Demand-Driven Risk Premia in FX and Bond Markets

Ingomar Krohn, Andreas Uthemann, Rishi Vala, Jun Yang (Bank of Canada)

Discussion: Walker Ray (Chicago Fed, CEPR)

9th Conference on Fixed Income Markets, SF Fed, May 2025

Motivation: Textbook Puzzles

- Textbook international macro: Uncovered Interest Parity (UIP) and Expectation Hypothesis (EH) hold. Empirically:
 - Strong patterns in FX: currency carry trade is profitable ⇒ deviations from UIP
 [Fama 1984...]
 - 2. Strong patterns in FI: bond carry trade is profitable ⇒ deviations from the EH [Fama & Bliss 1987, Campbell & Shiller 1991...]
 - 3. Exchange rates disconnected from fundamentals; but important comovement in term premia and currency risk premia across countries
 [Obstfeld & Rogoff 2001, Itskhoki & Mukhin 2021, Lustig et al 2019, Chernov & Creal 2020...]
 - Quantitative easing not only reduced domestic yields, but also had strong effects on exchange rates and foreign yields [Bhattarai & Neely 2018...]
- Rationalize with segmented markets model [Greenwood et al 2023, Gourinchas, Ray, Vayanos 2025]

Motivation: A Model of Imperfect Arbitrage (Gourinchas, Ray, Vayanos 2025)

• Global arbitrageurs intermediate FI and FX markets (hedge funds, dealers, ...)

$$\begin{aligned} \max \mathbb{E}_t(\mathrm{d}W_t) &- \frac{a}{2} \mathbb{V}\mathrm{ar}_t(\mathrm{d}W_t) \\ \text{s.t. } \mathrm{d}W_t &= W_t i_{Ht} \, \mathrm{d}t + W_{Ft} \, \mathrm{d}\mathrm{CCT}_t + \int_0^T X_{Ht}^{(\tau)} \, \mathrm{d}\mathrm{BCT}_{Ht}^{(\tau)} \, \mathrm{d}\tau + \int_0^T X_{Ft}^{(\tau)} \, \mathrm{d}\mathrm{BCT}_{Ft}^{(\tau)} \, \mathrm{d}\tau \end{aligned}$$

· Segmented demand from investor clienteles (pension funds, importers/exporters, ...)

$$\begin{split} Z_{jt}^{(\tau)} &= -\alpha_j(\tau) \log P_{jt}^{(\tau)} - \theta_j(\tau) \beta_{jt} & (+X_{j,t}^{(\tau)} = 0) & (\text{maturity } \tau, \text{country } j = H, F) \\ Z_{et} &= -\alpha_e \log e_t - \theta_e \gamma_t & (+W_{Ft} = 0) & (\text{spot FX}) \end{split}$$

- Key ingredients:
 - Factors: short rates i_{jt} ; idiosyncratic demand β_{jt}, γ_t
 - a: limits to arbitrageur risk-bearing capacity; $\alpha_j(\tau)$, α_e : demand elasticities

Motivation: Equilibrium and Predictions

$$\mathbb{E}_{t} \operatorname{dBCT}_{jt}^{(\tau)} = \mathbf{A}_{j}(\tau)^{\top} \mathbf{\Lambda}_{t}, \quad \mathbb{E}_{t} \operatorname{dCCT}_{t} = \mathbf{A}_{e}^{\top} \mathbf{\Lambda}_{t}, \quad \mathbf{\Lambda}_{t} \equiv a \mathbf{\Sigma} \left(W_{Ft} \mathbf{A}_{e} + \sum_{j} \int_{0}^{T} X_{jt}^{(\tau)} \mathbf{A}_{j}(\tau) d\tau \right)$$

- Endogenous coefficients $A_i(\tau)$, A_e govern sensitivity to global risk prices Λ_t
 - · Function of risk-bearing capacity a; physical risk Σ ; equilibrium holdings $X_{jt}^{(\tau)}, W_{Ft}$
- Elastic clientele demand \implies monetary spillovers. Following $\uparrow i_{Ht}$:
 - · Home yields rise $\uparrow y_{ht}^{(\tau)}$. Dollar appreciates $\downarrow e_t$. Foreign yields rise $\uparrow y_{ft}^{(\tau)}$
- · Following a Home bond demand shock β_{Ht} : $\uparrow Z_{Ht}^{(au)} \implies \downarrow X_{Ht}^{(au)}$
 - · Home yields fall $\downarrow y_{Ht}^{(\tau)}$ (\Longrightarrow deviation from EH)
 - Home currency depreciates $\uparrow e_t$ (\Longrightarrow deviation from UIP)
 - Foreign yields fall $\downarrow y_{Ft}^{(\tau)}$ (\Longrightarrow spillovers)
 - Stronger bond spillovers and weaker FX reaction when long-term bonds more correlated

Key Insight: Risk premia jointly determined as a function of equilibrium holdings, hedging properties of domestic/international bonds

Motivation: Identifying Idiosyncratic Demand Shocks

- "Demand shocks" $\Delta \beta_{Ht}$ are well-defined theoretically, but unobserved. In general: simultaneous innovations to all factors $\mathbf{q}_t = \begin{bmatrix} i_{Ht} & i_{Ft} & \beta_{Ht} & \beta_{Ft} & \gamma_t & (\ldots) \end{bmatrix}^{\top}$
- · QE/QT? Problems: few shocks, endogenous, transmission channels may differ, ...
- · Alternative: take a page from monetary shock lit. HF windows in which:

$$\Delta q_t pprox egin{bmatrix} 0 & \dots & \Delta eta_{Ht} & \dots & 0 \end{bmatrix}^ op$$

- For US bonds, primary market is ideal: institutional features imply that auction results reveal new information about demand only
- \implies asset price reactions in small windows around close of auction can test model mechanisms [Ray, Droste, Gorodnichenko 2024]

This Paper: Main Findings

Hypotheses and Novel Findings: following an increase in demand for US bonds:

- 1. The dollar depreciates (model: ✓)
- 2. Foreign yields decrease (model: ✓)
- 3. Countries with short rates which exhibit higher correlation with US short rates:
 - (a) The FX reaction is weaker (model: ✓)
 - (b) The yield reaction is stronger (model: ✓)

Additional Results:

- 1. and 2. are stronger when demand shock is for long-maturity bonds (model: ✓)
- 1. and 2. are stronger when stock/bond correlation is high, weaker (or even reversed)
 when stock/bond correlation is low (model: √? or ✗?)

Minor Suggestions

Interpretation of "shocks":

Observe and estimate

$$D_t \equiv p_{t+10min} - p_{t-10min}, \ \Delta x_t = \alpha + \beta D_t + \epsilon_t$$

- · Identifying assumption: $\Delta \mathbf{q}_t \approx \begin{bmatrix} 0 & \dots & \Delta \beta_{Ht} & \dots & 0 \end{bmatrix}^{\top} \iff \Delta \mathbf{q}_t = D_t$
 - With additional assumptions, can translate this to "quantity space" (eg, other auction statistics such as bid-to-cover)
 - Care needs to be taken with state-dependence, since $\Delta \beta_{Ht}$ to D_t mapping is also state-dependent

Hedging Properties of International Bonds:

- Short rate correlation only one aspect of hedging properties of international bonds
- Theory: long-maturity yield correlation closer to "sufficient statistic"

Comment: Rationalizing Stock/Bond Correlations and State-Dependence

- 1. This paper: convenience yields [Jiang, Krishnamurthy, Lustig 2021]
 - Well documented, but slightly orthogonal to portfolio rebalancing and arbitrageur hedging motives [Vayanos & Vila 2021, Greenwood et al 2023, Gourinchas, Ray, Vayanos 2025]
- 2. Stock/bond correlation is a proxy for "deeper" state-dependence?
 - · Arbitrageur risk-bearing capacity, factor covariances, monetary policy stance, ...
- 3. If it's really stock/bond correlation:
 - Future work: add multi-country risky assets to framework
 - · Conjecture: function of dividend process correlation with short rate, demand shocks
 - \implies examine dividend yield curve covariance structure across countries
- 4. Alternative: on "safe" days: $\Delta q_t \approx \begin{bmatrix} 0 & \dots & \Delta \beta_{Ht} & \Delta \gamma_t & \dots & 0 \end{bmatrix}^{\top}$
 - "Typical" demand shocks: clienteles use cash/borrow short USD to buy US bonds
 - "Flight to safety" demand shocks: clienteles sell international assets to buy US bonds
 - · Currency demand shocks γ_t critical for understanding FX [Itskhoki & Mukhin 2021]
 - Broader point (which annoyingly applies to all PH-inspired work) that clientele demand is not so simple: correlated demand shocks, cross-elasticities, ...

Concluding Remarks

- · Really nice paper!
- Uncovers new empirical facts which are consistent with predictions of modern international finance theories
- · Also finds interesting state-dependence; helpful guide for future theoretical work
- · Read it!