) is then given by the following expression:

ΔyRPS = y(C,X, r, T )− y(C,Xτ , r, T ) (14)

5.2 Model Estimation

To account for the fact that issuance changes after RPS, we estimate our model using

data in the post-RPS implementation period. That is, credit spreads have already

priced in the implications of the RPS tax.

Parameters: We abstract away from interest rate risk by setting η = 0 and β = 1.

The remaining parameters in the model are: the risk-free interest rate, r, the recovery

rate, (1−ω), the coupon rate, C, the volatility of firm assets, σ, the distance to default,

X, and the RPS-implied annual tax rate, τ .

We use data values for r, (1− ω), C, and σ. We use a risk-free interest rate (r) of

4.05%, which is the average yield of a 10-year treasury bond in the post-RPS sample

period. For the recovery rate (1 − ω), we use a value of (1 − 0.5131), consistent with

Huang and Huang (2012). We set the coupon rate at 5.8%, which is the average coupon

rate in our reduced form sample. We calculate a volatility of 15.9% using daily returns

of public firms operating in the power sector (SIC code 4911).19

19Specifically, we calculate measures of historical volatility of firms in the power sector by calculating
the standard deviation of daily returns from 2007 to 2023. We choose 2007 as our start point as this is
the median year in which RPS is enacted in our sample of states that institute municipal exemptions.
We then form a value-weighted industry portfolio of all the firms in our sample and construct a
portfolio variance that accounts for correlations across stocks. This process leads us to a value of σ
of 15.9%.
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Table 9: Parameters

This table documents the parameters of our model. Values for the risk-free interest rate (r), the
recovery rate, (1− ω), the coupon rate, C, the volatility of firm assets, σ, are calculated using
historical data. The values for distance to default for each ratings band ({XAaa, ..., XB}), and
the implied tax rate of RP (τ), are estimated. Details of estimated values for these parameters
can be found in Table 10.

Parameter Symbol Source
Risk-free interest rate r Sample average from reduced form dataset (4.03%)
Debt not recovered after default ω Huang and Huang (2012) (0.5131)
Coupon Rate C Sample average from reduced form dataset (5.8%)
Volatility σ Calculated using daily returns in power sector (15.9%)
Distance to Default {XAaa, ..., XB} Estimated in Section 5.2
Implied Tax Rate of RPS τ Estimated in Section 5.2

We estimate the remaining parameters, matching model generated moments to their

data equivalents. To account for variation in distance to default for different bonds,

we estimate X for each rating band: Aaa, Aa, A, Baa, Ba, and B. We therefore have

six parameter values for X, i.e. {XAaa, ..., XB}. We estimate the tax rate, τ , across

the whole sample.

Moments: To estimate our parameters, we target seven moments. We use yield

spreads, calculated for each of the six Moody’s ratings bands in our sample, to identify

our distance to default (X) parameters. We use our triple difference-in-differences

estimate of the impact of RPS on yields to identify the tax rate, τ .

For the yield spread, we use the post-RPS sample average of the yield at issue,

minus the 10-year treasury bond yield, binned by ratings band.

We use the triple difference-in-difference estimate from our reduced form as the final

moment. To construct the model moment equivalent, we use the procedure outlined

in Section 5.1. For each possible τ tax rate, we calculate the yield spreads for each of

our ratings bands under the new value for X from avoiding the tax net the original

estimated yield spread. We then take the weighted average of these yield differences,

weighting by the number of bonds in each rating band in our dataset.
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Estimation Approach: We estimate our parameters using GMM. This is a delib-

erate choice, as it allows us to incorporate both bond-level data on yields, and also our

reduced form finding of the impact of RPS on credit spreads.20

We search for parameters that minimize the squared gap between our model mo-

ments and our observed data moments, θ̂:

θ̂ = argmin
θ∈Θ

(g(θ)′Wg(θ)) (15)

where g(θ) is the squared distance between the model moments implied by θ and the

data moments, and W is the weighting matrix (we use the identity matrix). We then

construct standard errors using the typical sandwich formula:

V ar(θ̂) = (G′WG)−1G′WΩWG(G′WG)−1 (16)

where G is the Jacobian of g(θ), evaluated at θ̂, and Ω is the covariance matrix of g(θ).

We construct Ω by bootstrapping the construction of our data moments 1,000 times,

and then calculating the covariance matrix across these simulations.

Identification: Given the nature of the model outlined in Section 5.1, we have a tight

link between each of our distance to default parameters and the corresponding yield

spread, and between the implied tax rate and the difference in implied yield spreads.

This can be illustrated visually as in Figure 3.

In Figure 3, we plot how our model moments vary with the parameters we seek

to estimate. In the left panel, we show how distance to default (X) impacts yield

spreads. Consistent with the intuition of the model, there is a clear and monotonically

20Several papers employ a Maximum Likelihood approach to estimating corporate-treasury yield
spreads (Duan (1994), Ericsson and Reneby (2005)). This approach, while having advantages over
GMM, does not easily afford the flexibility of also using reduced form results to estimate parameters.
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Figure 3: Identification of Model Parameters

This figure shows how the moments we use to identify our model parameters vary as we modify
those parameters. In the left panel, we show how distance to default (X) impacts model yield
spreads. For each of the ratings bands, we plot the data moment as a horizontal dashed line.
The vertical dashed line from the intersection of these data moments and the model generated
moment function shows how we identify X at the rating band level. In the right panel, we
show how the tax rate (τ) affects the difference in yield spreads induced by RPS. As this
is calculated using data across all ratings bands, we plot a single data moment: the triple
difference-in-differences estimate of the impact of RPS on bond yields.
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decreasing relationship between yield spreads and distance to default. As such, for a

given yield spread, there exists one and only one value of X that would generate this

value in the context of our model.

In the right panel, we show how the difference in yield spreads varies with the

implicit tax rate, τ . Again, consistent with the model’s intuition, the relationship

between τ and the difference in credit spreads is monotonically increasing. This also

guarantees that, for a given difference in yield spreads, there exists a single τ that leads

our model to generate that value.

Results: Our results can be found in Table 10. In Panel A we show, for each of the

ratings bands, the estimated values of distance to default (X), the data yield spread we

aim to match, and the implied model yield spreads. We are able to generate a perfect

match to the data.

The results here are also broadly consistent with what one would expect, i.e. firms

with lower rated bonds are closer to default. The only exception to this pattern is the

estimated parameter for Aaa bonds. This is likely a feature of the limited number of

such bonds in our dataset, as we only observe 6 Aaa rated bonds, compared to 113 for

Aa.

In Panel B we show the estimated value of the tax (τ), the data moment (i.e. the

triple difference-in-differences estimate from our reduced form), and the model implied

difference in average credit spreads in the untaxed vs. taxed setups. Again, we are

able to match the data moment exactly with an imputed tax parameter (τ) of 0.0136,

or 1.36%.
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Table 10: Model Estimation Results

This table shows the estimated parameters alongside the data moments to be matched, and
the implied model moments for these parameters. We include standard errors for parameters
in brackets. In Panel A, we show our values for distance to default, X, for each ratings band.
X is defined as the ratio between the value of the firm’s assets and the default-inducing lower
boundary valuation. In Panel B, we show our value for the RPS implied tax, τ . In Panel C, we
show the model implied dollar cost to firm value induced by RPS passage. For Panel A, We use
post-RPS data on 10-year maturity corporate bond issues to construct yield spreads. In Panel
B, we use the triple difference-in-differences result from our reduced form as a measure of the
tax impact on yield spreads. In Panel C, we perform the calculation described in Equation 17
to convert the tax rate into a dollar cost to firm value. We set the risk-free interest rate to the
sample average of 10-year Treasury bonds r = 4.05%. We set the coupon rate to 5.8% which is
the sample average for corporate bonds in our sample period.

Panel A: Distance to Default

Ratings Band X Data Yield Spread Model Yield Spread

Aaa 1.67 85bps 85bps
(0.21)

Aa 1.74 69bps 69bps
(0.02)

A 1.57 115bps 115bps
(0.03)

Baa 1.43 179bps 179bps
(0.04)

Ba 1.26 314bps 314bps
(0.02)

B 1.18 434bps 434bps
(0.01)

Panel B: Tax Rate

Ratings Band τ Data Diff in Yield Spreads Model Diff in Yield Spreads

All 1.36% 66bps 66bps
(0.16%)

Panel C: Cost to Firm Value

Ratings Band Cost to Firm Value

All $53.81
($6.30)
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5.3 Model-implied abatement cost

Using our estimated tax parameter, τ , we can infer in dollar terms how much firm

value was reduced by RPS passage. We can then compare this change to the reduction

in emissions result we describe in Section 3.2. This will give us an indication of the

abatement cost for firms per metric ton of eliminated CO2.

We use Enterprise Value (EV) Multiples tables for US firms to construct asset value.

These values represent typical firm ratios of asset value to earnings before interest,

taxes, depreciation, and amortization (EBITDA), calculated using Compustat data.

For the power sector, this ratio is 11.69.

We then collect income statement data from FERC on firms operating in the Util-

ities sector. We construct EBITDA, and back out a proxy of firm value using the EV

multiple.

Once we have this measures of asset value, we can then establish in dollar terms

the annual impact of RPS using our estimated tax parameter, τ . We divide this dollar

hit by our estimates of absolute emissions reduction to arrive at a per-firm cost of

abatement for one metric ton of CO2, and take the sample average. This approach is

described in Equation 17 below:

E[Abatement Cost ($)] =
∑
i∈N

∑
t∈T

τ × Asset Valuei,t
βCO2

(17)

where Abatement Cost ($) is the cost to the firm in dollars of eliminating one metric

ton of CO2, τ is our estimated tax parameter that reconciles observed yield spread

effects from RPS with an equivalent tax to firm value, Asset Valuei,t is the estimated

asset value of firm i at year t, using the Enterprise Value multiple, and βCO2 is our

estimated coefficient of the total absolute annual drop in CO2 induced by RPS.

Our results can be found in Panel C of Table 10. We find that the cost to firm
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asset value of reducing one ton of CO2 through RPS is $53.81, with a standard error

of $6.30 cents. Given that the function relating the tax to firm value changes is linear,

we simply multiply the standard error for τ by the firm value to CO2 coefficient ratio

to arrive at the standard error for our cost.

To put these numbers into perspective, we perform some simple calculations that

link CO2 reduction to power generation. According to numbers collected by the US

Energy Information Administration, the power sector generates an average of 0.86lbs

of CO2 for every kilowatt-hour of electricity produced. This implies that every ton

of CO2 generated corresponds to roughly 2.56 megawatt-hours of power. Given that

the price of a kilowatt-hour of electricity is around $0.11 for investor-owned utilities

in our sample, this means that the ratio of revenue from electricity generation to CO2

production is roughly $281.60 per ton of CO2. While our measure of cost relates to

firm value rather than revenue, this calculation nonetheless gives some indication as to

the scale of the cost associated with RPS policy.

6 Conclusion

Reduction of carbon emissions in the emissions-intensive power sector due to climate

policy leads to wider credit spreads due to abatement costs. By combining a novel

identification strategy for renewable portfolio standards (RPS) in the US that govern

investor-owned utilities but exempt municipal producers with emissions and bond is-

sue data, we estimate that the reduction in carbon emissions of 2.7 million tons per

producer from RPS comes at a cost of 66 bps wider credit spreads. We show that this

trade-off can be explained with a structural corporate-bond pricing model in which

RPS narrows distance to default by reducing firm cashflows. We use the model to infer

that the abatement costs that firms have to bear is $50 per ton of emissions abated.

37



Firms seem to bear more the tax burden of RPS as there is only a small pass through

of higher renewable costs to consumers.
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Appendix

A Classifying the RPS Programs of States

We use two data sources to determine whether a state’s RPS program regulates the
emissions of investor-owned utilities differently than other utilities. The first source is
Barbose (2021). This study contains a spreadsheet that describes the RPS targets of
each state over time. The spreadsheet contains notes that describe whether the RPS
targets of the state are applicable to all utilities located in the state or only a subset
(e.g. investor-owned utilities). We crosscheck these descriptions of state RPS programs
with a second source: the Database of State Incentives for Renewables and Efficiency
(DSIRE). This website maintained by the North Carolina Clean Energy Technology
Center at North Carolina State University and contains descriptions of each state’s
RPS program. As part of these descriptions, the website indicates which types of
utilities are covered by the RPS.

For states that only include investor-owned firms in their RPS mandate, it is an
easy call to classify them as part of our sample of states that differentially treat utilities.
But there are a handful of states that are more complicated. There are a few states
that have more stringent mandates for investor-owned firms than other utilities. For
example, in Colorado in 2022, investor-owned utilities were required to meet a 30%
RPS target but municipal utilities only had to meet a 10%. We include such states
that have higher mandates for investor-owned utilities in our sample. Also, a handful
of states treat different types of investor-owned utilities differently. For example, in
Virginia, the RPS only covers the two large investor-owned utilities in the state and
not a handful of smaller investor-owned utilities. We classify the entire investor-owned
sector in states such as Virginia as being covered by the mandate.
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