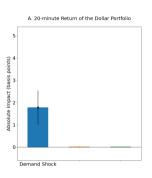
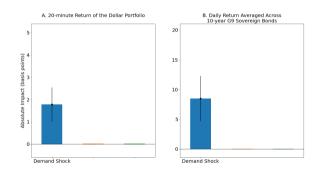
Demand-Driven Risk Premia in FX and Bond Markets

Ingomar Krohn Andreas Uthemann Rishi Vala Jun Yang

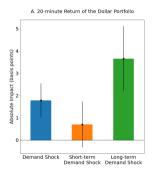

Fixed Income Research and Implications for Monetary Policy San Francisco, 22 May 2025

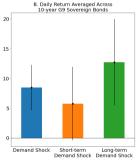
Disclaimer: The views expressed do not necessarily reflect those of the Bank of Canada's Governing Council.

$$\Delta s_t = \alpha + \beta D_t + \varepsilon_t$$

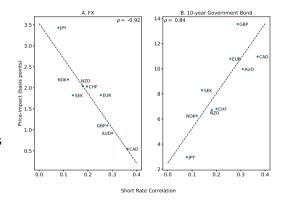

$$\underbrace{\Delta s_t}_{\text{FX / Bond}} = \alpha + \beta \underbrace{D_t}_{\text{Shock}} + \varepsilon_t$$

1. FC appreciate vs. U.S. dollar


$$\underbrace{\Delta s_t}_{\text{FX / Bond}} = \alpha + \beta \underbrace{D_t}_{\text{Shock}} + \varepsilon$$


- 1. FC appreciate vs. U.S. dollar
- 2. Global bond returns increase

$$\underbrace{\Delta s_t}_{\text{FX / Bond}} = \alpha + \beta \underbrace{D_t}_{\text{Dt}} + \varepsilon_t$$
Returns


- 1. FC appreciate vs. U.S. dollar
- 2. Global bond returns increase
- 3. Impact rises with maturity

$$\underbrace{\Delta s_t^j}_{\text{FX / Bond}} = \alpha + \beta^j \underbrace{D_{\text{cmand Shock}}^{\text{Demand Shock}}}_{\text{Returns}} + \varepsilon_t^j$$

- 1. FC appreciate vs. U.S. dollar
- 2. Global bond returns increase
- 3. Impact rises with maturity
- 4. **Diverging** effects across markets

Roadmap

- 1) Identification Strategy: High-frequency shocks around Treasury auctions
 - Following Ray et al. (2024)

2) **Empirical Findings:**

- Foreign currencies and global bond returns systematically appreciate following (positive) U.S. Treasury demand shocks
- Ind. Bidders (for. investors and funds) play key role for risk premia in both markets

3) Economic Mechanisms:

- ► Cross-country variation: Short-rate correlations determine transmission channels via FX and bond risk premia
- ▶ Time-series variation: Safe asset status of UST affects strength of FX channel
- ► This paper: Provides empirical evidence for a quantity-based theory of risk premia and a strong cross-market link between FX and bonds.

Literature Review

▶ Quantity-Driven Demand Shifts

Gourinchas et al. (2024), Greenwood et al. (2023), Phillot (2023), Ray et al. (2024), Jiang et al. (2024), Koijen and Yogo (2019)

► Treasury auctions and safe-asset demand

Eren et al. (2023); Bräuning and Stein (2024); Jansen et al. (2024); Antolin-Diaz (2024); Somogyi et al. (2024); Zou (2024)

► High-Frequency Shock-Identification

Gürkaynak et al. (2005); Nakamura and Steinsson (2018); Mueller et al. (2017); Antolin-Diaz et al. (2023); Boehm and Kroner (2024)

▶ Impact of QE and unconv. MP on global financial markets

Dedola et al. (2021), Bauer and Neely (2014), Ferrari et al. (2021)

Data

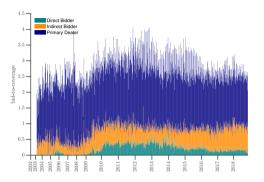
- Sample period: 2002-2018
- Treasury Auctions: www.treasurydirect.gov/auctions
- ► Foreign exchange (FX) Data: Refinitiv Tick History
 - ► G9 currencies vis-à-vis U.S. dollar
 - AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK
 - ► Approx. 75% of daily FX turnover (BIS (2022))
 - Sampled at 5-min frequencies
- Treasury Futures: CME
 - High-frequency traded prices
 - Various maturities: 2Y-30Y
 - Sampled at 5-min frequencies
- Global Zero-Coupon Bonds (Daily, Bloomberg)

	Mean	Std	Min	P25	P50	P75	Max	N
Offering Amount (billions)	24.88	8.55	5.00	18.00	25.00	32.00	44.00	944
Term (Years)	8.52	8.83	1.99	3.00	5.00	9.92	30.02	944
Bid-Coverage Ratio	2.66	0.46	1.22	2.37	2.61	2.91	4.07	944
Direct Bidders	0.22	0.16	0.00	0.09	0.19	0.34	0.84	918
Indirect Bidders	0.55	0.18	0.03	0.43	0.54	0.68	1.11	918
Primary Dealers	1.90	0.34	0.97	1.65	1.86	2.09	3.12	918

► Auctions are frequent and pre-scheduled events.

	Mean	Std	Min	P25	P50	P75	Max	N
Offering Amount (billions)	24.88	8.55	5.00	18.00	25.00	32.00	44.00	944
Term (Years)	8.52	8.83	1.99	3.00	5.00	9.92	30.02	944
Bid-Coverage Ratio	2.66	0.46	1.22	2.37	2.61	2.91	4.07	944
Direct Bidders	0.22	0.16	0.00	0.09	0.19	0.34	0.84	918
Indirect Bidders	0.55	0.18	0.03	0.43	0.54	0.68	1.11	918
Primary Dealers	1.90	0.34	0.97	1.65	1.86	2.09	3.12	918

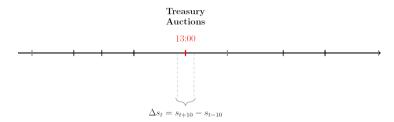
- ► Auctions are frequent and pre-scheduled events.
- ▶ On average, \$25 billion are offered.


	Mean	Std	Min	P25	P50	P75	Max	N
Offering Amount (billions)	24.88	8.55	5.00	18.00	25.00	32.00	44.00	944
Term (Years)	8.52	8.83	1.99	3.00	5.00	9.92	30.02	944
Bid-Coverage Ratio	2.66	0.46	1.22	2.37	2.61	2.91	4.07	944
Direct Bidders	0.22	0.16	0.00	0.09	0.19	0.34	0.84	918
Indirect Bidders	0.55	0.18	0.03	0.43	0.54	0.68	1.11	918
Primary Dealers	1.90	0.34	0.97	1.65	1.86	2.09	3.12	918

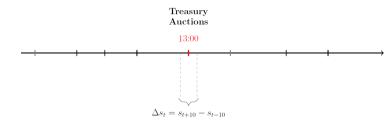
- ▶ Auctions are frequent and pre-scheduled events.
- ▶ On average, \$25 billion are offered.
- ► Maturity of debt instruments varies: 2Y-30Y.

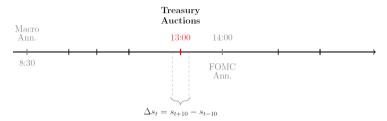
	Mean	Std	Min	P25	P50	P75	Max	N
Offering Amount (billions)	24.88	8.55	5.00	18.00	25.00	32.00	44.00	944
Term (Years)	8.52	8.83	1.99	3.00	5.00	9.92	30.02	944
Bid-Coverage Ratio	2.66	0.46	1.22	2.37	2.61	2.91	4.07	944
Direct Bidders	0.22	0.16	0.00	0.09	0.19	0.34	0.84	918
Indirect Bidders	0.55	0.18	0.03	0.43	0.54	0.68	1.11	918
Primary Dealers	1.90	0.34	0.97	1.65	1.86	2.09	3.12	918

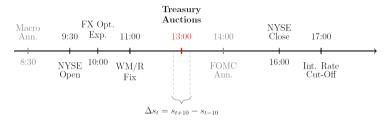
- ► Auctions are frequent and pre-scheduled events.
- ▶ On average, \$25 billion are offered.
- ► Maturity of debt instruments varies: 2Y-30Y.
- ▶ The bid-to-cover ratio consistently exceeds supply.


UST Auctions: Bid-Coverage Ratio

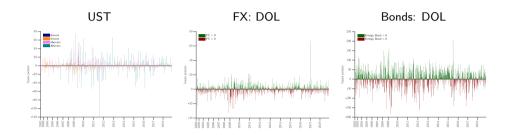

- Heterogeneous set of agents participate in auctions.
- ▶ Demand by bidders varies over time, but typically exceeds safe asset supply.
- Primary dealers submit most bids, followed by indirect bidders.


▶ The vast majority of auctions take place at 13:00 (ET).


- ▶ The vast majority of auctions take place at 13:00 (ET).
- ► High-frequency shock around Treasury auctions.
 - $ightharpoonup \Delta s_t$: (log) price change in a 20-min around auctions.
 - Akin to literature on MP-shocks (Gürkaynak et al. (2005)).


- The vast majority of auctions take place at 13:00 (ET).
- ▶ High-frequency shock around Treasury auctions.
 - $ightharpoonup \Delta s_t$: (log) price change in a 20-min around auctions.
 - Akin to literature on MP-shocks (Gürkaynak et al. (2005)).
- Price changes are purely driven by information about demand for safe assets.
 - Supply is fixed and well-known in advance.

- The vast majority of auctions take place at 13:00 (ET).
- High-frequency shock around Treasury auctions.
 - $ightharpoonup \Delta s_t$: (log) price change in a 20-min around auctions.
 - Akin to literature on MP-shocks (Gürkaynak et al. (2005)).
- Price changes are purely driven by information about demand for safe assets.
 - Supply is fixed and well-known in advance.
 - Auctions are isolated intraday events.



- The vast majority of auctions take place at 13:00 (ET).
- High-frequency shock around Treasury auctions.
 - $ightharpoonup \Delta s_t$: (log) price change in a 20-min around auctions.
 - Akin to literature on MP-shocks (Gürkaynak et al. (2005)).
- Price changes are purely driven by information about demand for safe assets.
 - Supply is fixed and well-known in advance.
 - Auctions are isolated intraday events.

- The vast majority of auctions take place at 13:00 (ET).
- High-frequency shock around Treasury auctions.
 - $ightharpoonup \Delta s_t$: (log) price change in a 20-min around auctions.
 - Akin to literature on MP-shocks (Gürkaynak et al. (2005)).
- Price changes are purely driven by information about demand for safe assets.
 - Supply is fixed and well-known in advance.
 - Auctions are isolated intraday events.

UST Auctions: Shock Dynamics

- Increasing number of auctions in recent years.
- Strong DOL movements within a short window.
- ▶ Positive and negative responses in FX and global bond markets.

UST Auctions: Regression Results - Treasury Futures

$$\Delta s_t = \alpha + \beta D_t + \varepsilon_t.$$

			FX		Bonds					
	2-year	5-year	10-year	30-year	Pooled	2-year	5-year	10-year	30-year	Pooled
D	0.70	1.73***	2.26**	3.66***	1.78***	1.05*	4.74***	7.01***	37.34***	8.47***
	(0.52)	(0.42)	(0.94)	(0.75)	(0.39)	(0.58)	(1.82)	(2.59)	(9.15)	(1.96)
Ν	339	191	288	126	944	339	191	288	126	944
R^2	0.02	0.10	0.09	0.33	0.08	0.00	0.02	0.01	0.04	0.02

UST Auctions: Regression Results - Treasury Futures

$$\Delta s_t = \alpha + \beta D_t + \varepsilon_t.$$

	FX						Bonds					
	2-year	5-year	10-year	30-year	Pooled	2-year	5-year	10-year	30-year	Pooled		
D	0.70	1.73***	2.26**	3.66***	1.78***	1.05*	4.74***	7.01***	37.34***	8.47***		
	(0.52)	(0.42)	(0.94)	(0.75)	(0.39)	(0.58)	(1.82)	(2.59)	(9.15)	(1.96)		
Ν	339	191	288	126	944	339	191	288	126	944		
R^2	0.02	0.10	0.09	0.33	0.08	0.00	0.02	0.01	0.04	0.02		

▶ Foreign currencies and bond returns increase in response to demand shocks

UST Auctions: Regression Results - Treasury Futures

$$\Delta s_t = \alpha + \beta D_t + \varepsilon_t.$$

	FX						Bonds					
	2-year	5-year	10-year	30-year	Pooled	2-year	5-year	10-year	30-year	Pooled		
D	0.70	1.73***	2.26**	3.66***	1.78***	1.05*	4.74***	7.01***	37.34***	8.47***		
	(0.52)	(0.42)	(0.94)	(0.75)	(0.39)	(0.58)	(1.82)	(2.59)	(9.15)	(1.96)		
N	339	191	288	126	944	339	191	288	126	944		
R ²	0.02	0.10	0.09	0.33	0.08	0.00	0.02	0.01	0.04	0.02		

- ▶ Foreign currencies and bond returns increase in response to demand shocks
- ▶ The magnitude of the response increases with bond maturity.
 - **FX**: 0.70 bps (2-year) to 3.66 bps (30-year)
 - ▶ Bonds: 1.05 bps (2-year) to 37.34 bps (30-year)

UST Auctions: Regression Results - Bid-to-Cover Ratio

$$\Delta s_t = \alpha + \beta D_t^{BC} + \varepsilon_t$$

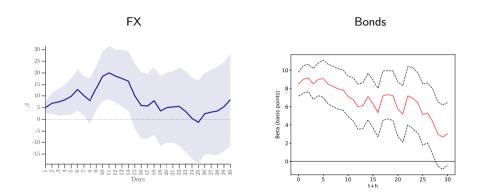
			FX	Bonds					
	$D^{BC,Tot}$	$D^{BC,PD}$	$D^{BC,IndBid}$	$D^{BC,IndBid}$	$D^{BC,Tot}$	$D^{BC,PD}$	$D^{BC,IndBid}$	$D^{BC,DBid}$	
D_t^{BC}	1.33*** (0.30)	0.55 (0.48)	1.69*** (0.35)	0.43 (0.28)	5.53** (2.17)	3.36 (3.55)	5.54*** (2.30)	3.23 (2.39)	
N	944		944		944		944		
R^2	0.03		0.06		0.02		0.02		

UST Auctions: Regression Results - Bid-to-Cover Ratio

$$\Delta s_t = \alpha + \beta D_t^{BC} + \varepsilon_t$$

			FX		Bonds					
	$D^{BC,Tot}$	$D^{BC,PD}$	$D^{BC,IndBid}$	$D^{BC,IndBid}$	$D^{BC,Tot}$	$D^{BC,PD}$	$D^{BC,IndBid}$	$D^{BC,DBid}$		
D_t^{BC}	1.33*** (0.30)	0.55 (0.48)	1.69*** (0.35)	0.43 (0.28)	5.53** (2.17)	3.36 (3.55)	5.54*** (2.30)	3.23 (2.39)		
Ν	944		944		944		944			
R^2	0.03		0.06		0.02		0.02			

▶ Robust to alternative specifications, including changes in the bid-to-cover ratio


UST Auctions: Regression Results - Bid-to-Cover Ratio

$$\Delta s_t = \alpha + \beta_j \sum D_t^j + \varepsilon_t$$

			FX	Bonds					
	$D^{BC,Tot}$	$D^{BC,PD}$	$D^{BC,IndBid}$	$D^{BC,IndBid}$	$D^{BC,Tot}$	$D^{BC,PD}$	$D^{BC,IndBid}$	$D^{BC,DBid}$	
D_t^{BC}	1.33*** (0.30)	0.55 (0.48)	1.69*** (0.35)	0.43 (0.28)	5.53** (2.17)	3.36 (3.55)	5.54*** (2.30)	3.23 (2.39)	
Ν	944		944		944		944		
R^2	0.03		0.06		0.02		0.02		

- ▶ Robust to alternative specifications, including changes in the bid-to-cover ratio
- Demand shocks from indirect bidders drive returns in both FX and bond markets
- Allocations to for. investors and funds play a key role in explaining risk premia

UST Auctions: Shock Persistence

- Demand shocks have strong and persistent impact in both markets
- ▶ In FX markets, foreign currency appreciation persists for nearly three trading weeks
- ▶ In bond markets, the impact persists even longer than in FX markets.

Robustness

- ► Bootstrap Exercise: ► Bootstrap Exercise
- ► Alternative window sizes around auctions.
- Alternative FX datasets.
- (Indicative) quoted prices vs. executed traded prices.
- ▶ Alternative measures and specifications of demand shocks.
- ► Seasonal Effects (e.g., End-of-Month, End-of-Year)
- Crisis vs. non-crises periods.

Understanding risk premia: Why FX and bond markets co-move

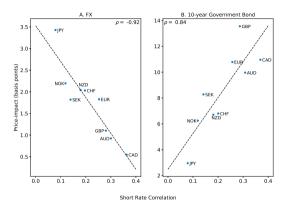
FX Risk Premium

UIP trade: borrow in USD at i_t , invest in foreign currency at i_t^* :

$$\underbrace{E_t(\Delta s_{t+1})}_{\text{Expected change in FX}} = \underbrace{(i_t - i_t^*)}_{\text{Interest rate differential}} + \underbrace{\mathsf{rp}_t^{FX}}_{\text{FX risk premium}}$$

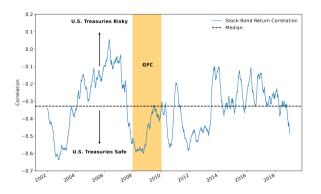
When US short rate i_t rises unexpectedly:

- Financing costs increase
- ► FX trade loses money


Bond Term Premium

Yield curve trade: borrow short at i_t , invest long at y_t^{τ} :

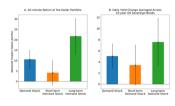
$$\underbrace{y_t^{\tau}}_{\text{Long-term yield}} = \underbrace{\frac{1}{\tau} \sum_{j=0}^{\tau-1} E_t(i_{t+j})}_{\text{Average expected short rates}} + \underbrace{\mathsf{tp}_t^{\tau}}_{\text{premium}}$$

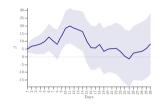

- Long bond prices fall
- ► Yield curve trade loses money

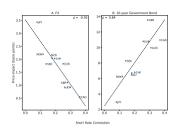
Price Impact and Short-Rate Correlations

- ▶ Price impact varies systematically with short-rate correlation:
 - FX: Impact decreases as short-rate correlation rises
 - ▶ Bonds: Impact **increases** as short-rate correlation rises

Stock-bond correlation impacts safety of US Treasuries


- Stock-bond correlation measures when Treasury bonds can hedge stock market risk
- ightharpoonup Negative correlation ightarrow Treasuries function as safe assets
- ▶ Positive correlation → Treasuries exhibit risky asset behavior


Impact of demand shocks varies by risk regime


- ▶ **Key finding**: $D \times \rho$ interaction term is strongly positive
- ▶ When $\rho > 0$ (risky regime):
 - Stronger foreign currency appreciation
- ▶ When ρ < 0 (safe regime):
 - ► Weaker or reversed even effect

	DOL	DOL
$\overline{D_t}$	1.78***	2.43***
	(0.39)	(0.43)
$ ho_{t}$		0.14
		(0.19)
$D_t imes ho_t$		1.07***
		(0.39)
N	944	944
R^2	0.08	0.11

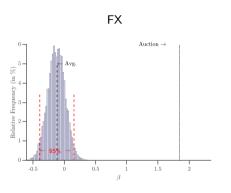
Conclusion

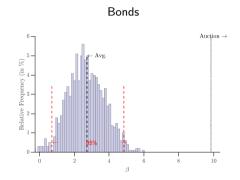
- ▶ Demand shocks around U.S. auctions spill over into global FX and bond markets
- Market responses are stronger for longer-maturity debt instruments
- ▶ In the cross-section, co-movement in short-term interest rates plays a key role
- Overall, the findings support the predictions of habitat investor models

References

- Antolin-Diaz, J. (2024). How did government bonds become safe? Working Paper.
- Antolin-Diaz, J., Cenedese, G., Han, S., and Sarno, L. (2023). Us interest rate surprises and currency returns.
- Bauer, M. D. and Neely, C. J. (2014). International channels of the fed's unconventional monetary policy. *Journal of International Money and Finance*, 44:24–46.
- BIS (2022). Triennial Central Bank Survey-Foreign exchange turnover in April 2019. Technical report, Bank for International Settlements.
- Boehm, C. and Kroner, T. N. (2024). Monetary policy without moving interest rates: The fed non-yield shock. Working Paper 32636, National Bureau of Economic Research.
- Bräuning, F. and Stein, H. (2024). The effect of primary dealer constraints on intermediation in the treasury market. Research Department Working Paper 24-7, Federal Reserve Bank of Boston.
- Dedola, L., Georgiadis, G., Gräb, J., and Mehl, A. (2021). Does a big bazooka matter? Quantitative easing policies and exchange rates. Journal of Monetary Economics, 117(C):489–506.
- Eren, E., Schrimpf, A., and Xia, F. D. (2023). The demand for government debt.
- Ferrari, M., Kearns, J., and Schrimpf, A. (2021). Monetary policy's rising fx impact in the era of ultra-low rates. *Journal of Banking Finance*, 129:106142.
- Gourinchas, P.-O., Ray, W., and Vayanos, D. (2024). A preferred-habitat model of term premia, exchange rates, and monetary policy spillovers. American Economic Review, forthcoming.
- Greenwood, R., Hanson, S., Stein, J. C., and Sunderam, A. (2023). A quantity-driven theory of term premia and exchange rates. The Quarterly Journal of Economics. 138(4):2327–2389.
- Gürkaynak, R. S., Sack, B., and Śwanson, E. (2005). Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements. *International Journal of Central Banking*, 1(1).
- Jansen, K. A., Li, W., and Schmid, L. (2024). Granular treasury demand with arbitrageurs.
- Jiang, Z., Richmond, R. J., and Zhang, T. (2024). Understanding the strength of the dollar. Journal of Financial Economics. Accepted.
- Koijen, R. S. J. and Yogo, M. (2019). A demand system approach to asset pricing. Journal of Political Economy, 127(4):1475-1515.
- Mueller, P., Tahbaz-Salehi, A., and Vedolin, A. (2017). Exchange rates and monetary policy uncertainty. The Journal of Finance, 72(3):1213–1252.
- Nakamura, E. and Steinsson, J. (2018). High-frequency identification of monetary non-neutrality: The information effect. The Quarterly Journal of Economics, 133(3):1283–1330.
- Phillot, M. (2023). U.S. Treasury Auctions: A High Frequency Identification of Supply Shocks. Forthcoming.
- Ray, W., Droste, M., and Gorodnichenko, Y. (2024). Unbundling quantitative easing: Taking a cue from treasury auctions. *Journal of Political Economy*, 132(9):000–000.
- Somogyi, F., Wallen, J., and Xu, L. (2024). Treasury auctions and long-term bond yields.
- Zou, D. (2024). Bond demand and the yield-exchange rate nexus: Risk premium vs. convenience yield.

Appendix: Bid-to-Cover Regressions


$$\Delta s_t = \alpha + \beta D_t + \varepsilon_t.$$


where D_t refers to the unexpected change in the aggregated bid-to-cover ratio

Panel A: Currency M	Markets									
	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK	DOL
Bid-to-Cover Ratio	0.90* (0.47)	0.23 (0.36)	1.54*** (0.42)	1.29*** (0.40)	1.08*** (0.36)	2.27*** (0.50)	1.64*** (0.49)	1.92*** (0.51)	1.16*** (0.45)	1.33*** (0.30)
$\frac{N}{R^2}$	$\frac{944}{0.01}$	$944 \\ 0.01$	$944 \\ 0.02$	$944 \\ 0.02$	$944 \\ 0.01$	944 0.03	$944 \\ 0.04$	$944 \\ 0.02$	944 0.01	$\frac{944}{0.03}$
Panel B: Global Bor	ıd Marke	ets								
	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK	DOL
Bid-to-Cover Ratio	7.42* (4.09)	8.01*** (3.02)	5.66*** (2.13)	4.38 (2.79)	9.62*** (3.21)	0.79 (1.68)	4.00 (3.01)	5.15* (3.02)	4.70 (3.00)	5.53** (2.17)
$\frac{N}{R^2}$	916 0.01	916 0.02	916 0.01	916 0.01	916 0.01	916 0.00	916 0.01	916 0.01	916 0.00	916 0.01

▶ Back

Appendix: Bootstrap Exercise

Appendix: Short-Rate Correlation and Demand Shock Pass-Through

$$\Delta s_{i,t} = \alpha_i + \beta D_t \times \rho_{i,t}^{SR} + \varepsilon_{i,t} \qquad \Delta y_{i,t} = \alpha_i + \gamma D_t \times \rho_{i,t}^{SR} + \varepsilon_{i,t}$$

			Bonds						
	FX	2-year	5-year	10-year	30-year				
$D_t \times \rho_{i,t}^{SR}$	-0.408***	0.066	0.388*	1.584***	3.124***				
. 0,0	(-7.79)	(0.80)	(1.81)	(3.99)	(3.17)				
N	8,514	8,550	8,550	8,550	8,550				
R^2	0.561	0.232	0.436	0.544	0.446				

Appendix: Bid-to-Cover Regressions - Bidder Type

$$\Delta s_t = \alpha + \beta_j \sum D_t^j + \varepsilon_t$$
 $\Delta y_t = \alpha + \gamma_j \sum D_t^j + \varepsilon_t$

Panel A: Currence	y Market	s								
	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK	DOL
Direct Bidders	0.26	-0.05	0.55	0.55	0.28	1.84**	0.47	0.17	0.86	0.55
	(0.71)	(0.63)	(0.52)	(0.48)	(0.50)	(0.73)	(0.65)	(0.78)	(0.71)	(0.48)
Indirect Bidders	2.02***	1.11***	1.39***	1.30***	1.19***	2.13***	1.98***	2.56***	1.55***	1.69***
	(0.51)	(0.39)	(0.44)	(0.41)	(0.44)	(0.48)	(0.52)	(0.52)	(0.49)	(0.35)
Primary Dealers	0.00	-0.22	0.61	0.34	0.31	1.16***	0.53	0.97*	0.15	0.43
	(0.44)	(0.39)	(0.38)	(0.32)	(0.37)	(0.43)	(0.44)	(0.50)	(0.38)	(0.28)
N	914	914	914	914	914	914	914	914	914	914
R^2	0.04	0.04	0.03	0.04	0.02	0.06	0.06	0.05	0.03	0.06
Panel B: Global l	Bond Mar	kets								
	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK	DOL
Direct Bidders	7.87	0.06	1.21	1.80	2.63	2.25	3.80	11.98**	-1.34	3.36
	(5.64)	(3.93)	(3.29)	(4.52)	(4.86)	(2.05)	(5.84)	(4.75)	(4.65)	(3.55)
Indirect Bidders	3.66	7.95**	3.63	8.10***	11.07***	1.35	2.95	3.50	7.67**	5.54**
	(3.55)	(3.52)	(2.29)	(3.01)	(3.80)	(1.48)	(3.18)	(3.41)	(3.12)	(2.30)
Primary Dealers	4.97	3.84	5.28**	3.15	5.59	-0.72	0.38	2.86	3.69	3.23
	(4.26)	(2.95)	(2.52)	(3.10)	(3.42)	(1.89)	(3.35)	(2.85)	(3.25)	(2.39)
N	886	886	886	886	886	886	886	886	886	886
R^2	0.03	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02

Appendix: Bid-to-Cover Regressions - Auction Allocation

$$\Delta s_t = \alpha + \psi_j \sum A II_t^k + \varepsilon_t \qquad \qquad \Delta y_t = \alpha + \phi_j \sum A II_t^k + \varepsilon_t$$

Panel A: Currency Markets										
	AUD	CAD	CHF	EUR	$_{\mathrm{GBP}}$	$_{ m JPY}$	NOK	NZD	SEK	DOL
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Investment Funds	0.15***	0.03	0.10***	0.11***	0.10***	0.12***	0.18***	0.16***	0.15***	0.12***
	(0.05)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.05)	(0.05)	(0.04)	(0.03)
Foreign Investors	0.19***	0.11**	0.11**	0.16***	0.11***	0.15***	0.19***	0.20***	0.15***	0.15***
	(0.06)	(0.05)	(0.05)	(0.04)	(0.04)	(0.05)	(0.05)	(0.06)	(0.05)	(0.04)
Miscellaneous	-0.00	0.06**	0.05	0.04	0.02	0.04	0.02	-0.01	0.03	0.03
	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.04)	(0.04)	(0.05)	(0.04)	(0.03)
N	944	944	944	944	944	944	944	944	944	944
R^2	0.04	0.03	0.02	0.04	0.02	0.03	0.04	0.04	0.03	0.05
Panel B: Global Bo	ond Mark	ets								
	AUD	CAD	CHF	EUR	$_{\mathrm{GBP}}$	$_{ m JPY}$	NOK	NZD	SEK	DOL
Investment Funds	0.27	0.65**	0.20	0.58**	0.69**	0.11	0.33	0.40	0.45*	0.41**
	(0.31)	(0.27)	(0.19)	(0.25)	(0.31)	(0.13)	(0.31)	(0.33)	(0.26)	(0.20)
Foreign Investors	0.32	0.16	0.11	0.31	0.39	0.04	0.22	0.11	0.60**	0.25
	(0.37)	(0.36)	(0.22)	(0.29)	(0.39)	(0.16)	(0.28)	(0.33)	(0.28)	(0.23)
Miscellaneous	-0.00	0.33	0.03	0.13	0.20	-0.03	-0.15	-0.27	-0.17	0.01
	(0.51)	(0.37)	(0.28)	(0.35)	(0.39)	(0.25)	(0.37)	(0.47)	(0.35)	(0.29)
N	916	916	916	916	916	916	916	916	916	916
R^2	0.02	0.02	0.01	0.02	0.02	0.04	0.01	0.03	0.02	0.02