The Cost of Climate Policy to Capital: Evidence from Renewable Portfolio Standards

Harrison Hong, Edward Shore and Jeffrey Kubik

Columbia University and Syracuse University

Virtual Seminar in Climate Economics

April 16, 2024

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のへへ 1/25

Motivation

- Gradual implementation of climate policy targeting emissions-intensive sector
 Carbon taxes, emissions trading systems, renewable portfolio standards,...
- ▶ Plentiful research on the benefits, but little on the costs to capital of firms in these sectors
- But having causal estimates of the effect on investors' forecasts of abatement costs and risks would be useful for ...
 - Understanding welfare and long-run investment in these sectors and guide climate modeling and policy (Nordhaus (2017), Jensen and Traeger (2014), Golosov et.al. (2014), Hong, Wang and Yang (2023))
 - Addressing financial regulatory concerns on transition risks (Task Force Climate Related Disclosures, European Systemic Risk Board)

<ロト < 部ト < 言ト < 言ト 差 のへ(~ 2/25

Our Paper

- Estimate the response of bond markets to renewable portfolio standards (RPS), which cover power firms in 40% of major-emitting countries
 - Since power firms issue debt to fund investments, we have lots of bond yield data
 - Measure response to RPS requiring investor-owned producers to produce electricity with wind and solar
- Exploit institutional features of state-level RPS in the US (2001-2022) to identify effects of climate policy on capital
 - Municipal producer exemptions allow for state x year fixed effects
- Combine emissions, bond issue, and our novel identification strategy to estimate elasticity of credit spreads to a ton of carbon emissions reduction
- Use a structural bond pricing model (Merton (1974), Longstaff and Schwartz (1995), and Leland Toft (1996) to infer expected abatement costs
 - Distance to default: abatement costs reduce firm cashflows and asset value and lowers distance to default

< □ > < ⑦ > < ≧ > < ≧ > 差 ● 2 の Q ペ 3/25

Main Findings

- \blacktriangleright RPS leads to a reduction of carbon emissions of 2.7 millions tons per year for typical producer
 - More conservative than Greenstone and Nath (2020) and Deschenes et.al. (2023) who use cross state variation in RPS and plant/firm level emissions
 - ▶ We use within state comparison of investor-owned to municipals
 - We measure emissions at producer-type level from state enforcement of RPS to avoid missing emissions from purchases of renewable certificates (RECs)
- Comes at a cost of 66 bps (or around 24 bps per ton)
 - Difference-and-difference estimate is around 100 bps
 - No pretrends in dynamic DID
 - No effects in placebo sample of states without municipal exemptions
 - Triple difference estimate yields 66 bps
 - First causal estimates of elasticity of asset price to emissions reduction in the climate finance literature (Hong et.al. (2020), Giglio et.al. (2021))

< □ > < 部 > < 言 > < 言 > 差 のへぐ 4/25

Main Findings (Cont'd)

- RPS imposes an effective 1.3% tax as a fraction of asset value, corresponds to investors expecting \$50 per ton to reduce
 - GMM estimation of Longstaff and Schwartz (1995) to data on post-RPS credit spreads and difference in credit spreads between treatment and control
 - Use estimate of asset value using publicly traded debt and equity to then infer abatement cost per ton of emissions
 - Estimate larger than \$5-\$19 from Meng (2017) using 2009-2010 Waxman-Markey Bill
 - Renewables around 1.5 to 2 times more expensive for some of RPS sample

Large effects consistent with marginally significant cost passthrough of 4% higher electricity prices

- Differs from estimates in Europe where producer effects are mild and consumers bear the burden (Kanzig (2021)) depending on recycling of funds (Metcalf and Stock (2020).
- Our estimates suggest that conclusions differ for the power sector where electricity price setting is determined by regulators as well.

< □ > < 部 > < 目 > < 目 > 目 の Q (~ 5/25

Background: States with Municipal Exemptions

State	Mandate Start	Maximum Renewable %	Year Max Achieved	No. Munici- pal	No. Investor- Owned	Municipal Sales (gwhrs)	Investor-Owned Sales (gwhrs)
Arizona	2001	15	2025	0	2.9	0	37,785
Colorado	2004	30	2020	8.4	1.65	4,780	28,987
Hawaii	2004	100	2045	0	3.1	0	9,393
lowa	1991	1	2000	57.3	2.15	4,201	33,160
Illinois	2007	25	2026	18.4	4.2	3,580	15,599
Kansas	2009	20	2020	45.9	4	5,914	25,839
Minnesota	2007	30	2020	46.15	3.65	6,124	42,171
Missouri	2008	15	2021	2.05	2	427	22,663
North Carolina	2007	12.5	2021	2.95	3	2,490	96,816
New Hampshire	2007	12.8	2025	1	1.8	19	7,846
New Mexico	2004	80	2040	2.55	3	1,663	14,861
Ohio	2008	8.5	2026	14.75	8.25	5,148	85,027
Oregon	2007	50	2040	1	4.6	2,624	33,212
Virginia	2020	100	2050	8.55	3.2	3,397	90,430

Table: Summary of RPS Legislation in States with Municipal Exemptions

< □ ▶ < @ ▶ < ≧ ▶ < 差 ▶ 差 の Q () 6/25

Background: States without Municipal Exemptions

State	Mandate Start	Maximum Green %	Year Max Achieved	No. Munici- pal	No. Investor- Owned	Municipal Sales (gwhrs)	Investor-Owned Sales (gwhrs)
California	2002	60	2030	13.15	7.55	38,027	190,115
Connecticut	1998	40	2030	1.65	1.7	387	2,718
District Columbia	2005	90	2041	0	0	0	0
Delaware	2005	21.5	2026	1.82	0	222	0
Maine	1999	84	2030	0	1.83	0	1,689
Maryland	2004	50	2030	1.6	0	284	0
Massachusetts	2002	100	2090	8.85	3.55	2,829	15,156
Michigan	2008	15	2021	18.05	8.75	4,631	91,907
Montana	2005	15	2015	0	2.1	0	1,076
Nevada	1997	50	2030	0	3.65	0	30,303
New Jersey	1999	52.5	2045	1	3.7	627	46,869
New York	2004	70	2030	4.25	9.25	951	95,247
Pennsylvania	2004	7.5	2020	1	7	292	27,979
Rhode Island	2004	100	2033	0	1	0	11
Texas	1999	5	2025	11.8	4.55	40,173	47,342
Vermont	2015	75	2032	4.75	2.2	529	4,244
Washington	2006	15	2020	3	3.95	14,204	32,038
Wisconsin	1999	10	2015	9.9	8	2,068	50,272

Table: Summary of RPS Legislation in States without Exemptions

< □ > < ⑦ > < ≧ > < ≧ > 差 ● 2 の Q () 7/25

Data on Renewables, Emissions and Electricity Prices by Producer Type, 2001-2020

		Investor-Ov	vned		Municipa	al
Variable	N	Mean	SD	N	Mean	SD
Number of Producers	200	2.4	1.1	167	23	21
Observations in Post Period	200	0.71	0.45	167	0.72	0.45
Renewable/Non-Renewable Capacity	200	0.014	0.039	167	0	0
Per Firm CO2 Emissions (metric tons)	200	5,998,148	4,685,296	167	253,942	476,152
Electricity Prices (per KWhr)	200	\$0.10	\$0.49	167	\$0.11	\$0.73

< □ ▶ < 큔 ▶ < 토 ▶ < 토 ▶ 로 ∽)९(~ 8/25

Effects of RPS on Renewables, Emissions and Electricity Prices

Dependent Variables: Model:	Renewable/Non-Renewable Ratio (1)	Average Firm Emissions (CO2) (2)	Log of Electricity Prices (3)
Variables			
corp	0.0006**	7,756,508.5***	-0.0974***
	(0.0003)	(826,846.7)	(0.0175)
corp imes post	0.0224***	-2,701,193.7***	0.0416*
	(0.0044)	(904,025.5)	(0.0237)
<i>Fixed-effects</i> State-Year	Yes	Yes	Yes
Fit statistics			
Observations	367	367	367
R^2	0.56537	0.77278	0.95976
Within R ²	0.18555	0.63509	0.15853

Table: Firm/Producer-Type Level Difference in Differences

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

・ロ・・白・・川・・山・・日・ 9/25

Bond Issue Variables

Table: Summary Statistics of Bond Data

	Municipal			Investor-Owned		
Variable	N	Mean	SD	Ν	Mean	SD
Yield	322	0.043	0.014	1739	0.058	0.019
Maturity (years)	322	19	7.1	1739	16	11
Issue Amount (\$mn)	322	54	103	1739	244	233
Moody Rating (rank)	322	1.3	0.98	1739	6.7	2.5
Investment Grade	322	1	0	1739	0.95	0.21
Observations in Post Period	322	0.27	0.44	1739	0.39	0.49
Adjusted Yield	322	-0.0063	0.013	1739	0.0011	0.013
Adjusted Issue Amount (\$mn)	322	15	84	1739	39	141
Year	322	2002	5.6	1739	2004	9.6
Security Type	322			1739		
CB	0	0%		1739	100%	
GO	32	10%		0	0%	
RV	290	90%		0	0%	
Tax Code	322			1739		
A	14	4%		0	0%	
CB	0	0%		1739	100%	
E	275	85%		0	0%	
<u> T</u>	33	10%		0	0%	

<ロ>< (ロ)> < ())> < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ()) < ())

Adjusted Yields and Issue Amounts

Figure: Distributions of Adjusted Yields and Issue Amounts

We construct benchmarks by forming 5x5x5 portfolios on Moody's rating, maturity, issue size, and yields. We then subtract the median yield/issue amount/maturity/bond rating in each portfolio from the actual value for each issue inside that portfolio.

RPS Increases Credit Spreads and Issue Amount

Table: Credit Spreads and Issuance Difference-in-Differences

Dependent Variables:	Adjusted Yields	Adjusted Issue Amount
Model:	(1)	(2)
Variables		
$corp \times post$	0.0099***	51.66
	(0.0026)	(32.70)
Controls	Yes	Yes
Fixed-effects		
State-Year	Yes	Yes
lssuer	Yes	Yes
Security Type	Yes	Yes
Tax Code	Yes	Yes
Fit statistics		
Observations	2,050	2,050
R ²	0.76049	0.67895
Within R ²	0.19169	0.05921

Clustered (state-year) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

<ロ> < 回> < 回> < 三> < 三> < 三> のへで

Similar Estimates When Run State by State

Table: State-by-State Results

Dependent Variables:	Adjusted	Yields	Adjusted Issue Amounts		
Weighting:	Observations	Precision	Observations	Precision	
Variables					
$\operatorname{corp} \times \operatorname{post}$	0.0084*	0.0114***	28.74	104.69***	
	(0.0044)	(0.0029)	(58.65)	(30.34)	
Controls	Yes	Yes	Yes	Yes	
Fixed-effects					
Year	Yes	Yes	Yes	Yes	
Issuer	Yes	Yes	Yes	Yes	
Security Type	Yes	Yes	Yes	Yes	
Tax Code	Yes	Yes	Yes	Yes	

Standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Panel Event-Study Results

Figure: Dynamic DID for States with and without exemptions

Triple Difference Estimates

Table: Pooling States with and without Exemptions

Dependent Variables:	Adjusted Yields	Adjusted Issue Amt
Variables		
corp imes post	0.0029	57.98***
	(0.0018)	(18.60)
exempt $ imes$ corp $ imes$ post	0.0066**	4.764
	(0.0032)	(35.96)
Controls	Yes	Yes
Fixed-effects		
State-Year	Yes	Yes
Issuer	Yes	Yes
Security Type	Yes	Yes
Tax Code	Yes	Yes
Fit statistics		
Observations	6,668	6,668
R ²	0.77530	0.70137
Within R ²	0.13157	0.03803

Clustered (State-Year) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

▲□▶▲□▶▲≡▶▲≡▶ ≡ つへぐ

Longstaff and Schwartz (1995) Model of Corporate Bond Yields

▶ The value of a firm's assets (V) evolves according to a geometric Brownian motion:

$$dV = \mu V dt + \sigma V dZ_1.$$

where σ is a constant representing asset volatility, and Z_1 is a standard Wiener process.

▶ The short-term riskless interest rate is defined by the following process:

$$dr = (\zeta - \beta r)dt + \eta dZ_2$$

where ζ , β , and η are constants and Z_2 is another standard Wiener process.

<ロ > < (日 > < 日 > < 王 > < 王 > 王 の Q (や 16/25

Distance to Default X

▶ Price of a risky discount bond, P(X, r, T)

$$P(X, r, T) = D(r, T) - \omega D(r, T)Q(X, r, T),$$

- D(r, T) is price of riskless bond
 ω represents the proportion of the debt not recovered in the case of default
 Q(X, r, T) is a measure of the cumulative default probability
 X represents the distance to default, which is defined as the ratio of firm value at issuance (V) to the constant lower bound value of the firm that triggers default (<u>V</u>)
- Price of risky coupon bond P^C(C, X, r, T) is a portfolio of risky discount bonds, from which we can invert the bond yield

y(C, X, r, T)

・ロト・1日ト・1日ト・1日、20ペー 17 / 25

Abatement Costs Lower Distance to Default

- \blacktriangleright Let τ be the annual abatement costs to meet RPS expressed as a fraction of asset value
- \blacktriangleright We convert these abatement costs into a lump sum impact on the initial value of firm assets V_0

where

$$V_0^ au = (1+\delta^ au) V_0$$

$$\delta^{\tau} = \tau \sum_{t=1}^{N} (1+r)^{-t}$$

Given that the expected value of V is linearly related to V₀, and X is simply the ratio of V to the constant default boundary, <u>V</u>, this adjustment can then be directly applied to X to give the implied distance to default of the firm after RPS

$$X^{\tau} = (1 + \delta^{\tau})X$$

The yield spread impact of RPS relative to the counterfactual bonds that are not taxed (i.e. municipal bonds) is then given by the following expression:

$$\Delta y^{RPS} = y(C, X, r, T) - y(C, X^{\tau}, r, T)$$

<ロト < 団ト < 臣ト < 臣ト 臣 の Q (~ 18/25

Parameters

Table: Parameters

Parameter	Symbol	Source
Risk-free interest rate	r	Sample average from reduced form dataset (4.03%)
Debt not recovered after default	ω	Huang and Huang (2012) (0.5131)
Coupon Rate	С	Sample average from reduced form dataset (5.8%)
Volatility	σ	Calculated using daily returns in power sector (15.9%)
Distance to Default	$\{X^{Aaa}, \dots, X^B\}$	Estimated in the Paper
Implied Tax Rate of RPS	τ	Estimated in the Paper

◆□ ▶ < 否 ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 19/25

Estimation Approach

- We estimate our parameters using GMM as it allows us to incorporate both bond-level data on yields, and also our reduced form finding of the impact of RPS on credit spreads.
- Search for parameters that minimize the squared gap between our model moments and our observed data moments, θ̂:

$$\hat{\theta} = \arg\min_{\theta\in\Theta}(g(\theta)'Wg(\theta))$$

where $g(\theta)$ is the squared distance between the model moments implied by θ and the data moments, and W is the weighting matrix (we use the identity matrix).

Construct standard errors using the typical sandwich formula:

$$Var(\hat{\theta}) = (G'WG)^{-1}G'W\Omega WG(G'WG)^{-1}$$

where G is the Jacobian of $g(\theta)$, evaluated at $\hat{\theta}$, and Ω is the covariance matrix of $g(\theta)$.

Ω obtained by bootstrapping the construction of our data moments 1,000 times, and then calculating the covariance matrix across these simulations.

<ロ > < 部 > < き > < き > き や の () 20/25

Identification

Figure: Identification of Model Parameters

Estimation Results

Panel A: Distance to Default						
Ratings Band	X	Data Yield Spread	Model Yield Spread			
Aaa	1.67 (0.21)	85bps	85bps			
Aa	1.74 (0.02)	69bps	69bps			
A	1.57 (0.03)	115bps	115bps			
Baa	1.43 (0.04)	179bps	179bps			
Ba	1.26 (0.02)	314bps	314bps			
В	1.18 (0.01)	434bps	434bps			
Panel B: Tax Rate						
Ratings Band	τ	Data Diff in Yield Spreads	Model Diff in Yield Spreads			
All	1.36% (0.16%)	66bps	66bps			
Panel C: Cost to Firm	n Value					
Ratings Band	Cost to Firm Value					
All	\$53.81 (\$6.30)					

Table: Model Estimation Results

Average Abatement Costs

- Use Enterprise Value (EV) for US utilities to construct Asset Value using Compustat data and a common EV multiple of EBITDA for the power sector
- Collect income statement data from FERC on firms operating in the Utilities sector and construct EBITDA, and back out a proxy of asset value for each firm using common EV multiple
- Once we have this measure of asset value, we can then establish in dollar terms the annual impact of RPS using our estimated tax parameter, τ

$$\mathbb{E}[Abatement \ Cost \ (\$)] = \sum_{i \in N} \sum_{t \in T} \frac{\tau \times Asset \ Value_{i,t}}{\beta^{CO2}}$$

where Abatement Cost (\$) is the cost to the firm in dollars of eliminating one metric ton of CO2, and β^{CO2} is our estimated coefficient of the total absolute annual drop in CO2 induced by RPS

< □ > < ⑦ > < ≧ > < ≧ > ≥ の < ℃ 23/25

Putting Abatement Costs into Perspective

- ▶ We perform some simple calculations that link CO2 reduction to power generation
- ▶ Power sector generates an average of 0.86lbs of CO2 for every KWhr of electricity produced
- ▶ Therefore, every ton of CO2 generated corresponds to roughly 2.56 megawatt-hours of power
- ▶ Price of 1KWhr \sim \$0.11 \implies ratio of revenue from electricity generation to CO2 production \sim \$281.60 per ton of CO2

<ロ > < 合 > < 言 > < 言 > こ き の Q (~ 24/25

Conclusions

- Using a novel identification strategy for renewable portfolio standards (RPS) in the US that govern investor-owned utilities but exempt municipal producers, we find that the reduction in carbon emissions of 2.7 million tons per producer from RPS comes at a cost of 66 bps wider credit spreads
- This trade-off can be explained with a structural corporate-bond pricing model in which RPS narrows distance to default by reducing firm cashflows.
- We use the model to infer that the abatement costs that firms have to bear is \$50 per ton of emissions abated.
- Firms in the power sector bear more of the tax burden of RPS as there is only a small pass through of higher renewable costs to consumers.

<ロト < 部ト < 目ト < 目ト 目 の Q (~ 25/25