Discussion of Czech and Monroe "Dealers, Information, and Liquidity Crises in Safe Assets"

Dmitry Livdan University of California, Berkeley

9th Conference on Fixed Income Markets, May 2025

What this paper does

- The goal is to shed light on the role of information in safe asset liquidity crises
- Studies the 2022 UK LDI Crisis
- During this crisis there was a significant sell pressure worsening the liquidity
- Bond prices collapsed and 30-year gilt yields surged by 130bps in a few days
- The Bank of England intervened on September 28 with a temporary backstop, set to end on October 14, which successfully halted the fire-sale spiral
- Use regulatory MiFID II data for UK government bond (gilt) transactions

Motivation – Model (Pinter, Wang, and Zou 2022)

- Three types of risk-neutral agents:
 - Speculator
 - $N \ge 2$ uninformed dealers
 - mass m of liquidity traders
- One asset:
 - Payoff $v \in \{-1, 1\}$ with equal probability
 - $N \ge 2$ uninformed dealers
 - Mass m of liquidity traders
- Information acquisition (Stage 0):
 - Speculator can acquire a signal $s \in \{-1,1\}$ with $\mathbb{P}(s=v) = \frac{1+h}{2}$
 - $h \in [0,1]$ is the signal's precision
 - Speculator chooses h by paying costs C(h)
- Stage 0 Valuations:
 - Market: $\mathbb{E}[v] = 0$
 - Speculator (informed): $\mathbb{E}[v|s=\pm 1]=\pm h$

Model - Timeline

- Multi-dealer platform using Request-for-Market (RFM)
- Stage 1:
 - Speculator requests two-sided quotes from the dealers to trade $q \ge 0$
 - Speculator does not reveal desired trade direction
 - Dealer j offers $\{-a_{1,j}(q), a_{1,j}(q)\}$ centered around 0
 - No post-trade transparency
- Stage 2:
 - Each liquidity trader requests $\{-b_{2,j}, a_{2,j}\}$ to trade 1 unit
 - The value of the asset is revealed and payoffs are realized

Model – Solution (sketch)

- Dealer trading with the speculator acquires info $\mathbb{E}[v|\text{Trade }q] = \hat{h}(q)$
- By quoting $a_1(q)$ to speculator dealer loses $q \cdot (a_1(q) \hat{h}(q)) \le 0$
- Dealer profits from info in stage 2 are $\pi(\hat{h}(q))$ with $\pi' > 0$
- Info is valuable dealers compete via Bertrand in stage 1

$$a_1^*(q) = \underbrace{\hat{h}(q)}_{\text{Adverse Selection}} - \underbrace{\frac{\pi(\hat{h}(q))}{q}}_{\text{Info Chasing}}$$

- Speculators select $\{h^*, q^*\} = \arg \max_{h,q} q \cdot (h a_1^*(q)) C(h)$ in stage 0
- BNE equilibrium with informed and uninformed dealers mixing in stage 2
- Stage 2 bid-ask quotes of the informed dealer $\{b_2^{\pm}, a_2^{\pm}\}$ if $s = \pm 1$

$$b_2^- = -\hat{h}, \ a_2^+ = \hat{h}, \ b_2^+ \text{ and } a_2^- \text{ are drawn from } G'(b) = \frac{2}{1 - b/\hat{h}} - 1, \ b \in [-\hat{h}, 0]$$

• Uninformed dealers bid $-\hat{h}$ with prob $p \equiv \sqrt[n-1]{1/2}$ and otherwise draw bids from

$$G^{U}(b) = \frac{p}{1-p} (\sqrt[n-1]{G^{I}(b)+1}-1)$$

Model – Predictions

Trading Costs

In OTC markets with non-anonymous trading, informed trades receive lower bid-ask spreads (lower trading costs) than uninformed trades.

$$TradeCost_{idbn} = \beta Post_t \times Informed_i + \theta Connections_{i,day} + \alpha_{dt} + \gamma_{id} + Size_n + \varepsilon_{idbn}$$

Figure 5 Time-varying Trade Costs for Informed Investors

Figure 7 Informed Dealers—Trade Costs of Uninformed Clients

Comment 1

- This prediction should not be limited to crisis
- Works in Pinter, Wang, and Zou (2022) who use the same data!

Table 1: Relative Trading Costs of Informed Clients

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Informed Clients	-0.529***	-0.497***	-0.455***	-0.417***	-0.472***	-0.464***	-0.521***
	(-3.22)	(-3.54)	(-3.27)	(-2.95)	(-3.33)	(-3.17)	(-3.32)
Client Size			-0.028	-0.018	-0.094***	-0.114***	-0.111***
			(-1.06)	(-0.67)	(-2.77)	(-2.71)	(-2.73)
Dealer-Connections				-0.009	-0.036*	-0.035*	-0.028
				(-0.54)	(-1.91)	(-1.88)	(-1.46)
Client Intensity					0.228***	0.250***	0.252***
					(3.67)	(3.33)	(3.24)
Trade Size						0.019	0.018
						(0.62)	(0.57)
N	542837	538426	538426	538426	538426	538426	455403
R^2	0.010	0.158	0.158	0.158	0.158	0.158	0.340

Need to reconcile the difference!

Model – Predictions and Comment 2

Price Dispersion

In OTC market with non-anonymous trading price dispersion is higher when there are more liquidity traders, and when the marginal cost of information acquisition is lower.

- Price dispersion increases on interdealer market on September 28
- Frice dispersion increases on interdealer market on September 20

Paper – Info Usage by Dealers

- Informed dealers make profits on interdealer market $\pi(\hat{h}(q)) = ?$
- Specification: $Performance_{idbn} = \beta Date_t \times InformedShare_{d,t-1} + Controls + \varepsilon_{idbn}$

Figure 9 Informed Dealers—Trading Performance

Comment 3

- The market consists of 3,144 investors and 17 GEMM dealers
- Very likely ALL dealers are informed:
 - Competition against other informed dealers diminishes the value of info
 - Dealers are better off trading with uninformed non-relationship clients
 - Model: informed dealer trades against liquidity traders $\pi(\hat{h}(q)) = m\hat{h}(q)/2$
 - ullet Model: different $\pi(\hat{h}(q))$ if trading against informed traders
 - Model: different Stage 2 strategies and thus different Stage 1 bid-ask spread
 - Provide some statistic on how many dealers are informed
 - Compare performance of informed-informed vs informed-uninformed trades
- Competition vs relationship makes the market choice endogenous for informed dealers

Conclusion - Great Paper!

THANK YOU!