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Abstract
This paper presents a comprehensive method for efficiently solving stochastic

Integrated Assessment Models (IAMs) and performing parametric uncertainty

quantification. Our approach consists of two main components: a deep learning-

based algorithm designed to globally solve IAMs as a function of endogenous and

exogenous state variables as well as uncertain parameters within a single model

evaluation. Additionally, we develop a Gaussian process-based surrogate model to

facilitate the efficient analysis of key metrics, such as the social cost of carbon, with

respect to uncertain model parameters. Our approach enables a rapid estimation

of Sobol’ indices, Shapley values, and univariate effects, which would otherwise be

computationally very challenging. To demonstrate the effectiveness of our method,

we posit a high-dimensional stochastic IAM that aligns with cutting-edge climate

science. This model incorporates a social planner with recursive preferences,

iterative belief updates of equilibrium climate sensitivity using Bayes’ rule, and

stochastic climate tipping. Our computations reveal that most of the variability in

the social cost of carbon stems from the parametric uncertainty in the equilibrium

climate sensitivity and in the damage function. We also show that the uncertainty

about the equilibrium climate sensitivity resolves in about a decade, which in turn

leads to higher optimal temperatures and a slightly decreased social cost of carbon

compared to a modeling set-up without Bayesian learning.
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1 Introduction
Integrated assessment models (IAMs) serve as a pivotal instrument for quantifying

the prospective repercussions of anthropogenic climate change on mankind; they are

a key factor in facilitating well-informed policy deliberations and in the prudent man-

agement of associated risks. Nevertheless, akin to the case with all economic models,

the ramifications IAMs convey could occasionally exhibit considerable reliance on

assumptions (which at times can be limiting) pertaining to the parameters and func-

tional configurations embraced by the modeler. In light of this limitation, Pindyck

(2013, p.860) issued a cautionary note regarding the broad application of IAMs, assert-

ing that these models "...have crucial flaws that make them close to useless as tools for policy
analysis."

Rather than perceiving uncertainty as an insurmountable constraint on the applica-

bility of this entire category of models, we embrace it by introducing a comprehensive

framework for uncertainty quantification (UQ) within IAMs. Our approach consists of

two parts: First, we present a stochastic IAM that entails Bayesian learning about the

equilibrium climate sensitivity (ECS), aiming to capture probably the most prominent

source of uncertainty inherent in IAMs.
1

Second, we devise a versatile and highly

efficient computational technique named “Deep Uncertainty Quantification” (Deep

UQ) to compute global solutions
2

and perform parametric UQ, which is particularly

suitable for addressing the challenges posed by complex IAMs.

We posit a model that encompasses a comprehensive array of key components of

IAMs. To the best of our knowledge, these components have not been collectively inves-

tigated in quantitative work due to the computational limitations of existing methods.

Moreover, they have not been examined through the lens of UQ to study various quan-

tities of interest (QoIs). These include the sensitivity of the social cost of carbon (SCC)
3

concerning different types of uncertainty and the temporal evolution of its distribution.

Our model is built on top of the influential DICE model (Nordhaus, 2017). However,

we depart from it along several relevant dimensions. First, we align with recent ad-

vances in climate change economics by employing Epstein-Zin (-Weil) preferences (e.g.,

Epstein and Zin, 1989, Jensen and Traeger, 2014, Cai and Lontzek, 2019). Second, the

climate physics module is designed in accordance with Folini et al. (2023) to ensure

congruence with state-of-the-art climate science. One of the most iconic sources of

uncertainty in climate science models is the ECS (Knutti et al., 2017), which is charac-

terized by substantial uncertainty and fat-tailed probability distributions. Third, we

consequently incorporate insights from the climate science literature (Roe and Baker,

2007) within our IAM framework and posit that the model’s social planner can itera-

tively update her beliefs regarding ECS using Bayes’ rule. This approach enables us to

1
The ECS denotes the projected long-term temperature rise, that is, the equilibrium global mean

near-surface air temperature, resulting from a doubling of atmospheric CO2 concentration.

2
We adopt the nomenclature from Brumm and Scheidegger (2017), referring to a “global solution”

as a solution computed utilizing equilibrium conditions at numerous points within the state space of a

dynamic model, as opposed to a “local solution” which relies on a local approximation around a model’s

steady state, as achieved through perturbation methods.

3
The SCC can be computed as the marginal cost of carbon emissions, which is the sum of all future

damages resulting from an infinitesimal extra emission of CO2 into the atmosphere, discounted at the

market interest rate.
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demonstrate the planner’s capacity to progressively diminish uncertainty surrounding

the ECS over time. Fourth, to accurately represent the adverse economic consequences

of anthropogenic climate change, we employ not only the damage function proposed

by Nordhaus (2017) but also the model introduced by Weitzman (2012), which forecasts

significantly more severe economic impacts as temperatures rise. Additionally, we en-

hance this model by integrating a stochastic tipping element, as suggested by Kotlikoff

et al. (2021), to reflect the irreversible nature of climate change impacts, in line with the

findings of Lenton et al. (2008).

To tackle the IAM mentioned above numerically, we introduce Deep UQ: a method

that can efficiently solve nonlinear, non-stationary, high-dimensional dynamic stochas-

tic climate economy models and perform UQ (Saltelli et al., 2007) at negligible com-

putational costs, that is, within minutes to hours on a laptop rather than hundreds

of thousands of hours on a supercomputer. An essential task in UQ, and the one we

are concerned with in this paper, is to measure the relative importance of the vari-

ous parameter inputs to QoIs, such as the SCC. Importance can be assessed via the

effects of changing those inputs at random. This leads to a global sensitivity analysis

(GSA; see, e.g., Saltelli et al. (2007)) in which statistical methods, based on an analy-

sis of variance decomposition, measure variable importance. However, the measures

traditionally used in the literature, that is, Sobol’ indices, univariate effects, and Shap-

ley values (see, e.g., Owen (2014), Song et al. (2016), and references therein) typically

require thousands, if not tens of thousands of model solutions to obtain convergent

statistics (Harenberg et al., 2019). Thus, such an approach is a significant roadblock for

performing UQ on stochastic IAMs, where a single model solution can take more than

100k CPU hours (Cai and Lontzek, 2019). Consequently, the previous literature on

UQ in IAMs has typically been limited to local perturbations of solutions to stochastic

models, or to GSA in non-stochastic settings (see, e.g., Anderson et al. (2014), Butler

et al. (2014), Miftakhova (2021), and references therein).

Our proposed numerical solution framework for performing GSA in IAMs to alle-

viate the abovementioned challenges consists of two distinct parts. First, we enhance

a generic, deep learning-based algorithm called “Deep Equilibrium Nets” (Azinovic

et al., 2022) such that it can be used to solve stochastic IAMs globally as a function of

the endogenous and exogenous state variables as well as their parameters at once in

a single model solution. Such a “deep surrogate”—a high-precision approximation of

an IAM based on deep neural networks
4

—greatly accelerates the model evaluations

needed for UQ. This acceleration is achieved by reducing the computational load by

orders of magnitude. Consequently, it enables a range of compute-intensive appli-

cations. Now, these tasks are simplified to interpolation tasks on the pre-computed

optimal policies. These policies are functions of the state variables and parameters,

rather than necessitating the repeated solution of an entire model from scratch for a

fixed set of parameters.
5

Next, we propose constructing a second, cheap-to-evaluate

4
For a thorough introduction to deep surrogates in economics and finance, see Chen et al. (2021),

and references therein.

5
There are substantial computational bottlenecks in solving the type of IAMs described before as

a function of endogenous and exogenous states as well as parameters in a single model evaluation

globally because of i) the presence of random shocks, ii) a high-dimensional state space, iii) strong non-

linearities in the optimal policies (introduced, for instance, by the presence of highly non-linear damage

2



surrogate model for the QoIs, such as SCC, to perform GSA by using the former neural

network surrogate of the IAM as an input. For computational tractability, we suggest

using Gaussian processes (GPs; see, e.g., Renner and Scheidegger (2018), and refer-

ences therein) as the surrogate modeling technique to approximate QoIs as a function

of the model parameters.
6

Applying our Deep UQ framework to a stochastic IAM with and without Bayesian

learning about the ECS reveals several notable findings. By comparing the optimal

policies from the IAMs with and without learning, we find that in settings without

Bayesian learning, the agent opts for a SCC which is substantially higher than in an

IAM with learning to ensure the abatement against possible high-temperature shocks,

regardless of whether they occur or not. In contrast, when we consider an IAM with

learning, it is optimal for the agent to allow for more emissions to learn about the ECS.

This, in turn, leads to a realized SCC, which, in some cases, only reaches about half the

level of the models with no learning. Next, we apply our UQ apparatus to analyze the

impact of the uncertain parameters on the SCC through the lens of the Sobol’ indices,

Shapley values, and univariate effects. Our numerical results show that the uncer-

tainty stemming from the ECS and the one from the parameterization of the damage

function are the two sources driving the variance of the SCC. In addition, our numer-

ical experiments show that the uncertainty about the ECS resolves in about a decade,

which in turn leads to higher optimal temperatures and a substantially increased SCC

compared to the modeling set-up without Bayesian learning. Moreover, due to our

Deeq UQ methodology, all these results could be obtained by computationally cheap

interpolations on a surrogate rather than repeatedly recalculating and simulating ex-

pensive models for a vast set of parameters, thereby making large-scale IAMs readily

available to researchers merely having access to laptops rather than supercomputers.

The remainder of this article is organized as follows. In Section 2, we provide a brief

review of the related literature. In Section 3, we posit a stochastic IAM with Bayesian

learning about the ECS. Section 4 introduces our generic Deep UQ framework, and

discusses its computational advantages relative to other existing methods. Section 5

presents our numerical experiments and results. Section 6 finally concludes.

functions (see, e.g., Cai and Lontzek (2019), and references therein), iv) irregular, that is, non-hypercubic

geometries of the set of states visited along a simulation, and v) non-stationarity. In the presence of these

five features, the curse of dimensionality (Bellman, 1961) imposes a considerable roadblock. While some

methods can handle a subset of i) - v), most fail at matching all five requirements. Currently, and to

the best of our knowledge, the only numerically tractable method that jointly addresses all five features

relies on deep neural networks.

6
In this study, we deliberately construct the surrogate models using two different function approx-

imators. As a rule of thumb, one should use a surrogate model based on deep neural networks when

dealing with large datasets that require learning complex nonlinear relationships. For example, in the

context of solving our stochastic, nonlinear IAMs, we generate billions of observations in the solution

process to train our neural network. Hence, we apply neural networks. Conversely, surrogate models

based on GPs are appropriate when dealing with small datasets or when interpretability is a priority

over predictive accuracy. Consequently, since the SCC and other QoIs are based on computationally

relatively expensive simulations based on the model solution in our concrete case, we apply GPs in the

latter case.

3



2 Literature review
This paper is related to four strands of the literature: i) research focusing on stochastic

IAMs; ii) studies investigating the uncertain ECS, such as through Bayesian learning;

iii) global solution methods based on machine learning; and iv) parametric UQ in

IAMs.
7

First, our paper contributes to a fast-growing body of literature on endogenizing

economic and climate uncertainty in IAMs to investigate, among other quantities, the

SCC. Various studies (see, e.g., Golosov et al. (2014), Traeger (2021)) solve stochastic

IAMs analytically and offer closed-form representations of the SCC. However, the el-

egance of these solutions comes at the expense of strong assumptions on the carbon

cycle and other functional forms that enter the model. Tackling IAMs with uncer-

tainty while trying to maintain numerical tractability by introducing various assump-

tions, Traeger (2014) implements a state-reduced and annually calibrated recursive

dynamic programming version of the canonical DICE-2007 model (Nordhaus, 2008),

to study uncertainty in the damage function (Crost and Traeger, 2013, 2014), to exam-

ine long-run growth risk (Jensen and Traeger, 2014), and to introduce climate tipping

points (Lemoine and Traeger, 2014, 2016). In contrast, there is a relatively large body

of literature that is based on deterministic finite-horizon models that investigate the

implications of uncertainty by Monte-Carlo sampling in the parameter space (see, e.g.,

Anthoff et al. (2009), Ackerman et al. (2010), Gillingham et al. (2018), Nordhaus (2018)).

One of the disadvantages of the latter approach is that “...this first-order approximation
to stochastic analysis does not model a decision maker’s optimal response to uncertainty...", as

Jensen and Traeger (2014) point out. In a series of papers, Cai and Lontzek (2019),

Lontzek and Narita (2011), Lontzek et al. (2015), Cai et al. (2015, 2016), Lontzek et al.

(2016) examine the SCC under long-run growth risk and irreversible climate tipping,

dropping many analytical simplifications and resorting to high-performance comput-

ing. Barnett (2023) applies an asset pricing approach to assess uncertainty related to

climate change impact, and van der Ploeg (2021) takes uncertainty into account, de-

riving the risk-adjusted discount rate. The work presented here differs from previous

studies in that we introduce a deep learning-based global solution method to solve

stochastic IAMs of unprecedented complexity without needing to analytically simplify

IAMs in a restrictive way or to tap into high-performance computing.

Second, our work is related to studies examining the interplay of uncertainty in

the ECS (Knutti et al., 2017) and the economy. Kelly and Kolstad (1999), Leach (2007),

Jensen and Traeger (2013), Kelly and Tan (2015), Fitzpatrick and Kelly (2017), Hwang

et al. (2017), developed dynamic stochastic IAMs and considered Bayesian learning

to update a posterior distribution of ECS, which is unknown to the social planner.

The literature found that the social planner with Bayesian learning resolves fat-tailed

uncertainty in ECS in the long run. We build on the literature of Bayesian learning over

the ECS, and are, to the best of our knowledge, the first to combine it with Epstein-Zin

preferences to capture the risk preferences and intertemporal consumption decisions.

Third, our work contributes to the emerging but fast-growing literature on machine

learning-based solution methods in dynamic economic models (see, e.g., Azinovic

et al. (2022), Maliar et al. (2021), Ebrahimi Kahou et al. (2021), Fernández-Villaverde

7
Hassler et al. (2016) provide an excellent general introduction and review on IAMs.
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et al. (2023), Renner and Scheidegger (2018), Han et al. (2021), Barnett et al. (2023),

Azinovic and Žemlička (2023)). The numerical solution to stochastic IAMs is often

achieved by applying traditional, grid-based value function iteration (see, e.g., Cai and

Lontzek (2019), and references therein). However, while highly successful in small

to mid-scale models, such methods are strongly limited when the model complexity

increases and, consequently, often need to resort to high-performance computers. In

our work, we adopt the “Deep Equilibrium Nets” algorithm (Azinovic et al., 2022,

Folini et al., 2023) to the context of stochastic non-stationary IAMs. To the best of

our knowledge, we are the first to implement a deep learning-based solution method

to solve a high-dimensional stochastic IAM with Bayesian learning about the equi-

librium climate sensitivity parameter and to propagate parametric uncertainty using

a Gaussian process-based surrogate model when estimating the social cost of carbon

in a computationally efficient fashion; all our numerical results can be computed on

a laptop. Consequently, we hope that this methodological contribution will enable

the IAM community to tackle much richer models without needing to use hundreds

of thousands of CPU hours of computing time on a supercomputer to solve a single

model specification.

Fourth, our work contributes to studies that examine parametric uncertainty in

IAMs.
8

The IAM literature typically performs either local sensitivity analysis (see,

e.g., Nordhaus (2008), Ackerman et al. (2010)) or GSA to study parametric uncertainty.

Local sensitivity analysis is a one-at-a-time approach (Saltelli et al., 2007), where only

one parameter changes values, keeping the other parameters fixed and analyzing the

effect of the parameter on a quantity of interest such as the SCC. However, Saltelli and

D’Hombres (2010), among others, contended that this approach tends to be unstruc-

tured and, more importantly, suffers from the fact that it is only local, that is, highly

dependent on the chosen parameter values. Moreover, this approach cannot account

for possible interactions between parameters and nonlinear relationships that are often

encountered in economic models, thereby failing to offer reliable policy recommenda-

tions (Crost and Traeger, 2013). In contrast, GSA can alleviate these shortcomings (see,

e.g., Smith (2014) for a review). In the GSA literature, the so-called Sobol’ indices,

as well as univariate effects, are standard metrics to measure the importance of some

input parameters to overall model outcome uncertainty (Harenberg et al., 2019). The

Shapley value is an alternative, important metric in the context of UQ but which, to

the best of our knowledge, has not yet been used in the context of IAMs. Owen (2014)

adopted the idea of Shapley values from the cooperative game theory literature and

demonstrated that the Shapley values intuitively attribute the overall variance of the

model outcome to some input variables but not necessarily to be matched to the Sobol’

indices. The GSA approach is usually based on representing the uncertainty about

each parameter by a (potentially bounded) probability distribution. This parameter

uncertainty is propagated through the economic model by the repeated evaluation

8
Other sources of uncertainty, which we do not pursue in this paper but which have been studied in

the literature, include model misspecification and ambiguity (see, e.g., Barnett et al. (2020), Zhao et al.

(2023)). Other sources of uncertainty encompass climate tipping points (Lenton et al., 2008), the damage

function, and the transition to green technology. Weitzman (2012), for instance, introduced a tipping

point to the standard Nordhaus damage function (Nordhaus, 2017), which dramatically raises damages

for temperature increases beyond a given level.

5



of randomly drawn parameter vectors. The required sampling from the parameter

distributions is usually done by Monte Carlo simulation. However, due to the slow

convergence properties of Monte Carlo simulations, a very large number of draws is

usually required, which, prior to our work, was a prohibitive roadblock to performing

GSA with globally solved stochastic IAMs. Anderson et al. (2014) and Butler et al. (2014)

are early examples where GSA is applied to the canonical, non-stochastic DICE model

based on a large number of Monte-Carlo samples. More recently, Miftakhova (2021)

constructed surrogate models of the deterministic DICE model using the polynomial

chaos expansion method and analyzed the Sobol’ indices and univariate effects of the

SCC on various input parameters.
9

We overcome these limitations by proposing to

use neural network-based (Chen et al., 2021) as well as Gaussian process-based surro-

gate models (Scheidegger and Bilionis, 2019) for the IAM and the related QoIs such as

the SCC. This measure significantly accelerates computations by orders of magnitude,

transforming otherwise computationally expensive model solutions and simulations

into straightforward interpolation tasks. This advancement enables, in this paper, to

the best of our knowledge, the first application of GSA in stochastic IAMs with Bayesian

learning about the ECS.

3 A stochastic IAM with Bayesian learning
In this section, we posit a discrete-time stochastic IAM with Bayesian learning about

the uncertain ECS. Our model combines a stochastic representative agent framework

with Epstein-Zin (-Weil) preferences (Epstein and Zin, 1989, Weil, 1989), a climate

emulator
10

that follows the specification of Folini et al. (2023), and stochastic tipping

points modeled in the spirit of Kotlikoff et al. (2021).

We proceed as follows: First, in Section 3.1, we provide a brief summary of the

economic building blocks of the model. Second, in Section 3.2, we specify the climate

externality used in this work. Third, Section 3.3 describes our approach to modeling

the learning process concerning the ECS. Finally, in Section 3.4, we present the recur-

sive formulation of our model. In addition, further details about the model, such as

calibration details, are provided in Appendix A.

3.1 The economic model
The economic side of our IAM builds on Nordhaus (2017), that is, a growth model

that assumes a single, infinitely-lived representative agent, there are greenhouse gas

(GHG) emissions due to production activity, and productivity is impacted by the state

of the climate via a damage function.

We adopt the Epstein-Zin (-Weil) preferences (Epstein and Zin, 1989, Weil, 1989)

to address the critical aspects of risk preferences and intertemporal consumption de-

9
Harenberg et al. (2019) is the first example in economics to present GSA based on a polynomial

chaos expansion of a standard real-business-cycle model.

10
To analyze climate change mitigation strategies, economists rely on simplified climate models – so-

called climate emulators – that provide a realistic quantitative link between CO2 emissions and global

warming at low computational costs.
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cisions in long-run climate policy discussions (see, e.g., Crost and Traeger (2013), Cai

and Lontzek (2019)). The social welfare function𝑈𝑡 is recursively defined as follows:

𝑈𝑡 =

[
(1 − 𝛽) (𝐶𝑡/𝐿𝑡)

1−1/𝜓

1 − 1/𝜓 𝐿𝑡 + 𝑒−𝜌E𝑡
[
𝑈

1−𝛾
𝑡+1

] 1−1/𝜓
1−𝛾

] 1

1−1/𝜓

, (1)

where time 𝑡 is discrete and measured in years, 𝐶𝑡 represents consumption, and 𝐿𝑡
denotes an exogenous population path adopted from Nordhaus (2017). Furthermore,

𝜌 denotes the pure rate of time preference, 𝜓 measures the intertemporal elasticity of

substitution, 𝛾 represents the Arrow-Pratt risk aversion parameter, and E𝑡 [·] denotes

the expectation operator conditional on time 𝑡.

The gross output 𝑌Gross

𝑡 in the economy is given by a Cobb-Douglas production

function with labor-augmenting technological progress, that is,

𝑌Gross

𝑡 = 𝐾𝛼
𝑡 (𝐴𝑡𝐿𝑡)

1−𝛼 , (2)

where 𝛼 represents the elasticity of substitution of capital, and 𝐴𝑡 is a deterministic

trend. There is an externality to production in the form of industrial carbon emissions,

𝐸
Ind,𝑡 , that reads as

𝐸
Ind,𝑡 = 𝜎𝑡 (1 − �𝑡)𝑌Gross

𝑡 . (3)

Through the emission flow, the economic side of our IAM affects the climate (cf. Sec-

tion 3.2 below). We follow Nordhaus (2017) and assume that the emissions produced

are proportional to the final output, and scaled with an exogenous emission intensity

𝜎𝑡 . In our model, the emissions can be abated, that is, reduced, at a rate �𝑡 ∈ [0, 1]. A

zero abatement rate corresponds to the business-as-usual (BAU) case, whereas a value

of � = 1, abatement corresponds to full mitigation. As in Nordhaus (2017), we assume

that abatement is costly for the social planner and depends on the abatement rate with

the following functional form:

Θ𝑡 (�𝑡) = �1,𝑡�
�2

𝑡 . (4)

In Eq. (4), �1,𝑡 is an exogenous process for the evolution of the abatement cost, and �2

is a parameter of the abatement cost function.

The unabated emissions enter the climate system and ultimately lead to an increase

in the atmospheric temperature 𝑇𝐴𝑇,𝑡 (cf. Section 3.2). A rise in the atmospheric

temperature triggers damages that, in turn, will affect the final output. In our modeling

setup, we employ two types of damage function commonly used in the IAM literature.

The first one, denoted by Ω𝑁
𝑡 (𝑇AT,𝑡), is the quadratic damage function by Nordhaus

(2017):

Ω𝑁
𝑡 (𝑇AT,𝑡) =

1

1 + 𝜋1𝑇AT,𝑡 + 𝜋2𝑇
2

AT,𝑡

. (5)

We also employ the Weitzman (2012) damage function, denoted by Ω𝑡 (𝑇AT,𝑡), but

7



enhance it with stochastic tipping:
11

Ω𝑡 (𝑇AT,𝑡) =
1

1 +
(

1

𝜓1

𝑇AT,𝑡

)
2

+
(

1

2·𝑇𝑃𝑡𝑇AT,𝑡

)
6.754

. (6)

We follow Kotlikoff et al. (2021) and assume that climate tipping is denoted by the

variable 𝑇𝑃𝑡 that follows a random walk
12

with the Gaussian innovations with zero

mean and variance equal to 𝑆𝑇𝑃 :
13

𝑇𝑃𝑡+1 = 𝑇𝑃𝑡 + 𝜖𝑇𝑃,𝑡+1, 𝜖𝑇𝑃,𝑡 ∼ 𝒩 (0, 𝑆𝑇𝑃) . (7)

The abatement costs and the damages jointly reduce the gross output of the economy,

leading to the following budget constraint:

(1 − Θ𝑡 (�𝑡))Ω𝑡 (𝑇AT,𝑡)𝑌Gross

𝑡 − 𝐶𝑡 − 𝐼𝑡 = 0. (8)

The capital stock evolves according to

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + 𝐼𝑡 , (9)

where 𝛿 is the depreciation rate. More details on the exogenous variables and the

calibration are provided in Appendix A.1.

3.2 The climate model
We employ a climate emulator following the Folini et al. (2023) specification. This

climate module builds on Nordhaus (2017) and comprises two fundamental building

blocks: i) three stacked carbon reservoirs that represent the global carbon cycle and ii)

a two-layer energy balance model.

There are two sources of emissions that enter the simple carbon cycle: industrial

emissions 𝐸
Ind,𝑡 , as defined in Eq. (3), which are related to the economic activity of the

representative agent, and exogenous emissions 𝐸
Land,𝑡 . Their sum 𝐸𝑡 = 𝐸

Ind,𝑡 + 𝐸Land,𝑡

constitutes the total emission flow entering the carbon cycle.

The climate emulator consists of three carbon reservoirs that are represented by

a three-dimensional vector M𝑡 = (𝑀AT,𝑡 , 𝑀UO,𝑡 , 𝑀LO,𝑡), where the entries represent

the mass of carbon in the atmosphere (AT), upper ocean (UO) and lower ocean (LO)

respectively. The concentration of carbon in these three reservoirs evolves according

11
Climate tipping is the occurrence of climate events that lead to irreversible damages to the environ-

ment. For more details, see, e.g., Lenton et al. (2008), and references therein.

12
The original work by Weitzman (2012) calibrates 2 ·𝑇𝑃𝑡 = 6.081 to be constant over time. The climate

tipping event occurs at about 3
◦
C excess temperature in the atmosphere. While the temperature change

is below 3
◦
C, the climate tipping damage is negligibly small in the damage function. However, when

it exceeds around 3
◦
C, the climate tipping damage begins to dominate the damage function. The way

we model the tipping in a stochastic way reflects the fact that very little is known about the exact level

of temperatures at which tipping could occur (see Cai and Lontzek (2019), and references therein).

13
In our computations below, we will truncate the normal distribution given in Eq. (7) to ensure

numerical tractability (cf. Appendix A.2).
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to a diffusion process described by the following expression:

M𝑡+1 = 𝐵M𝑡+1 + 𝐸𝑡 , (10)

where 𝐵 is given by

𝐵 =
©«
1 − 𝑏12 𝑏21 0

𝑏12 1 − 𝑏21 − 𝑏23 𝑏32

0 𝑏23 1 − 𝑏32

ª®¬ . (11)

The diffusion coefficients 𝑏12, 𝑏21, 𝑏23, 𝑏32 that we use in our computations are taken

from Folini et al. (2023).

The baseline energy balance system, which we will have to slightly modify in

Section 3.3 due to Bayesian learning, comprises two layers: the temperature of the

atmosphere,𝑇AT,𝑡 (representing the atmosphere and upper ocean), and the temperature

of the ocean, 𝑇OC,𝑡 . These layers are described by the following equations:

𝑇AT,𝑡+1 =

(
1 − 𝑐1𝑐3 − 𝑐1

𝐹2xco2

Δ𝑇AT,×2

)
𝑇AT,𝑡 + 𝑐1𝑐3𝑇OC,𝑡 + 𝑐1

(
𝐹2xco2 log

2

(
𝑀AT,𝑡

𝑀∗
AT

)
+ 𝐹EX,𝑡

)
,

(12)

𝑇OC,𝑡+1 = 𝑐4𝑇AT,𝑡 + (1 − 𝑐4)𝑇OC,𝑡 . (13)

𝐹2xco2 denotes the forcing of equilibrium CO2 doubling, Δ𝑇AT,×2 is the ECS, 𝑀∗
AT

stands

for the equilibrium mass of carbon in the atmosphere, 𝐹EX,𝑡 represents exogenous

radiative forcing, and 𝑐1, 𝑐3, 𝑐4 are temperature-related parameters. All values, except

the ECS, are calibrated according to Folini et al. (2023). A detailed discussion about

the ECS follows in the subsequent Section 3.3. More details on the calibration of our

climate emulator are given in Appendix A.2.

3.3 Bayesian learning over the equilibrium climate sensitivity
The response of the climate to emissions in the form of an increase in atmospheric

temperature is subject to uncertainty in many ways. However, the ECS is presumably

the most controversial number that determines how severe climate change will be in

the long run (Knutti et al., 2017), as arguments between Roe and Baker (2007) and

Zaliapin and Ghil (2010) in the climate science community illustrate. Therefore, to take

this debate seriously in our IAM, Eq. (12) has to be modified appropriately.

Empirical observations, as well as studies based on energy-balanced models and

global climate models, suggest that the probability density function of the ECS is most

likely to peak in the region [2.0◦C, 4.5◦C], but this density exhibits a highly skewed,

fat-tailed distribution (Roe and Baker, 2007). These authors, among others, pointed

out that the ECS relates to the following feedback process:

𝑇AT,×2 =
𝑇0

AT,×2

1 − 𝑓 , (14)

9



where 𝑓 represents the so-called climate feedback parameter, and 𝑇0

AT,×2
is a reference

climate sensitivity parameter, and which is assumed to be known to the social plan-

ner. The uncertainty in the ECS can be represented by the uncertainty in the climate

feedback parameter 𝑓 . Following Roe and Baker (2007), we assume that 𝑓 follows a

Gaussian distribution. By substituting Eq. (14) into Eq. (12), we obtain

𝑇AT,𝑡+1 =

(
𝑐1

𝐹2xco2

Δ𝑇0

AT,×2

𝑓 + 1 − 𝑐1𝑐3 − 𝑐1

𝐹2xco2

Δ𝑇0

AT,×2

)
𝑇AT,𝑡 + 𝑐1𝑐3𝑇OC,𝑡

+ 𝑐1

(
𝐹2xco2 log

2

(
𝑀AT,𝑡

𝑀∗
AT

)
+ 𝐹EX,𝑡

)
+ 𝜖𝑇,𝑡+1, (15)

where the uncertainty about the ECS is now modeled indirectly via 𝑓 , and 𝜖𝑇,𝑡+1 is

a stochastic weather shock (cf. Kelly and Tan (2015)) which the social planner cannot

observe.

In line with previous studies on Bayesian learning in IAMs (see, e.g., Kelly and

Kolstad (1999), Leach (2007), Webster et al. (2008), Kelly and Tan (2015), Hwang et al.

(2017), Fitzpatrick and Kelly (2017)), we update the social planner’s belief on the climate

feedback parameter 𝑓 , and not the ECS, which is uncertain to the social planner. The

social planner subjectively assumes her belief about the climate feedback parameter

in period 𝑡, that is, 𝑓𝑡+1, when solving the dynamic programming problem. As Roe

and Baker (2007) suggest,
14

we assume that her prior belief on 𝑓𝑡+1 follows a Gaussian

distribution with mean � 𝑓 ,𝑡 and variance 𝑆 𝑓 ,𝑡 . We also assume that the distribution

is truncated from below at 𝑓 = 0.4 and from above at 𝑓 = 0.9. This implies that

𝑓𝑡+1 ∼ 𝒩
(
� 𝑓 ,𝑡 , 𝑆 𝑓 ,𝑡 , 𝑓 , 𝑓

)
, and leads to an enhanced expression for the evolution of the

atmospheric temperature, that is,

𝑇AT,𝑡+1 =

(
𝑐1

𝐹2xco2

Δ𝑇0

AT,×2

𝑓𝑡+1 + 1 − 𝑐1𝑐3 − 𝑐1

𝐹2xco2

Δ𝑇0

AT,×2

)
𝑇AT,𝑡 + 𝑐1𝑐3𝑇OC,𝑡

+ 𝑐1

(
𝐹2xco2 log

2

(
𝑀AT,𝑡

𝑀∗
AT

)
+ 𝐹EX,𝑡

)
+ �̃�𝑇,𝑡+1. (16)

In period 𝑡, we denote the prior probability function of the social planner’s belief of

the climate feedback parameter, which follows the Gaussian distribution with mean

�
𝑓

𝑡 and variance 𝑆 𝑓 ,𝑡 , as 𝑝 ( 𝑓 ). Given the prior 𝑝 ( 𝑓 ), the planner observes the atmo-

spheric temperature change and the likelihood function, which is also Gaussian, that

is, 𝑝 (𝑇AT | 𝑓 ). By applying Bayes’ rule, the posterior probability function of the climate

14
We choose the initial values for the prior mean and prior variance according to Roe and Baker (2007).

We set the reference climate sensitivity as Δ𝑇0

AT,×2
= 1.2◦C. Given the reference climate sensitivity, the

initial climate sensitivity in the problem is given by

Δ𝑇0

AT,×2

1− 𝑓 = 1.2
1−0.65

= 3.42. The latter value is not far

from that of Folini et al. (2023) who determine the ECS as Δ𝑇AT,×2 = 3.25
◦
C. Thus, we modify no other

parameters of the energy balance equations in order to be in line with the ECS value, but keep the

remaining parameters at the values proposed by Folini et al. (2023).
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feedback parameter given the observation 𝑇AT is also Gaussian distributed and reads

as:

𝑝 ( 𝑓 | 𝑇AT) ∝ 𝑝 (𝑇AT | 𝑓 ) × 𝑝 ( 𝑓 ) . (17)

As Kelly and Tan (2015), we rewrite the two stochastic components in Eq. (16) as(
1 − 𝑐1𝑐3 − 𝑐1

𝐹2xco2

Δ𝑇0

AT,×2

)
𝑇AT,𝑡 + 𝑐1𝑐3𝑇OC,𝑡 + 𝑐1

(
𝐹2xco2 log

2

(
𝑀AT,𝑡

𝑀∗
AT

)
+ 𝐹EX,𝑡

)
+ 𝜑1𝐶 𝑓𝑡+1𝑇AT,𝑡 + �̃�𝑇,𝑡+1 − 𝑇𝐴𝑇,𝑡+1 = 0, (18)

where 𝜑1𝐶 = 𝑐1

𝐹2xco2

Δ𝑇0

AT,×2

, and where 𝑓𝑡+1 ∼ 𝒩
(
� 𝑓 ,𝑡 , 𝑆 𝑓 ,𝑡 , 𝑓 , 𝑓

)
, �̃�𝑇,𝑡+1 ∼ 𝒩 (0, 𝑆𝜖𝑇 ). Finally,

by applying DeGroot (1970, p. 167, Theorem 1), we can analytically compute the

posterior mean and the variance, that is,

� 𝑓 ,𝑡+1 =

𝑆𝜖𝑇� 𝑓 ,𝑡 + 𝜑1𝐶𝑇AT,𝑡

(
𝜑1𝐶𝑇AT,𝑡 𝑓𝑡+1 + �̃�𝑇,𝑡+1

)
𝑆 𝑓 ,𝑡

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
, (19)

𝑆 𝑓 ,𝑡+1 =
𝑆𝜖𝑇𝑆 𝑓 ,𝑡

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
. (20)

3.4 The recursive formulation
After putting all building blocks in place, we present our IAM’s recursive formulation

with Bayesian learning about the ECS. The social planner chooses capital tomorrow
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𝐾𝑡+1 and mitigation �𝑡 ∈ [0, 1] to solve

𝑉𝑡 (X𝑡) = max

𝐶𝑡 ,𝐾𝑡+1 ,�𝑡


(𝐶𝑡/𝐿𝑡)1−1/𝜓

1 − 1/𝜓 𝐿𝑡 + 𝑒−𝜌E𝑡
[
𝑉𝑡+1 (X𝑡+1)

1−𝛾
1−1/𝜓

] 1−1/𝜓
1−𝛾

 (21)

s.t. (1 − Θ (�𝑡))Ω𝑡 (𝑇AT,𝑡)𝐾𝛼
𝑡 (𝐴𝑡𝐿𝑡)

1−𝛼 − 𝐶𝑡 + (1 − 𝛿)𝐾𝑡 − 𝐾𝑡+1 = 0 (22)

1 − �𝑡 ≥ 0 (23)

(1 − 𝑏12)𝑀AT,𝑡 + 𝑏21𝑀UO,𝑡 + (1 − �𝑡) 𝜎𝑡𝐾𝛼
𝑡 (𝐴𝑡𝐿𝑡)

1−𝛼 + 𝐸
Land,𝑡 −𝑀AT,𝑡+1 = 0 (24)

𝑏12𝑀AT,𝑡 + (1 − 𝑏21 − 𝑏23)𝑀UO,𝑡 + 𝑏32𝑀LO,𝑡 −𝑀UO,𝑡+1 = 0 (25)

𝑏23𝑀UO,𝑡 + (1 − 𝑏32)𝑀LO,𝑡 −𝑀LO,𝑡+1 = 0 (26)

(1 − 𝑐1𝑐3 − 𝜑1𝐶)𝑇AT,𝑡 + 𝑐1𝑐3𝑇OC,𝑡 + 𝑐1

(
𝐹2xco2 log

2

(
𝑀AT,𝑡

𝑀∗
AT

)
+ 𝐹EX,𝑡

)
+ 𝜑1𝐶 𝑓𝑡+1𝑇AT,𝑡 + 𝜖𝑇,𝑡+1 − 𝑇AT,𝑡+1 = 0 (27)

𝑐4𝑇AT,𝑡 + (1 − 𝑐4)𝑇OC,𝑡 − 𝑇OC,𝑡+1 = 0 (28)

𝑆𝜖𝑇� 𝑓 ,𝑡 + 𝜑1𝐶𝑇AT,𝑡

(
𝜑1𝐶𝑇AT,𝑡 𝑓𝑡+1 + 𝜖𝑇,𝑡+1

)
𝑆 𝑓 ,𝑡

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
− � 𝑓 ,𝑡+1 = 0 (29)

𝑆𝜖𝑇𝑆 𝑓 ,𝑡

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
− 𝑆 𝑓 ,𝑡+1 = 0 (30)

𝑓𝑡+1 ∼ 𝒩
(
� 𝑓 ,𝑡 , 𝑆 𝑓 ,𝑡 , 𝑓 , 𝑓

)
, 𝜖𝑇,𝑡+1 ∼ 𝒩 (0, 𝑆𝜖𝑇 ) (31)

Ω (𝑇AT,𝑡) = 1 − 1

1 +
(

1

20.46
𝑇AT,𝑡

)
2 +

(
1

2·𝑇𝑃𝑡𝑇AT,𝑡

)
6.754

(32)

𝑇𝑃𝑡+1 = 𝑇𝑃𝑡 + 𝜖𝑇𝑃,𝑡+1, 𝜖𝑇𝑃,𝑡 ∼ 𝒩 (0, 𝑆𝑇𝑃) (33)

The Bellman equation is subject to the budget constraint, the law of motion for the

capital, the occasionally binding upper bound on mitigation variable �𝑡 , the three laws

of motion of the carbon concentration (in the atmosphere, in the upper ocean and the

lower ocean), the two laws of motion of the atmospheric temperature and the ocean

temperature, the Bayesian updates of the ECS, and the stochastic law of motion of the

damage coefficients.
15

In Eq. (21), the state of the model is given by X𝑡 = (𝐾𝑡 , 𝚪𝑡 ,S𝑡 , 𝑇𝑃𝑡 , 𝑡;ϑ), where 𝚪𝑡 =
(𝑀AT,𝑡 , 𝑀UO,𝑡 , 𝑀LO,𝑡 , 𝑇AT,𝑡 , 𝑇OC,𝑡) abbreviates the climate variables, S𝑡 =

(
� 𝑓 ,𝑡 , 𝑆 𝑓 ,𝑡

)
the

mean and variance of the agent’s beliefs, 𝑇𝑃𝑡 the climate tipping state (cf. Eq. (7)), and

15
Notice that the recursive model formulation presented in Eq. (21) is specific for the case of 𝜓 > 1.

In case of the 𝜓 < 1, the value function changes to

𝑉𝑡 (X𝑡) = max

𝐶𝑡 ,𝐾𝑡+1 ,�𝑡

−
(𝐶𝑡/𝐿𝑡)1−1/𝜓

1 − 1/𝜓 𝐿𝑡 + 𝑒−𝜌E𝑡
[
𝑉𝑡+1 (X𝑡+1)

1−𝛾
1−1/𝜓

] 1−1/𝜓
1−𝛾

 .
This transformation should be taken into account in all manipulations required to render the model

amendable for our solution method (cf. appendix B).
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𝑡 the state variable that handles time. Finally, ϑ is a collection of the 𝑁 uncertain pa-

rameters ϑ = (𝜗1, · · · 𝜗𝑁 ) in the model which we consider to be pseudo-state variables

(Scheidegger and Bilionis, 2019), and over which the planner, in contrast to the other

stochastic variables, does not compute expectations. The total dimensionality 𝑑 of the

IAM, therefore, is given by:

𝑑 = |𝐾𝑡 | + |𝚪𝑡 | + |S𝑡 | + |𝑇𝑃𝑡 | + |𝑡 | + |ϑ| = 1 + 5 + 2 + 1 + 1 + 𝑁 = 10 + 𝑁. (34)

4 Deep uncertainty quantification
In what follows, we introduce our Deep UQ methodology in three steps. First, we

outline in Section 4.1 how “Deep Equilibrium Nets” (DEQN) can be adapted to compute

global solutions to (non-stationary) stochastic IAMs as a function of its economic and

climate states, as well as parameters (Section 4.1.1), and how the resulting optimal

policies can subsequently be used to construct cheap-to-evaluate surrogate models for

derived quantities of interest, such as the SCC, by using the GP-based surrogat model

(Section 4.1.2). Section 4.2 introduces the global sensitivity measures we intend to

study in the context of our IAM. Section 4.3 finally presents the Deep UQ algorithm

formally. Additional details on the implementation are provided in Appendix B.

4.1 Deep surrogate models for IAMs
4.1.1 Deep equilibrium nets

In this section, we briefly summarize the general idea of DEQNs, thereby adopting

the notation of Azinovic et al. (2022), Bretscher et al. (2022). The DEQN algorithm

is a simulation-based solution method using deep neural networks to compute an

approximation of the optimal policy function p : 𝑋 → 𝑌 ⊂ R𝑀 to a dynamic model

under the assumption that the underlying economy can be characterized via discrete-

time first-order equilibrium conditions, that is,

G(x, p) = 0, ∀x ∈ 𝑋 ⊂ R𝑑 . (35)

Intuitively, DEQNs work as follows: An unknown policy function is approximated

with a neural network, that is, p(x) ≈ 𝒩(x) with trainable parameters ν, which are

ex-ante unknown and that have to be determined based on some suitable loss function

measuring the quality of a given approximation at a given state of the economy.

Although there are several different types of deep neural networks, in this paper, we

use the so-called densely-connected feedforward neural networks (FNN).
16

Following

the literature, we define an 𝐿-layer FNN as a function𝒩𝐿(x) : R𝑑input → R𝑑output
and say

that there are 𝐿−1 hidden layers such that the ℓ -th layer has𝑁ℓ neurons. In our concrete

16
Neural networks are universal function approximators (Hornik et al., 1989) that can resolve highly

non-linear features, and that can handle a large amount of high-dimensional input data. See, for

example, Goodfellow et al. (2016) for a general introduction to deep learning, and Scheidegger et al.

(2023) for a specific introduction in the context of economics.
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Figure 1: The figure above depicts a stylized FNN with an input x, which is a 12-

dimensional input vector. It consists of two hidden layers, each containing 16 neurons,

and an output p (x), which is an 11-dimensional vector. This configuration represents

a stylized architecture for an IAM that incorporates 10 economic and climate state vari-

ables, two additional parameters treated as pseudo-states, and is designed to generate

eleven policies.

case, 𝐾 = 𝑁0 = 𝑑in and 𝑀 = 𝑁𝐿 = 𝑑output.
17

Furthermore, for each 1 ≤ ℓ ≤ 𝐿, we

define a so-called weight matrix W ℓ ∈ R𝑁ℓ×𝑁ℓ−1
and bias vector bℓ ∈ R𝑁ℓ . Then, letting

𝐴ℓ (x) = W ℓx + bℓ be the affine transformation in the ℓ -th layer, for some non-linear

activation function 𝜎(·) such as relu, swish, or selu, an FNN is given by

p (x) ≈ 𝒩 (x) = 𝒩𝐿 (x) = 𝐴𝐿 ◦ 𝜎𝐿−1 ◦ 𝐴𝐿−1 ◦ . . . ◦ 𝜎1 ◦ 𝐴1 (x) . (36)

In Figure 1, we illustrate a simple FNN with two hidden layers. The selection of hyper-

parameters

{
𝐿, {𝑁𝑙}𝐿𝑙=1

, {𝜎𝑙 (·)}𝐿𝑙=1

}
is known as the architecture selection. Approaches

to determine these hyper-parameters include using prior experience, manual, random,

or grid search, as well as more complex methods such as Bayesian optimization (see,

e.g., Bergstra et al. (2011)).

The DEQN algorithm to determine p (x) is started by randomly initializing the �’s

(Glorot and Bengio, 2010), that is, an arbitrary guess for the ex-ante unknown approxi-

mate policy function. Next, we simulate a sequence of 𝑁
path length

states. Starting from

17
Recall that in our model, 𝑑in = 𝑑 = 10 + 𝑁 input dimensions (cf. Eq. (34)). Furthermore, 𝑑output =

3 + 7 + 1 = 11, that is, two choice variables (consumption, capital tomorrow, mitigation, seven Lagrange

multipliers, and the value function (see Section 3.4 and appendix B.1 for more details).
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some given state x𝑡 , the next state x𝑡+1 is the result of the policies encoded by the neural

network,𝒩 (x), and remaining model-implied dynamics.

If we knew the (approximate) policy function satisfying the equilibrium conditions,

Eq. (35) would hold along a simulated path. However, since the neural network is

initialized with random coefficients, G (x𝑡 ,𝒩 (x𝑡)) ≠ 0 along the simulated path of

length 𝑁
path length

. This fact is now leveraged to improve the quality of the guessed

policy function. Specifically, DEQNs use a loss function as the error in the equilibrium

conditions, that is,

ℓν :=
1

𝑁
path length

∑
x𝑡on sim. path

𝑁eq∑
𝑚=1

(G𝑚(x𝑡 ,𝒩(x𝑡)))2 , (37)

where G𝑚 (x𝑡 ,𝒩 (x𝑡)) represent all the𝑁eq first-order equilibrium conditions of a given

model, that is,G (x𝑡 ,𝒩 (x𝑡)) =
∑𝑁eq

𝑚=1
(G𝑚(x𝑡 ,𝒩 (x𝑡)). Eq. (37) can now be used to update

the weights of the network with any variant of (stochastic) gradient descent,
18

namely,

�′𝑘 = �𝑘 − 𝛼learn
𝜕ℓ (ν)
𝜕�𝑘

, (38)

where �′
𝑘

represents the updated 𝑘−th weight of the neural network, and where

𝛼learn ∈ R denotes the so-called learning rate. The updated neural network-based

representation of the policy is subsequently used to simulate a sequence of length

𝑁
path length

steps, along which the loss function is recorded, and the latter is again used

to update the network parameters. This iterative procedure is pursued until ℓν < 𝜖 ∈ R,

that is, an approximate equilibrium policy, has been found.

In summary, the DEQN algorithm consists of four building blocks: i) deep neural

networks for approximating the equilibrium policies; ii) a suitable loss function mea-

suring the quality of a given approximation at a given state of the economy; iii) an

updating mechanism to improve the quality of the approximation; and iv) a sampling

method for choosing states for updating and evaluating of the approximation quality.

In Appendix B.1, the step-by-step procedure for mapping stochastic and non-stationary

climate economic models in general, and our model in particular (cf. Section 3.4), onto

the neural network-based DEQN solution framework is provided.

4.1.2 Gaussian process surrogate models for global sensitivity analysis

We now briefly introduce the Gaussian process regression (GPR), which is a proba-

bilistic approach for modeling a regression problem
19

. We will use this method below

to construct surrogates for approximating and interpolating QoIs, such as the SCC,

as a function of the model input parameters, so as to enable the swift computation of

global sensitivity measures such as the Sobol’ indices, the univariate effects, and the

Shapley values (cf. Section 4.2 below).

GPR assumes that the underlying function is a sample from a GP. The latter is

18
In our practical applications, we use “Adam”(Kingma and Ba, 2014).

19
See, e.g., Rasmussen and Williams (2005) for a textbook treatment.
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defined by a mean function, 𝑚(𝑥), and a covariance function, 𝑘(𝑥, 𝑥′). For a regression

problem, we are given a set of 𝑛 input-output pairs, 𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑛𝑖=1
= [𝑋, 𝑦], where

𝑥𝑖 ∈ R𝑑, 𝑦𝑖 ∈ R, 𝑋 ∈ R𝑛×𝑑 and 𝑦 ∈ R𝑛×1
, and to which the literature also refers

to as “training dataset”, or “experimental design”.
20

The goal is to “learn”, that

is, approximate a function 𝑓 (𝑥) that maps inputs to outputs. In GPR, one often

assumes that the output 𝑦 is generated by a noisy evaluation of the function 𝑓 (𝑥),
that is, 𝑦 = 𝑓 (𝑥) + 𝜖, where 𝜖 ∼ 𝒩

(
0, 𝜎2

𝜖

)
, as it renders the computations numerically

more stable (see, e.g., Rasmussen and Williams (2005), Murphy (2012)). In order to

approximate functions efficiently with GPs in general, we need to find a set of points

𝑥𝑖 that covers the relevant state space in such a way that a GP can approximate the

desired QoI, such as the SCC as a function of the model parameters, sufficiently well

with a minimal amount of training data. The task at hand, thus, is to answer the

question of what data one should gather to learn about the function(s) of interest as

quickly as possible, especially in our case where training data is expensive to acquire,

as we need to simulate, for instance, the SCC in the year 2100. Various methods have

been proposed to achieve this, such as (nested) Latin hypercube sampling (see, e.g.,

Harenberg et al. (2019)), or Bayesian active learning (see, e.g., Renner and Scheidegger

(2018), and references therein). For more details on how we achieve this in our practical

applications, see Appendix C.2.

The prior distribution over functions is given by a GP, that is, 𝑓 (𝑥) ∼ 𝒢𝒫 (𝑚 (𝑥) , 𝑘 (𝑥, 𝑥′)).
In practical applications, the mean function, 𝑚 (𝑥), is often set to a constant value, for

example, zero. The covariance function, 𝑘 (𝑥, 𝑥′), defines the correlation between two

arbitrary inputs 𝑥 and 𝑥′. The exact choice of the kernel within an application depends

on how the modeler encodes prior knowledge about the function(s) to be approxi-

mated. In our work below, we use the Matérn 5/2 kernel, which is given by:

𝑘 (𝑥, 𝑥′) = 𝜎2

𝑓

(
1 +
√

5𝑟

𝜌
+ 5𝑟2

3𝜌2

)
exp

(
−
√

5𝑟

𝜌

)
, (39)

where 𝜎2

𝑓
denotes the variance parameter, and 𝜌 represents the length scale parameter.

The distance 𝑟 between 𝑥 and 𝑥′ can be calculated using a suitable metric, such as the

Euclidean distance.
21

Given the input-output pairs in𝒟, we can compute the posterior distribution over

functions using Bayes’ rule, that is,

𝑝 ( 𝑓∗ | 𝑥∗,𝒟) = 𝒩
(
�∗, 𝜎

2

∗

)
, (40)

where 𝑥∗ is an arbitrary point from the computational domain (also referred to as “test

input”), 𝑓∗ is the corresponding output, and �∗ and 𝜎2

∗ are the mean and variance of

20
Below, the input vector 𝑥𝑖 will be given by the vector of parameters of dimensionality𝑁 (cf. Eq. (34)),

whereas corresponding observations 𝑦𝑖 will represent the QoIs.

21
Note that the hyperparameters of the covariance function are typically estimated by maximizing

the likelihood (Rasmussen and Williams, 2005). For more details on kernels, see, for example, Murphy

(2022, Ch. 18.2).
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the predictive distribution. They can be computed as:

�∗ (𝑥∗) = 𝑘 (𝑥∗, 𝑋)
[
𝐾 (𝑋, 𝑋) + 𝜎2

𝜖𝐼
]−1

𝑦, (41)

𝜎2

∗ (𝑥∗) = 𝑘(𝑥∗, 𝑥∗) − 𝑘(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎2

𝜖𝐼]−1𝑘(𝑋, 𝑥∗), (42)

where 𝐾 (𝑋, 𝑋′) is the matrix of pairwise covariances between inputs in 𝑋 and 𝑋′.
Furthermore, 𝐼 is an identity matrix and 𝜎𝜖 is the assumed noise level of observations,

that is, the variance of 𝜖. Thus, the interpolation value of a function at a location 𝑥∗ is

given by 𝑓 (𝑥∗) = �∗. For more details on GPs, see, e.g., Renner and Scheidegger (2018),

and references therein.

Below, we need cheap-to-evaluate GP surrogates for one particular QoI as a function

of the model input parameters, the SCC, as it is relevant for the climate policy, and for

which we intend to perform GSA at any given point in time. Recall that the SCC is

defined as the marginal cost of atmospheric carbon in terms of the numeraire good.

Following the literature (see, e.g., Traeger (2014)), we define SCC as the marginal

rate of substitution between the atmospheric carbon concentration of a 1000 Gt of

carbon where c2co2 represents the carbon to CO2 transformation coefficient
22

and the

normalized capital stock, that is,

𝑆𝐶𝐶𝑡 =
− (𝜕𝑉𝑡/𝜕𝑀AT,𝑡) /c2co2

𝜕𝑉𝑡/𝜕𝐾𝑡
=
− (𝜕𝑣𝑡/𝜕𝑀AT,𝑡) /c2co2

𝜕𝑣𝑡/𝜕𝑘𝑡
𝐴𝑡𝐿𝑡 . (43)

To enable a comparison to related studies, we focus below on the SCC in the year 2100,

a date which is commonly used in the literature (see, e.g., Cai and Lontzek (2019)), that

is,

𝑦SCC = E [SCC2100] . (44)

To construct GP surrogates of the QoI mentioned above as a function of the model

input parameters ϑ, we proceed as follows:
23

Suppose that we observe 𝑛 model input-

output pairs, we obtain a training set (which in the machine learning literature is often

termed experimental design), 𝒟 = {ϑ𝑖 , 𝑦𝑖}𝑛𝑖=1
= [𝛩, 𝑦] consisting of 𝑛 sample points

ϑ𝑖 ∈ ℬ ⊂ R𝑁
from a joint (uniform) distribution of the uncertain model parameters,

whereas 𝑦𝑖 ∈ R corresponds to the QoI at a given combination of parameters and

can be generated by interpolating on the DEQN surrogate of the pre-computed IAM

solution (cf. Section 3.4). Next, we fit a GP model to the training data set𝒟, and denote

it asℳ
GP|𝛩,𝑦 . We use the predictive mean, �∗ (ϑ), of the respective GP model as the

interpolation value for the respective QoI, that is, 𝑦SCC.
24

Evaluating �∗ (·) numerically

22
The stock of carbon in the carbon cycle is measured in 1000 Gt of carbon. However, the backstop

cost, as in Nordhaus (2017) is measured in 1000 Gt of CO2 emissions. Thus, to obtain a correct value

for SCC, we need to transform a value measured in carbon into CO2 by the transformation coefficient

c2co2 = 3.666.

23
In Section 4.1.2, we generally introduce the GPR that is trained on a set of 𝑛 input-output pairs,

which is 𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑛𝑖=1
= [𝑋, 𝑦]. Hereafter we focus more on our specific case where the mode input

parameters are denoted by 𝜗𝑖 , not 𝑥𝑖 and define the 𝑛 input-output pairs𝒟 = {𝜗𝑖 , 𝑦𝑖}𝑛𝑖=1
= [𝛩, 𝑦].

24
Note that the GP surrogate is redundant when a QoI is not a derived quantity from the optimal

policies such as �𝑡 . In contrast, where a QoI relies on simulations such as the SCC, constructing a
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is extremely fast, as the algorithmic complexity is linearly in size 𝑛 of the training data

set (cf. Eq. (41)). Thus, GSA of very rich specified models (cf. Section 4.2) now becomes

numerically tractable. More details on how we assess the accuracy of GP surrogate

models are provided in Appendix C.1, whereas in appendix C.2, we describe how we

efficiently choose training data.

4.2 Global sensitivity analysis in a nutshell
In this section, we formally introduce surrogate-based global sensitivity analysis (GSA).

4.2.1 Some definitions

We begin our discussion of GSA by introducing essential notation, thereby follow-

ing Saltelli et al. (2007), Sudret (2008) and Harenberg et al. (2019). We define a (true)

mathematical modelℳ (·) that maps

ϑ ∈ 𝒟ϑ ⊂ R𝑁 → 𝑦 =ℳ(ϑ) ∈ R, (45)

where 𝑦 is called a quantity of interest (QoI)
25

that is, a random endogenous outcome of

the computational modelℳ (·), whereϑ = (𝜗1, · · · , 𝜗𝑁 ) is the random vector of𝑁 input

parameters, where each parameter is characterized by a probability density function

(PDF) 𝑓𝜗𝑖 , 𝑖 = 1, · · · , 𝑁 , and where the joint density 𝑓ϑ is defined over a probabilistic

space (see, e.g., Jaynes (1957, 1982)). The corresponding ex-ante unknown distribution

of the endogenous output 𝑦 is inferred by evaluating the model on a large sample of

parameter values drawn from the specified distribution 𝑓ϑ; a technique that is termed

uncertainty propagation (see, e.g., Sudret (2008) and references therein). Based on this

distribution, we next look at three particular types of metrics that are typically studied

in the UQ literature, namely, the Sobol’ indices (Section 4.2.2), the univariate effects

(Section 4.2.3), and the Shapley values (Section 4.2.4).

4.2.2 Sobol’ indices

Variance-based GSA methods discriminate among all the model’s parameters accord-

ing to their contribution to the variance of its output. In our concrete case, we intend to

study which (combinations of) parameters drive the QoI’s variance by applying Sobol’s

decomposition (Sobol, 2001). Following a common practice in the UQ literature, for

instance, see Saltelli et al. (2007), we start from the Sobol’s variance decomposition to

investigate possible interactions among model inputs on the model output 𝑦, that is,
26

GP-based surrogate can reduce the computational burden substantially since apart from evaluating the

exact formula of the SCC at 𝑛 points to train a GP, everywhere else in the parameter space, the respective

quantity can be retrieved by evaluating the surrogate model.

25
Recall that in our case, we consider the SCC as a function of the model parameters at a given point

in time (cf. Eq. (43)).

26
Sobol’s decomposition is closely related to a function approximation technique called “high-

dimension model representation" (see, e.g., Ma and Zabaras (2010), Eftekhari et al. (2017), Eftekhari

and Scheidegger (2022)).
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Var [𝑦] =
𝑁∑
𝑖=1

𝑉𝑖 +
∑

1≤𝑖≤ 𝑗≤𝑁
𝑉𝑖 , 𝑗 + · · · +𝑉1,2,··· ,𝑁 , (46)

where 𝑉u denotes the partial variances for any subset of parameter indices u ⊂
{1, 2, · · · , 𝑁}, and in particular in our case,

𝑉𝑖 = Var [E [ℳ (ϑ) | 𝜗𝑖]] , (47)

and

𝑉𝑖 , 𝑗 = Var

[
E

[
ℳ (ϑ) | 𝜗𝑖 , 𝜗 𝑗

] ]
− Var [E [ℳ (ϑ | 𝜗𝑖)]] − Var

[
E

[
ℳ

(
ϑ | 𝜗 𝑗

) ] ]
, (48)

and so forth.

A natural extension to the relative shares of partial variances in the total variance

leads to the well-known sensitivity measures, that is, Sobol’ indices (Sobol, 2001). For

any subset of parameters’ indices u, the Sobol’ index is defined as

𝑆u =
Var𝜗u

[
Eϑ\𝜗u [ℳ (ϑ) | 𝜗u]

]
Varϑ [𝑌]

. (49)

The Sobol’ indices given by Eq. (49) are indicators used in the variance-based

sensitivity analysis (Sobol, 2001). In practical terms, Sobol’ indices quantify which un-

certain parameters and non-linear interactions among uncertain parameters primarily

contribute to the variances of model outcomes. In other words, one can screen uncertain

parameters to decrease overall model variance by investigating the Sobol’ indices. In

our work below, we particularly look at the first-order Sobol’ index when we setu = {𝑖}
in Eq. (49), that is,

𝑆𝑖 =
Var𝜗𝑖

[
Eϑ\𝜗𝑖 [ℳ (ϑ) | 𝜗𝑖]

]
Varϑ [𝑌]

. (50)

We follow, among others, Oakley and O’Hagan (2004), Marrel et al. (2009), and

use the predictive mean of the fitted Gaussian process (GP) surrogate modelℳ
GP|𝛩𝑠 ,𝑌𝑠

instead of the “true”ℳ(·) to enable a swift computation of GSA metrics.
27

To compute

the first-order Sobol’ indices defined in Eq. (50), we start by generating test data inputs

𝛩 = {ϑ𝑖}𝑁𝜔

𝑖=1
on which we simulate the GP modelℳ

GP|𝛩,𝑦 for 𝑁𝜔 times to obtain the

model predictions. The sample space Ω represents the possible model outcomes ω
from the posterior. Thus, using the predictive mean of the GP, the first-order Sobol’

indices for the parameter 𝑖 are given by (Marrel et al., 2009)

𝑆𝑖 =
Varϑ𝑖E𝛩\ϑ𝑖

[
EΩ

[
ℳ

GP|𝛩,𝑦 (𝛩)
]
| ϑ𝑖

]
Var𝛩ℳGP|𝛩,𝑦 (𝛩)

. (51)

27
Apart from GPs, polynomial chaos expansion is also commonly used in the literature to construct

surrogate models for the swift computation of Sobol’ indices (see, e.g., Sudret (2008)).
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4.2.3 Univariate effects

From the aforementioned variance decomposition, we do not obtain any information

as to which direction a QoI moves when the uncertain parameters deviate from their

benchmark values. To this end, GSA is also concerned with computing univariate

effects (Younes et al., 2013). Formally, a univariate effect represents the model’s con-

ditional expectation of a QoI when we fix a single model parameter 𝜗𝑖 at an arbitrary

point 𝜗′
𝑖
, where the expectation value is taken over all other parameters, that is,

𝒰𝑖

(
𝜗′𝑖

)
= E𝝑\𝜗𝑖

[
ℳ (ϑ) | 𝜗𝑖 = 𝜗′𝑖

]
. (52)

As before, we replace the true “true”ℳ(·) in Eq. (52) again by the GP surrogate model

ℳ
GP|𝛩,𝑦 , and evaluate the model outputs by using the posterior mean of the GP.

4.2.4 Shapley value

An essential task in UQ is to attribute the uncertainty of the overall outcome of the

model to various input parameters. In the field of GSA, the Sobol’ indices have been

widely adopted for variance decomposition (Saltelli et al., 2007, Harenberg et al., 2019).

On the other hand, the economic literature, especially in cooperative game theory, has

studied a similar problem and developed a solution concept known as the Shapley

value (see, e.g., Shapley (1953), Winter (2002)). The key idea behind the Shapley value

is to determine a fair way to attribute the value created by a team effort to each team

member. Based on this insight, Owen (2014) introduced a global sensitivity measure

based on the Shapley value, which is a compelling choice for identifying how much

model variance can be attributed to the uncertainty in input parameters.

Following Owen (2014), Song et al. (2016) and our previously introduced notation,

we define the Shapley value for the 𝑖-th uncertain parameter as:

𝑆ℎ𝑖 =
∑

u⊆𝒦\𝑖

(𝑁 − |u| − 1)!|u|!
𝑁 !

(
Var

[
ℳ

(
ϑu∪{𝑖}

) ]
− Var [ℳ (ϑu)]

)
, (53)

where 𝒦 = {1, 2, · · · , 𝑁}, and 𝑁 = |𝒦 | is the size of the whole set and |u| is the size

of subset u. We also define Var [ℳ (ϑ∅)] = 0. Eq. (53) measures the incremental cost

when including parameter 𝑖 in set u averaged over all sets u ⊆ 𝒦 \ 𝑖. The variance in

Eq. (53) is

Var [ℳ (ϑu)] = E𝒦\u
[
Varu

[
ℳ (ϑ) |𝜗𝒦\u

] ]
(54)

with which one can measure a similar effect as that of the first-order Sobol’ indices.
28

28
Alternatively, Owen (2014) proposes to choose

Var [ℳ (ϑu)] = Var𝜗u

[
E𝒦\u [ℳ (ϑ) |𝜗u]

]
. (55)

Song et al. (2016) prove that the Shapley values using either the variance definition in Eq. (54) or Eq. (55)

are equivalent. Furthermore, when numerically estimating the Shapley value, Sun et al. (2011) pointed

out that the Monte Carlo estimation of the inner expectation operator in Eq. (55) requires a sufficiently

large number of model evaluations and could be highly biased. On the other hand, the estimation in
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When the number of uncertain parameters 𝑁 , as in our case, is reasonably “small”,

one typically uses the “exact" method by Song et al. (2016). The latter involves traversing

𝑁 ! permutated sets. To enhance the efficiency of the Monte Carlo sampling required

for precise evaluation of the expectation and variance operators, we again employ the

GP-based surrogate model, thereby replacing the original model, that is, we utilize the

predictive mean of the posterior for this purpose (Iooss and Prieur, 2019).

4.3 The deep uncertainty quantification algorithm
After having discussed the ingredients to our Deep UQ methodology in Section 4.1

and Section 4.2, we now present code listing 1 the complete algorithm. It consists

of two fundamental building blocks. First, the DEQN is used to solve the IAM as a

function of all endogenous, exogenous, and pseudo-state variables in a single solution

step. The resulting neural network-based surrogate model then serves as an input to

construct GP surrogates for QoI metrics, such as the SCC. Subsequently, UQ can be

performed on these GP surrogates to assess and analyze the uncertainty in the model

predictions.

Eq. (54) is unbiased for all sample sizes.
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Algorithm 1 Deep UQ algorithm

Part 1: Deep equilibrium nets
Approximate policy functions p (x𝑡) using DEQN parameterized by the coefficients ν for the state x𝑡 .

Input:
Neural network architecture and hyper-parameters, simulation length 𝑇 (length of an episode), 𝛼learn

(learning rate), x0 (initial states). Upper and lower bound of the pseudo states ϑ ∈
[
ϑ,ϑ

]
⊂ R𝑁 .

Output:
The neural network’s trained parameters ν∗, such that the policy function p (x𝑡) ≈ 𝒩 (x𝑡)minimizes

the loss function, i.e., the system of the first-order equilibrium conditions.

𝑖 = 1

x𝑖
0
← x0 ⊲ Starting point of simulation

while ℓν > 𝜖 do
𝒟 𝑖

train
←

{
x𝑖

0
,x𝑖

1
,x𝑖

2
, · · · ,x𝑖

𝑇

}
⊲ Generate training data

Evaluate the loss function along a simulated path:

ℓν :=
1

𝑁
path length

∑
x𝑡on sim. path

𝑁𝑒𝑞∑
𝑚=1

(
𝐺𝑚(x𝑖𝑡 ,𝒩(x𝑖𝑡))

)
2

for 𝑘 ∈ {1, 2, · · · , len (ν)} do ⊲ Perform stochastic gradient descent

�𝑖+1

𝑘
= �𝑖

𝑘
− 𝛼learn

𝜕ℓ
(
�𝑖

)
𝜕�𝑖

𝑘

end for
𝑖 ← 𝑖 + 1 ⊲ Go to the next episode 𝑖 + 1

�𝑖 ← �𝑖+1 ⊲ Update the neural network that parameterizes the policies

x𝑖
0
← x𝑖−1

𝑇
⊲ Starting point for the simulation in the next episode

end while
return ν∗ ← �𝑖 ⊲ Optimal policy at convergence: p∗ (x𝑡) ≈ 𝒩 (x𝑡)

Part 2: Uncertainty quantification based on GP surrogate models
Uncertainty quantification using the predictive mean of the GP surrogate modelℳ

GP|𝛩,𝑦 .
Input:

p∗ (x𝑡) (optimal policy functions), 𝑛 (size of the training set for the GPs), and 𝑦 (QoI, e.g., the SCC).

Output:
𝑆𝑖 (the first-order Sobol’ indices), 𝑈𝑖 (the univariate effects) and 𝑆ℎ𝑖 (the Shapley values) for the

uncertain parameter 𝜗𝑖 .

while �LOO

GP|𝛩,𝑦 ≥ 𝜖LOO

GP
do ⊲ Criterion to ensure a high-quality GP surrogate model (cf. appendix C.1)

for 𝑗 ∈ {1, ..., 𝑛} do ⊲ Generate a training set𝒟 for the GPs

𝑦 𝑗 =ℳ
(
ϑ𝑗

)
⊲ Compute the QoI for a given combination of parameters ϑ𝑗 by using p∗ (x𝑡)

end for
Fit the GP modelℳ

GP|𝛩,𝑦 to𝒟
Compute the leave-one-out error 𝜖LOO

GP|𝛩𝑠 ,𝑦𝑠

𝑛 ← 𝑛 + 1 ⊲ Increase the size of the training set if necessary

end while
returnℳ

GP|𝛩,𝑦 ⊲ Accurate GP surrogate model; used to replace true modelℳ (·) in UQ tasks

for 𝑖 ∈ {1, ..., 𝑁} do ⊲ UQ for each uncertain parameter 𝜗𝑖
Compute the Sobol’ indices 𝑆𝑖 (cf. Eq. (51)).

Compute the univariate effects𝒰𝑖 (cf. Eq. (52)).

Compute the Shapley values 𝑆ℎ𝑖 following (cf. Eq. (53)).

return 𝑆𝑖 ,𝒰𝑖 and 𝑆ℎ𝑖

end for
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5 Results
In this section, we apply our Deep UQ method (cf. Section 4) to study the stochastic

IAM we have posited in Section 3. It is important to note that the results presented

here are preliminary. The model solutions we present below are produced using the

damage function detailed in Eq. (5), and do not take into account tipping points. After

describing in Section 5.1 the representative set of parameters over which we perform

UQ, we proceed in two steps. First, we briefly present in Section 5.2 the optimal policy

results for two variations of our IAM: one model that contains solely a temperature

shock (but no learning about the ECS), and our benchmark model, which incorporates

Bayesian learning over the ECS. In addition, we discuss the UQ results for the two

variations of our IAM. Second, we study in Section 5.3 how fat upper-tailed uncertainty

over the temperature change from a doubling of GHG could be diminished through

Bayesian learning.

5.1 Parameters for the uncertainty quantification analysis
To strike a balance across the uncertainty embedded in the economic and climate block

in our IAM, we perform UQ over six subjectively selected uncertain parametersϑ ∈ R6
.

Their ranges are summarized in Table 1: three of them reflect (parametric) uncertainty

in the economic part of the IAM, whereas the other three are from the climate module.

From the economic module, we include the pure rate of time preferences 𝜌, the Arrow-

Pratt relative risk aversion 𝛾 and the intertemporal elasticity of substitution 𝜓 (IES)

that characterizes the Epstein-Zin preferences. As it is discussed in Ju and Miao (2012),

Basu and Bundick (2017), De Groot et al. (2018), computations in the neighborhood of

IES being unity are numerically unstable. Thus, to avoid this numerical issue, we split

the interval of interest for the IES into two subintervals, thereby avoiding unity.

From the climate module of our IAM, we include the initial values of the prior mean

� 𝑓 ,0 and variance 𝑆 𝑓 ,0 of the Bayesian learning process over ECS in our UQ exercise.

Furthermore, we also include the damage parameter 𝜋2 that is a part of the quadratic

damage function (cf. Eq. (5)).

As there is no apriori knowledge available on the distribution of each uncertain

parameter 𝜗𝑖 , in line with Harenberg et al. (2019), we assume a uniform distribution

with a lower 𝜗𝑖 and upper bound 𝜗𝑖 around benchmark values 𝜗0

𝑖
typically used in

the literature. The subjectively, yet plausible ranges for the statistically independent

parameters 𝜗𝑖 ∈
[
𝜗𝑖 , 𝜗𝑖

]
are reported in Table 1.

5.2 Uncertainty quantification results
This section discusses the optimal policy results and the UQ for the IAM introduced

in Section 3. The results of this model with Bayesian learning over the ECS are con-

trasted with computations of a simplified model that features a random ECS and tem-

perature shock but assumes the agent does not learn from it. With this comparison, we

intend to clarify the impact of learning on the optimal policies and its implications on

UQ. One should think about the model with a random ECS as a case where the social
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Table 1: Parameter ranges for the UQ analysis.

Parameter 𝜗0

𝑖
𝜗𝑖 𝜗𝑖 Source of the parameter value

𝜌 0.015 0.01 0.02 Stern (2008)

𝛾 10.0 5.0 10. Jensen and Traeger (2014) and Cai and Lontzek (2019)

𝜓 < 1 0.5 0.5 0.95 Jensen and Traeger (2014) and Cai and Lontzek (2019)

𝜓 > 1 1.5 1.05 2.0 Jensen and Traeger (2014) and Cai and Lontzek (2019)

𝜋2 0.00236 0.002 0.008 Nordhaus (2017) and Weitzman (2012)

� 𝑓 ,0 0.65 0.45 0.73 Roe and Baker (2007) and Folini et al. (2023)

𝑆 𝑓 ,0 0.0169 0.01 0.04 Roe and Baker (2007)
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(b) Learning case.

Figure 2: Emissions as a function of years, ranging from the year 2015 - 2100, for the

IAM without learning (left panel), and with learning (right panel), and generated with

1,000 sample paths.

planner has prior knowledge about the mean value of the uncertain climate feedback

parameter that enters the ECS (cf. Eq. (14)) and knows the distribution. The social

planner considers the stochasticity of the temperature in decision-making, but there is

no learning about it in the sense that there is no Bayesian update on the prior values

of the distribution of the climate feedback parameter.

In the remainder of this article, we will, for the sake of brevity, call the model

setup with a stochastic ECS and temperature shock as the “no-learning case”, and our

benchmark model with Bayesian learning as the “learning case”. Furthermore, unless

indicated otherwise, we present the results for the benchmark values of the uncertain

parameters, denoted as 𝜗0

𝑖
in Table 1, and 𝜓 > 1, mostly fixed at 𝜓 = 1.5.

Figure 2 depicts the industrial emission paths for the no-learning (left panel) and

learning cases (right panel). We can see that in the presence of learning, the amount

of emissions significantly increases. The reason for this effect is that the social planner

learns the ECS more efficiently if there is more carbon in the atmosphere. Thus, an

increased amount of carbon in the atmosphere raises the signal-to-noise ratio, and in

turn, the agent can learn quickly. However, the increase of carbon in the atmosphere

also raises the temperature and, in turn, leads to higher damages. Thus, in the optimal

case, the agent must trade off a necessary increase in emissions to learn quickly, as well
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Figure 3: Atmospheric temperature increase for the years 2015 - 2100 for the IAM

without learning (left panel), and with learning (right panel), generated with 1,000

sample paths.

as the damages that arise from this increase. Figure 2 shows this necessary increase in

emissions for the learning to happen compared to the no learning case.

Figure 3 demonstrates that the increase in emissions necessary to facilitate learning

is also reflected in the atmospheric temperature levels. The ability to learn about the

ECS comes at the cost of roughly one degree more warming in the year 2100 on average.

From the findings discussed so far, it follows that the SCC shown in Figure 4 is lower

for the learning case than the no-learning case. Furthermore, we can also observe that

there is almost no variance in the SCC in the no-learning case, but a significant variance

in the SCC in the learning case. The variance of the SCC in the learning case can be

explained as follows: The noise in the learning process stems from the temperature

shock. If the agent is unlucky and gets hit by a sequence of high-temperature, that is,

weather shocks (see, for example, the 90th quantile in the Figure 3b which translates into

the respective 90th quantile in the Figure 4b), the noise is very high, and consequently,

there is a need for more emissions to learn about the ECS value. If the weather shocks

are low (see, for example, the 10th quantile in Figure 3b and Figure 4b), there is little

noise, and the agent learns quickly enough without excessive emissions necessary for

increasing signal-to-noise ratio in the learning process. In contrast, when the agent

cannot learn about the ECS value, she mitigates in any case to insure against the

uncertain temperature increase. Overall, the results from comparing the two types of

models confirm the findings of the previous literature (see, e.g., Kelly and Tan (2015),

Hwang et al. (2017)).

Figure 5 shows the sensitivity of the SCC value with respect to three different

levels of the IES. The three panels confirm the previous results by Jensen and Traeger

(2014) as well as findings by Cai and Lontzek (2019), who report a rise in the SCC as a

response to an increase in the IES.

Next, due to the computational advantages of our Deep UQ methodology, we can

explore the sensitivity of the SCC (or any other QoI) with respect to any combination

of the uncertain parameters with a thorough UQ analysis (cf. Section 4) at negligible
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(b) Learning case.

Figure 4: SCC for the years 2015 - 2100 for the IAM without learning (left panel), and

with learning (right panel), generated with 1,000 sample paths.
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Figure 5: SCC as a function of years ranging from the year 2015 - 2100 for the IAM with

Bayesian learning and different levels of the IES, generated with 1,000 sample paths.

computational costs. In Figure 6, we provide the Shapley values (in blue) and Sobol’

indices (in green) for the SCC in the years 2020, 2050, and 2100 for the model with

no learning. Recall that both of those UQ measures consider the contribution of the

variance of the uncertain parameters to the variance of the QoI – in our case – the

SCC. For the IAM with no learning, the predominant factor influencing the variability

in the SCC is the uncertainty associated with the ECS, represented by the � 𝑓 . The

second most significant contributor to this UQ measure is the parameter quantifying

climate-related damages, which is labeled as 𝜋2.

In Figure 7, we present the UQ results for the IAM with learning. We can see that

despite the agent learning the value of ECS with time, this parameter still contributes

the most to the variance of the SCC. To understand this result, we need to remember

that we study the impact of the uncertainty around the climate feedback parameter at

the initial state. This implies that even though the agent can learn about the value of

the ECS over time, the current – year 2015 – range of possible prior means affects the

variance of the SCC for the next hundred years.

Figures 8 and 9 present the univariate effects of the uncertain parameters on the

value of the SCC for the models with and without learning, respectively. They depict

the direction of the influence of the uncertain parameters on the absolute value of
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Figure 6: Impact of the uncertain parameters on the SCC in the year 2020 (left), in

2050 (middle), and in 2100 (right) for the IAM with no learning, generated with 1,000

samples.
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Figure 7: Impact of the uncertain parameters on the SCC in the year 2020 (left), in the

year 2050 (middle), and in the 2100 (right) for the IAM with learning, generated with

1,000 samples.

the SCC. For all parameters, the direction of the impact corresponds to the economic

intuition behind it: the SCC grows with an increasing prior mean of the feedback

parameter, the damages, and IES. On the other side, the SCC decreases in the pure rate

of time preferences. Finally, the SCC does not change in relative risk aversion and the

prior variance of the climate feedback parameter.
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Figure 8: Univariate effects on the SCC in the year 2020 for the model with no learning.
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Figure 9: Univariate effects on the SCC in the year 2020 for the model with learning.

5.3 Tail learning and the social cost of carbon
In this section, we study how fat upper-tailed uncertainty over the temperature change

from a doubling of GHG, that is, the ECS, affects economic policies. In addition, we

examine whether and how fast uncertainties could be diminished through Bayesian

learning (cf. Section 3.3).

Recall that climate change uncertainty, especially related to the ECS, poses sig-

nificant challenges to policymaking. This uncertainty is characterized by a fat-tailed

distribution, indicating a non-negligible probability of severe climate outcomes (see,

e.g., Kelly and Tan (2015), Hwang et al. (2017), Fitzpatrick and Kelly (2017), and refer-

ences therein). Consequently, an insurance motive, that is, protection against a possible

adverse outcome, for reducing GHG emissions as a preventive measure against extreme

temperature changes, emerges. However, climate policy is complicated by the fact that
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learning about climate sensitivity progresses over time, influencing the urgency and

extent of initial abatement actions.

Some of the previous literature (see, e.g., Kelly and Kolstad (1999)) suggests that

learning about climate sensitivity, especially from a Bayesian perspective, is a slow

process. This is due to factors such as stochastic weather events and uncertainties

in climate feedback mechanisms, which obscure clear understanding (Roe and Baker,

2007). Despite this, rapid learning, or “tail learning,” might occur, leading to quicker

rejection of severe climate scenarios (Kelly and Tan, 2015). This possibility challenges

the common belief that resolving uncertainties in climate sensitivity is inherently slow.

From these stylized facts, the main question for climate policy revolves around

the rate of resolving uncertainties and the optimal strategy in the presence of such

uncertainties. If tail learning can be relatively fast, this has strong implications for near-

term abatement policies. The presence of fat-tailed risk alters the optimal carbon tax

and emissions levels initially, but learning can significantly reduce these adjustments

over time.

To quantitatively address the implications of varying assumptions about the ECS,

prior studies have typically resorted to executing a few computationally intensive simu-

lations, each of which had a fixed parameterization, including the prior distribution, as

they were suffering from the curse of dimensionality inflicted by the state variables as

well as parameters. Our Deep UQ methodology offers a stark contrast to this approach.

We leverage our surrogate model that incorporates also the prior mean and variance of

the Bayesian learning process concerning the ECS. Recall that these parameters are di-

rectly added as pseudo-state variables in our model (cf. Table 1). This measure enables

our IAM to cover a broad range of potential prior distributions, thereby facilitating a

more efficient and comprehensive analysis of the impacts of varying ECS assumptions,

as all required information can be obtained by interpolating the surrogate.
29

Following Kelly and Tan (2015), we define tail learning to be complete when the

planner rejects ECS values that are located in the tail of the skewed distribution at

a given confidence level. Formally, tail learning is complete at time period 𝑡 if the

planner rejects the hypothesis Δ𝑇AT,×2,𝑡 > Δ𝑇𝐿
AT,×2,𝑡

, where Δ𝑇𝐿
AT,×2,𝑡

is a lower bound

of the tail distribution. There is no scientific consensus on the choice of Δ𝑇𝐿
AT,×2,𝑡

,

therefore, following Kelly and Tan (2015), we set Δ𝑇𝐿
AT,×2,𝑡

= Δ𝑇AT,×2,𝑡 + 1.5, where

Δ𝑇AT,×2,𝑡 is estimated from the mean of the climate feedback parameter at time period

𝑡. Given the high damages caused by climate change, the planner requires a high level

of confidence when he rejects the hypothesis at time period 𝑡. Thus, we consider the

99% and 99.9% confidence intervals on the ECS.

To examine how long the planner needs to complete the tail learning, we consider

three particular values for the true ECS, namely Δ𝑇∗
AT,×2

= [2.0, 3.42, 4.5]. For each of

29
The role of fat-tailed uncertainty in near-term climate policy, particularly in the context of learning,

is a subject of active debate in contemporary literature. Weitzman (2011), for instance, posits that

due to the inherent inertia in climate systems and the challenge of rapidly reducing GHG emissions,

learning about more severe climate change scenarios may have limited immediate policy relevance. In

contrast, Nordhaus (2011) suggests that clear indicators of severe climate change will become apparent

in the forthcoming 50 years, thereby providing a window for effective GHG reduction. Pindyck (2011),

however, emphasizes that the answer to such questions is fundamental of a quantitative nature. Our

framework, in turn, can support such discussions with quantitative answers.
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those values, we record the first period 𝑡∗ when the hypothesis Δ𝑇AT,×2,𝑡 > Δ𝑇𝐿
AT,×2,𝑡

is

rejected and not subsequently not-rejected. We repeat this process 𝑁 tail = 1, 000 times

where the planner faces different realization of the climate feedback parameter 𝑓 and

the temperature shock 𝜖𝑇 , starting from the same prior of ECS. In Table 2, we report the

expected tail learning time for each of the tree ECS under investigation. For the lowest

of the three ECS values, learning is completed in less than a decade. For the higher

values of the true ECS, this time increases as learning becomes progressively more

difficult, since Δ𝑇∗
AT,×2

increases. However, even for Δ𝑇∗
AT,×2

= 4.5, learning completes

in only about 27 years at the 99% confidence level.

Table 2: Expected years until the tail learning is complete. The true ECS Δ𝑇∗
AT,×2

= 2.0

is shown in the first row, Δ𝑇∗
AT,×2

= 3.42 in the second row, and Δ𝑇∗
AT,×2

= 4.5 is in the

third row. The results are based on 1,000 simulated paths from 2015 to 2100.

99% 99.9%

Δ𝑇∗
AT,×2

= 2.0 5.46 9.06

Δ𝑇∗
AT,×2

= 3.42 16.40 24.23

Δ𝑇∗
AT,×2

= 4.5 27.26 38.57

Figure 10 depicts the evolution of the posterior probability density function of

the ECS over time for an IAM with, that is, years 2015, 2050, 2100, and varying prior

values. All other parameters were kept at their respective benchmark values (cf. Table 1,

including 𝜓 = 1.5).

Our results show that the social planner learns the upper tail of the prior distribution

quickly. If the true climate sensitivity is moderate, that is, 3.42 or lower (cf. Figure 10a

and Figure 10b), the tail learning is complete in about a few decades. These results

confirm the findings of Kelly and Tan (2015), but contradict, for instance, Weitzman

(2009) who claim that reducing uncertainty in the tail of the climate sensitivity prior to

distribution must be a slow process since climate disasters are rare. In the case where

the ECS is set to 4.5, that is, relatively high, learning slows (cf. Figure 10c). This is,

as was also pointed out by Kelly and Tan (2015), due to the fact that the Bayes rule

requires more observations to move the mean estimate from the prior ECS to the true

high value.

Next, we quantify the effect of uncertainty on near-term optimal emissions, abate-

ment policy, and the SCC. Table 3 presents the SCC for various true ECS values. Table 3

reveals that with an increasing value of the true ECS, both the mean as well as the SCC

raises. This finding reflects the fact that more abatement is needed in case of more

global warming, that is, higher temperatures. However, even in the case of the largest

ECS value we consider Table 3, the SCC remains well below the levels of the SCC that

are attainable in the model without learning (cf. Figure 4a).

To summarize, this section highlights the nuanced role of learning in climate policy,

emphasizing the importance of understanding and adapting to evolving knowledge

about the ECS. Furthermore, note that due to our Deeq UQ apparatus, the results pre-

sented in this section could be obtained in a computationally highly tractable fashion,

that is, cheap interpolations on a surrogate rather than repeatedly computing and sim-
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Figure 10: The posterior probability density function of Δ𝑇AT,×2 is shown when the

true ECS Δ𝑇∗
AT,×2

is set to 2.0, 3.42, and 4.5, respectively.

Table 3: SCC for the true ECS valuesΔ𝑇∗
AT,×2

= 2.0 (left column), Δ𝑇∗
AT,×2

= 3.42 (middle

column), and Δ𝑇∗
AT,×2

= 4.5 (right column), computed from 10,000 simulated paths for

the years 2015 through 2100.

Δ𝑇∗
AT,×2

= 2.0 Δ𝑇∗
AT,×2

= 3.42 Δ𝑇∗
AT,×2

= 4.5

Mean in 2020 53.52 66.86 71.74

Mean in 2050 84.98 137.25 158.05

Mean in 2100 214.18 379.80 447.96

Standard deviation in 2020 5.28 5.62 5.73

Standard deviation in 2050 6.13 6.32 6.11

Standard deviation in 2100 10.59 10.15 11.15

ulating very expensive models for a vast set of parameters. We thereby show that we

can solve very rich stochastic IAMs globally within minutes to hours and perform UQ

on them on a laptop (cf. appendix B.2) rather than having to resort to supercomputers

and use tens of thousands of nodes hours of compute time, as the previous literature

had to do (see, for example, Cai and Lontzek (2019)).

31



6 Conclusion
This article posits a high-dimensional stochastic IAM that aligns with cutting-edge

climate science. Our model incorporates a social planner with recursive preferences,

iterative belief updates of equilibrium climate sensitivity using Bayes’ rule, and stochas-

tic climate tipping.

In response to the computational challenges present in this IAM, we introduce a

generic methodological approach that consists of two main components: First, a deep

learning-based algorithm designed to solve IAMs globally as a function of endogenous

and exogenous state variables as well as uncertain parameters within a single model

evaluation. Second, a Gaussian process-based surrogate model facilitates the efficient

analysis of key UQ metrics, such as the SCC, with respect to uncertain model param-

eters. Our approach enables a rapid estimation of Sobol’ indices, Shapley values, and

univariate effects, which would otherwise be computationally very challenging.

Our numerical experiments indicate that the primary contributors to the variability

in the SCC are parametric uncertainties in both the ECS and the damage function.

Furthermore, our findings reveal that the uncertainty surrounding the ECS is largely

resolved within approximately ten years. This resolution results in elevated optimal

temperatures and a lower SCC, especially when compared to scenarios that do not

incorporate Bayesian learning. Additionally, thanks to our Deeq UQ approach, we

are able to study these effects through cost-effective interpolations using surrogate

models, instead of the need for resource-intensive computations and simulations across

an extensive parameter range. This advancement makes large-scale IAMs accessible

to researchers who only have laptops at their disposal, eliminating the necessity for

supercomputers.

In summary, our Deep UQ methodology enables a highly nuanced quantitative

exploration of the intricate economic mechanisms at play in decision-making processes

under uncertainty within IAMs. This approach opens up new pathways for further

research in this field.
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Appendix A Additional Model Details
This Appendix presents the complete parametrization of our annually calibrated IAM.

A.1 Exogenous variables
The law of motion for labor is given in Eq. (56) along with labor growth presented

in Eq. (57), that is,

𝐿𝑡 = 𝐿0 + (𝐿∞ − 𝐿0)
(
1 − exp

(
−Δ𝑡𝛿𝐿𝑡

))
, (56)

𝑔𝐿𝑡 =

𝑑𝐿𝑡
𝑑𝑡

𝐿𝑡
=

Δ𝑡𝛿𝐿

𝐿∞
𝐿∞−𝐿0

exp

(
Δ𝑡𝛿𝐿𝑡

)
− 1

. (57)

The numerical values of the parameters for the world population and its growth rate

are presented in Table 4:

Calibrated parameter Symbol Value

Annual rate of convergence 𝛿𝐿 0.0268

World population at starting year [millions] 𝐿0 7,403

Asymptotic world population [millions] 𝐿∞ 11,500

Table 4: Parameterization for the evolution of labor.

The total factor productivity evolves according to Eq. (58), and the corresponding

growth rate is presented in Eq. (59):

𝐴𝑡 = 𝐴0exp

(
Δ𝑡 𝑔

𝐴
0
(1 − exp(−Δ𝑡𝛿𝐴𝑡))

Δ𝑡𝛿𝐴

)
. (58)

𝑔𝐴𝑡 =

𝑑𝐴𝑡
𝑑𝑡

𝐴𝑡
= Δ𝑡 𝑔

𝐴
0

exp

(
−Δ𝑡𝛿𝐴𝑡

)
. (59)

The parameters of the total factor productivity evolution and TFP growth rate are

provided in Table 5:

Calibrated parameter Symbol Value

The initial growth rate for TFP per year 𝑔𝐴
0

0.0217

Decline rate of TFP growth per year 𝛿𝐴 0.005

Initial level of TFP 𝐴0 0.010295

Table 5: Parametrization for the evolution of TFP.
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The carbon intensity is given by:

𝜎𝑡 = 𝜎0 exp

(
Δ𝑡 𝑔

𝜎
0

log(1 + Δ𝑡𝛿𝜎)
(
(1 + Δ𝑡𝛿𝜎)𝑡 − 1

) )
. (60)

Furthermore, the parametrization for carbon intensity processes is given in Table 6:

Calibrated parameter Symbol Value

Initial growth of carbon intensity per year 𝑔𝜎
0

-0.0152

Decline rate of decarbonization per year 𝛿𝜎 0.001

Initial carbon intensity (1000GtC) 𝜎0 0.00009556

Table 6: Parameterization for the carbon intensity evolution.

Our IAM uses a backstop technology capable of mitigating the full amount of in-

dustrial emissions that enter the atmosphere. The cost of the backstop technology is

assumed to be initially high but could be reduced over time, which is reflected in the

definition of the coefficient of the abatement cost function �1,𝑡 as defined in Eq. (61).
30

The abatement cost is given by:

�1,𝑡 =
𝑝back

0
exp

(
−𝑔back𝑡

)
1000 · c2co2 · 𝜎𝑡

�2

. (61)

The parameters for the abatement cost are given in Table 7:

Calibrated parameter Symbol Value

Cost of backstop 2010 thUSD per tCO2 2015 𝑝back

0
0.55

Initial cost decline backstop cost per year 𝑔back
0.005

Exponent of control cost function �2 2.6

Transformation coefficient from C to CO2 c2co2 3.666

Table 7: Parametrization for the abatement cost.

The non-industrial emissions from land use and deforestation decline over time

according to Eq. (62), with a parameterization given in Table 8:

𝐸
Land,𝑡 = 𝐸Land,0 exp

(
−Δ𝑡𝛿Land𝑡

)
. (62)

30
The scale parameter 1000 in Eq. (61) reflects the fact that we use a 1000 GtC unit of measurement;

the parameter c2co2 transforms carbon intensity measured in GtC into GtCO2, as the backstop price in

DICE-2016 is given for GtCO2 instead of GtC.
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Calibrated parameter Symbol Value

Emissions from land 2015 (1000GtC per year) 𝐸
Land,0 0.000709

Decline rate of land emissions (per year) 𝛿Land
0.023

Table 8: Parametrization for the emissions from land.

The exogenous radiative forcing resulting from non-CO2 greenhouse gas emissions

are described in Eq. (63):

𝐹𝐸𝑋𝑡 = 𝐹𝐸𝑋
0
+ 1

T/Δ𝑡
(𝐹𝐸𝑋

1
− 𝐹𝐸𝑋

0
)min(𝑡 , T/Δ𝑡). (63)

The parameters of the exogenous radiative forcing are given in Table 9:

Calibrated parameter Symbol Value

2015 forcings of non-CO2 GHG (Wm-2) 𝐹𝐸𝑋
0

0.5

2100 forcings of non-CO2 GHG (Wm-2) 𝐹𝐸𝑋
1

1.0

Number of years before 2100 T 85

Table 9: Parametrization for the exogenous forcing.

A.2 The climate model
The parameters for the laws of motion for the masses of carbon, as well as the starting

values and equilibrium values, are given in Table 10. We define: 𝑏21 = 𝑏12

𝑀AT

EQ

𝑀UO

EQ

,

𝑏32 = 𝑏23

𝑀UO

EQ

𝑀LO

EQ

.

Calibrated parameter Symbol Value

Carbon cycle, annual value 𝑏12 0.054

Carbon cycle, annual value 𝑏23 0.0082

Equilibrium concentration in atmosphere (1000GtC) 𝑀AT

EQ
0.607

Equilibrium concentration in upper strata (1000GtC) 𝑀UO

EQ
0.489

Equilibrium concentration in lower strata (1000GtC) 𝑀LO

EQ
1.281

Concentration in atmosphere 2015 (1000GtC) 𝑀AT

INI
0.851

Concentration in upper strata 2015 (1000GtC) 𝑀UO

INI
0.628

Concentration in lower strata 2015 (1000GtC) 𝑀LO

INI
1.323

Table 10: Parametrization for the mass of carbon.

The parameters and starting values of temperature evolution and Bayesian learning

are presented in Table 12:
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Calibrated parameter Symbol Value

Temperature coefficient, annual value 𝑐1 0.137

Temperature coefficient, annual value 𝑐3 0.73

Temperature coefficient, annual value 𝑐4 0.00689

Forcings of equilibrium CO2 doubling (Wm-2) 𝐹2XCO2 3.45

Eq temperature impact (°C per doubling CO2) 𝑇2XCO2 3.25

Eq concentration in atmosphere (1000GtC) 𝑀AT

base
0.607

Atmospheric temp change (°C) from 1850 𝑇AT

0
1.1

Lower stratum temp change (°C) from 1850 𝑇OC

0
0.27

Table 11: Parametrization for the temperature.

The parameters and starting values of Bayesian learning are given in Table 12:

Calibrated parameter Symbol Value

Initial prior mean � 𝑓 ,0 0.65

Initial prior variance 𝑆 𝑓 ,0 0.0169

Upper bound for a climate feedback parameters 𝑓 0.85

Lower bound for a climate feedback parameters 𝑓 0.45

Reference temperature impact (°C per doubling CO2) Δ𝑇◦
ATX2

1.2

Variance of temperature shock 𝑆𝜖𝑇 0.01

Table 12: Parametrization for the Bayesian learning process.

A.3 The economy
The baseline parameters for the economic side of the IAM can be found in Table 13.

Calibrated parameter Symbol Value

Capital annual depreciation rate 𝛿𝐾 0.1

Elasticity of capital 𝛼 0.3

Damage parameter 𝜓1 20.46

Damage parameter 𝜋1 0.0

Damage parameter 𝜋2 0.00236

Tipping point variance 𝑆𝑇𝑃 0.01

Exponent of control cost function �2 2.6

Intertemporal elasticity of substitution 𝜓 1.5

Risk aversion 𝛾 10.

Time preferences 𝜌 0.015

Table 13: Parameterization of the economic variables.
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Appendix B Implementation Details
In this section, we discuss some practical points when an IAM is mapped to the DEQN

solution method.

B.1 Deep equilibrium nets for stochastic IAMs
In this Appendix, we provide a detailed procedure for mapping a stochastic, nonlinear,

and non-stationary IAM onto the DEQN solution framework. The original problem, as

introduced in Section 3.4 (cf. Eqs. (21) to (32)), requires some modifications to leverage

the capabilities of the DEQN.

Recall that the state of the economy at time 𝑡 is given by

X𝑡 ∈ R10+𝑁
:=

(
𝐾𝑡 , 𝑀

AT

𝑡 , 𝑀UO

𝑡 , 𝑀LO

𝑡 , 𝑇AT

𝑡 , 𝑇OC

𝑡 , � 𝑓 ,𝑡 , 𝑆 𝑓 ,𝑡 , 𝑇𝑃𝑡 , 𝑡 ,ϑ
)𝑇
, (64)

where, aside from the endogenous and exogenous state variables, we consider 𝑁

uncertain parameters as pseudo-state variables.

Following, for instance Folini et al. (2023), we consider time 𝑡 as an exogenous

state to account for the non-stationary nature of the IAM, whereas all the other states

except the pseudo-states ϑ are endogenously determined. Furthermore, to ensure

computational tractability, we follow Traeger (2014) and map the unbounded physical

time 𝑡 ∈ [0,∞) via the strictly monotonic transformation,

𝜏 = 1 − exp (−𝜍𝑡) , (65)

into the unit interval 𝜏 ∈ (0, 1]. To scale back from the artificial time 𝜏 to the physical

time, the inverse transformation of Eq. (65) can be applied, that is,

𝑡 = − ln (1 − 𝜏)
𝜍

. (66)

The dynamic programming problem presented in Section 3.4 could be computationally

inefficient and unstable, mainly due to the capital stock that increases significantly over

time. Thus, we follow Traeger (2014) and we normalize economic variables, that is,

capital stock, consumption, and investment, as well as the value function in effective

labor units, that is,

𝑐𝑡 :=
𝐶𝑡

𝐴𝑡𝐿𝑡
, 𝑘𝑡 :=

𝐾𝑡

𝐴𝑡𝐿𝑡
, 𝑖𝑡 :=

𝐼𝑡

𝐴𝑡𝐿𝑡
, 𝑣𝑡 :=

𝑉𝑡

𝐴𝑡𝐿
1

1−1/𝜓
𝑡

, (67)

where, as mentioned above, 𝐴𝑡 represents a deterministic TFP growth trend and 𝐿𝑡
is the global population (or labor). Furthermore, we introduce a quantity called the

effective, or growth-adjusted, discount factor, that reads

�̂�𝑡 := exp

(
−𝜌 +

(
1 − 1

𝜓

)
𝑔𝐴𝑡 + 𝑔𝐿𝑡

)
. (68)
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Using Eq. (67), we can transform the original dynamic programming problem with

those quantities. Furthermore, we transform Eqs. (19) and (20) accordingly, and also

leverage the fact that 𝑓𝑡+1 = � 𝑓 ,𝑡 +
√
𝑆 𝑓 ,𝑡𝜖 𝑓 , where 𝜖 𝑓 ∼ 𝒩

(
0, 1, 𝜖 𝑓 , 𝜖 𝑓

)
, 𝜖 𝑓 =

𝑓−� 𝑓 ,𝑡√
𝑆 𝑓 ,𝑡

,

𝜖 𝑓 =
𝑓−� 𝑓 ,𝑡√
𝑆 𝑓 ,𝑡

. For simplicity we replace 𝜖𝑇,𝑡+1 from Eqs. (19) and (20) with by the short-

hand notation 𝜖𝑇 . The laws of motion for posterior mean and posterior variance can

be expressed as:

� 𝑓 ,𝑡+1 = � 𝑓 ,𝑡 +
√
𝑆 𝑓 ,𝑡𝑆 𝑓 ,𝑡 (𝜑1𝐶𝑇AT,𝑡)2

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
𝜖 𝑓 +

𝜑1𝐶𝑇AT,𝑡𝑆 𝑓 ,𝑡

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
𝜖𝑇 , (69)

𝑆 𝑓 ,𝑡+1 =
𝑆𝜖𝑇𝑆 𝑓 ,𝑡

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
, (70)

where 𝜖 𝑓 ∼ 𝒩
(
0, 1, 𝜖 𝑓 , 𝜖 𝑓

)
, 𝜖 𝑓 =

𝑓−� 𝑓 ,𝑡√
𝑆 𝑓 ,𝑡

, 𝜖 𝑓 =
𝑓−� 𝑓 ,𝑡√
𝑆 𝑓 ,𝑡

and 𝜖𝑇 ∼ 𝒩(0, 𝑆𝜖𝑇 ).
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The normalized recursive problem now reads as follows:

𝑣𝑡(x𝑡) = max

𝑘𝑡+1 ,𝑐𝑡 ,�𝑡


𝑐

1−1/𝜓
𝑡

1 − 1/𝜓 + 𝛽𝑡E𝑡

[
𝑣𝑡+1(x𝑡+1)

1−𝛾
1−1/𝜓

] 1−1/𝜓
1−𝛾

 (71)

s.t. (1 − Θ (�𝑡))Ω (𝑇AT,𝑡) 𝑘𝛼𝑡 − 𝑐𝑡 + (1 − 𝛿) 𝑘𝑡 − exp

(
𝑔𝐴𝑡 + 𝑔𝐿𝑡

)
𝑘𝑡+1 = 0 (�𝑡) (72)

1 − �𝑡 ≥ 0 ⊥ �
�
𝑡 ≥ 0 (73)

(1 − 𝑏12)𝑀AT,𝑡 + 𝑏21𝑀UO,𝑡 + (1 − �𝑡) 𝜎𝑡𝐴𝑡𝐿𝑡 𝑘𝛼𝑡 + 𝐸Land,𝑡 −𝑀AT,𝑡+1 = 0

(
�AT

𝑡

)
(74)

𝑏12𝑀AT,𝑡 + (1 − 𝑏21 − 𝑏23)𝑀UO,𝑡 + 𝑏32𝑀LO,𝑡 −𝑀UO,𝑡+1 = 0

(
�UO

𝑡

)
(75)

𝑏23𝑀UO,𝑡 + (1 − 𝑏32)𝑀LO,𝑡 −𝑀LO,𝑡+1 = 0

(
�LO

𝑡

)
(76)

(1 − 𝑐1𝑐3 − 𝜑1𝐶)𝑇AT,𝑡 + 𝑐1𝑐3𝑇OC,𝑡 + 𝑐1

(
𝐹2xco2 log

2

(
𝑀AT,𝑡

𝑀∗
AT

)
+ 𝐹EX,𝑡

)
+ 𝜑1𝐶𝑇AT,𝑡� 𝑓 ,𝑡 + 𝜑1𝐶𝑇AT,𝑡

√
𝑆 𝑓 ,𝑡𝜖

𝑓 + 𝜖𝑇 − 𝑇AT,𝑡+1 = 0

(
�AT

𝑡+1

)
, (77)

where 𝜖 𝑓 ∼ 𝒩
(
0, 1, 𝜖 𝑓 , 𝜖 𝑓

)
, 𝜖𝑇 ∼ 𝒩(0, 𝑆𝜖𝑇 )

𝑐4𝑇AT,𝑡 + (1 − 𝑐4)𝑇OC,𝑡 − 𝑇OC,𝑡+1 = 0

(
�OC

𝑡

)
(78)

� 𝑓 ,𝑡 +
√
𝑆 𝑓 ,𝑡𝑆 𝑓 ,𝑡 (𝜑1𝐶𝑇AT,𝑡)2

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
𝜖 𝑓 +

𝜑1𝐶𝑇AT,𝑡𝑆 𝑓 ,𝑡

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
𝜖𝑇 − � 𝑓 ,𝑡+1 = 0

(
�
� 𝑓
𝑡+1

)
where 𝜖 𝑓 ∼ 𝒩

(
0, 1, 𝜖 𝑓 , 𝜖 𝑓

)
, 𝜖𝑇 ∼ 𝒩(0, 𝑆𝜖𝑇 ) (79)

𝑆𝜖𝑇𝑆 𝑓 ,𝑡

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
− 𝑆 𝑓 ,𝑡+1 = 0

(
�
𝑆 𝑓
𝑡

)
(80)

Ω (𝑇AT,𝑡) = 1 − 1

1 +
(

1

20.46
𝑇AT,𝑡

)
2 +

(
1

2·𝑇𝑃𝑡𝑇AT,𝑡

)
6.754

(81)

𝑇𝑃𝑡+1 = 𝑇𝑃𝑡 + 𝜖𝑇𝑃,𝑡+1, 𝜖𝑇𝑃,𝑡 ∼ 𝒩 (0, 𝑆𝑇𝑃) (82)

where the Lagrange multipliers we will employ below have been added in parentheses

for completeness. In Eq. (73), the symbol ⊥ indicates complementary slackness.

The policy function p we intend to approximate with the aid of deep neural networks

is given by

𝒩(x𝑡) ∈ R11
:=

(
𝑘𝑡+1, 𝑐𝑡 , �𝑡 , �

AT

𝑡 , �UO

𝑡 , �LO

𝑡 , �AT

𝑡+1
, �OC

𝑡 ,�
� 𝑓
𝑡+1
,�

𝑆 𝑓
𝑡 , 𝑣𝑡

)
, (83)

and consists of the choice variables (𝑘𝑡+1, 𝑐𝑡 , �𝑡)31
as well as the Lagrange multipliers

31
We keep the first-order conditions with respect to 𝑘𝑡+1 and 𝑐𝑡 . In practical applications, the per-

formance of neural networks can, as in our case, often benefit from redundant information (see, e.g.,
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and the value function.

Next, we derive the first-order conditions to form a loss function for the IAM model

that is suitable for DEQNs (cf. Eq. (37)) in effective labor units.

𝜕𝑣𝑡
𝜕𝑘𝑡+1

= 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑘,𝑡+1

]
− �𝑡 exp

(
𝑔𝐴𝑡 + 𝑔𝐿𝑡

)
= 0 (84)

𝜕𝑣𝑡
𝜕𝑐𝑡

= 𝑐
− 1

𝜓

𝑡 − �𝑡 = 0 (85)

𝜕𝑣𝑡
𝜕�𝑡

= �𝑡Θ
′ (�𝑡)Ω𝑡 (𝑇AT,𝑡) 𝑘𝛼𝑡 + �

�
𝑡 + �AT

𝑡 𝜎𝑡𝐴𝑡𝐿𝑡 𝑘
𝛼
𝑡 = 0 (86)

𝜕𝑣𝑡
𝜕𝑀AT,𝑡+1

= 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑀AT ,𝑡+1

]
− �AT

𝑡 = 0 (87)

𝜕𝑣𝑡
𝜕𝑀UO,𝑡+1

= 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑀UO ,𝑡+1

]
− �UO

𝑡 = 0 (88)

𝜕𝑣𝑡
𝜕𝑀LO,𝑡+1

= 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑀LO ,𝑡+1

]
− �LO

𝑡 = 0 (89)

𝜕𝑣𝑡
𝜕𝑇AT,𝑡+1

= 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑇AT ,𝑡+1

]
−

∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�AT

𝑡+1
(𝜖 𝑓 , 𝜖𝑇)pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇 = 0 (90)

𝜕𝑣𝑡
𝜕𝑇OC,𝑡+1

= 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
𝑡+1

1 − 1/𝜓𝑣𝑇OC ,𝑡+1

]
− �OC

𝑡 = 0 (91)

𝜕𝑣𝑡
𝜕� 𝑓 ,𝑡+1

= 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣� 𝑓 ,𝑡+1

]
−

∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�
� 𝑓
𝑡+1
(𝜖 𝑓 , 𝜖𝑇)pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇 = 0 (92)

𝜕𝑣𝑡
𝜕𝑆 𝑓 ,𝑡+1

= 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑆 𝑓 ,𝑡+1

]
− �𝑆 𝑓𝑡 = 0 (93)

In equilibrium, the conditions following from the envelop theorem hold:

𝑣𝑘,𝑡 =
𝜕𝑣𝑡
𝜕𝑘𝑡

= �𝑡
𝜕𝑘𝑡+1

𝜕𝑘𝑡
+ �AT

𝑡

𝜕𝑀AT,𝑡+1

𝜕𝑘𝑡
⇔ 𝑣𝑘,𝑡 = �𝑡

{
(1 − Θ (�𝑡))Ω (𝑇AT,𝑡) 𝛼𝑘𝛼−1

𝑡 + (1 − 𝛿)
}

+ �AT

𝑡 (1 − �𝑡) 𝜎𝑡𝐴𝑡𝐿𝑡𝛼𝑘𝛼−1

𝑡 (94)

Azinovic et al. (2022) for more details).
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𝑣𝑀AT ,𝑡 =
𝜕𝑣𝑡

𝜕𝑀AT,𝑡
= �AT

𝑡

𝜕𝑀AT,𝑡+1

𝜕𝑀AT,𝑡
+ �UO

𝑡

𝜕𝑀UO,𝑡+1

𝜕𝑀AT,𝑡
+ �AT

𝑡+1

𝜕𝑇AT,𝑡+1

𝜕𝑀AT,𝑡

⇔ 𝑣𝑀AT ,𝑡 = �AT

𝑡 (1 − 𝑏12) + �UO

𝑡 𝑏12+

𝑐1𝐹2xco2

1

log 2𝑀AT,𝑡

∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�AT

𝑡+1
(𝜖 𝑓 , 𝜖𝑇)pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇 (95)

𝑣𝑀UO ,𝑡 =
𝜕𝑣𝑡

𝜕𝑀UO,𝑡
= �AT

𝑡

𝜕𝑀AT,𝑡+1

𝜕𝑀UO,𝑡
+ �UO

𝑡

𝜕𝑀UO,𝑡+1

𝜕𝑀UO,𝑡
+ �LO

𝑡

𝜕𝑀LO,𝑡+1

𝜕𝑀UO,𝑡

⇔ 𝑣𝑀UO ,𝑡 = �AT

𝑡 𝑏21 + �UO

𝑡 (1 − 𝑏21 − 𝑏23) + �LO

𝑡 𝑏23 (96)

𝑣𝑀LO ,𝑡 =
𝜕𝑣𝑡

𝜕𝑀LO,𝑡
= �UO

𝑡

𝜕𝑀UO,𝑡+1

𝜕𝑀LO,𝑡
+ �LO

𝑡

𝜕𝑀LO,𝑡+1

𝜕𝑀LO,𝑡

⇔ 𝑣𝑀LO ,𝑡 = �UO

𝑡 𝑏32 + �LO

𝑡 (1 − 𝑏32) (97)

𝑣𝑇AT ,𝑡 =
𝜕𝑣𝑡

𝜕𝑇AT,𝑡
= �𝑡

𝜕𝑘𝑡+1

𝜕𝑇AT,𝑡
+ �AT

𝑡+1

𝜕𝑇AT,𝑡+1

𝜕𝑇AT,𝑡
+ �OC

𝑡

𝜕𝑇OC,𝑡+1

𝜕𝑇AT,𝑡
+ �� 𝑓

𝑡+1

𝜕� 𝑓 ,𝑡+1

𝜕𝑇AT,𝑡
+ �𝑆 𝑓𝑡

𝜕𝑆 𝑓 ,𝑡+1

𝜕𝑇AT,𝑡

⇔ 𝑣𝑇AT ,𝑡 = �𝑡 (1 − Θ (�𝑡))Ω′ (𝑇AT,𝑡) 𝑘𝛼𝑡

+
∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�AT

𝑡+1

(
𝜖 𝑓 , 𝜖𝑇

) (
(1 − 𝑐1𝑐3 − 𝜑1𝐶) + 𝜑1𝐶� 𝑓 ,𝑡 + 𝜑1𝐶

√
𝑆 𝑓 ,𝑡𝜖

𝑓
)

pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇

+ �OC

𝑡 𝑐4+∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�
� 𝑓
𝑡+1

(
𝜖 𝑓 , 𝜖𝑇

) 2𝑆
3/2
𝑓 ,𝑡

𝜑2

1𝐶
𝑇AT,𝑡𝑆𝜖𝑇 𝜖

𝑓 + 𝜑1𝐶𝑆 𝑓 ,𝑡𝑆𝜖𝑇 𝜖
𝑇 − 𝜑3

1𝐶
𝑇2

AT,𝑡
𝑆2

𝑓 ,𝑡
𝜖𝑇(

𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡
)

2

pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇

− �𝑆 𝑓𝑡
2𝑆𝜖𝑇𝜑

2

1𝐶
𝑇AT,𝑡𝑆

2

𝑓 ,𝑡(
𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡

)
2

(98)

𝑣𝑇OC ,𝑡 =
𝜕𝑣𝑡

𝜕𝑇OC,𝑡
= �AT

𝑡+1

𝜕𝑇AT,𝑡+1

𝜕𝑇OC,𝑡
+ �OC

𝑡

𝜕𝑇OC,𝑡+1

𝜕𝑇OC,𝑡

⇔ 𝑣𝑇OC ,𝑡 = 𝑐1𝑐3

∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�AT

𝑡+1
(𝜖 𝑓 , 𝜖𝑇)pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇 + �OC

𝑡 (1 − 𝑐4) (99)

𝑣� 𝑓 ,𝑡 =
𝜕𝑣𝑡
𝜕� 𝑓 ,𝑡

= �AT

𝑡+1

𝜕𝑇AT,𝑡+1

𝜕� 𝑓 ,𝑡
+ �� 𝑓

𝑡+1

𝜕� 𝑓 ,𝑡+1

𝜕� 𝑓 ,𝑡

⇔ 𝑣� 𝑓 ,𝑡 = 𝜑1𝐶𝑇AT,𝑡

∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�AT

𝑡+1
(𝜖 𝑓 , 𝜖𝑇)pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇+∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�
� 𝑓
𝑡+1
(𝜖 𝑓 , 𝜖𝑇)pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇 (100)

𝑣𝑆 𝑓 ,𝑡 =
𝜕𝑣𝑡
𝜕𝑆 𝑓 ,𝑡

= �AT

𝑡+1

𝜕𝑇AT,𝑡+1

𝜕𝑆 𝑓 ,𝑡
+ �� 𝑓

𝑡+1

𝜕� 𝑓 ,𝑡+1

𝜕𝑆 𝑓 ,𝑡
+ �𝑆 𝑓𝑡

𝜕𝑆 𝑓 ,𝑡+1

𝜕𝑆 𝑓 ,𝑡
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⇔ 𝑣𝑆 𝑓 ,𝑡 =

∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�AT

𝑡+1
(𝜖 𝑓 , 𝜖𝑇)1

2

𝜑1𝐶𝑇AT,𝑡𝑆
−1/2
𝑓 ,𝑡

𝜖 𝑓pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇

+
∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�
� 𝑓
𝑡+1
(𝜖 𝑓 , 𝜖𝑇)

3

2
(𝜑1𝐶𝑇AT,𝑡)2 𝜖 𝑓 𝑆𝜖𝑇 + 1

2
𝑆 𝑓 ,𝑡 (𝜑1𝐶𝑇AT,𝑡)4 𝜖 𝑓 + 𝜑1𝐶𝑇AT,𝑡𝑆𝜖𝑇 𝜖

𝑇(
𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡

)
2

pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇

+ �𝑆 𝑓𝑡
𝑆2

𝜖𝑇(
𝑆𝜖𝑇 + (𝜑1𝐶𝑇AT,𝑡)2 𝑆 𝑓 ,𝑡

)
2

(101)

Finally, the following optimality condition holds:

𝑣∗ =
𝑐

1−1/𝜓
𝑡

1 − 1/𝜓 + 𝛽𝑡E𝑡

[
𝑣∗

1−𝛾
1−1/𝜓

] 1−1/𝜓
1−𝛾

. (102)

and budget constraint reads as

(1 − Θ (�𝑡))Ω (𝑇AT,𝑡) 𝑘𝛼𝑡 − 𝑐𝑡 + (1 − 𝛿) 𝑘𝑡 − exp

(
𝑔𝐴𝑡 + 𝑔𝐿𝑡

)
𝑘𝑡+1 = 0. (103)

We replace the KKT condition in Eq. (73) with the Fischer-Burmeister function (see,

e.g., Maliar et al. (2021), and references therein) and directly embed it in the system of

non-linear equilibrium conditions, that is,

ΨFB

(
�
�
𝑡 , 1 − �𝑡

)
= �

�
𝑡 + (1 − �𝑡) −

√
�
�2

𝑡 + (1 − �𝑡)
2, (104)

where from Eq. (86), we define �
�
𝑡 such that

�
�
𝑡 ≡ −�𝑡Θ

′ (�𝑡)Ω (𝑇AT,𝑡) 𝑘𝛼𝑡 − �AT

𝑡 𝜎𝑡𝐴𝑡𝐿𝑡 𝑘
𝛼
𝑡 . (105)

One issue that arises when working with the first-order conditions of an IAM is that

they need to be computed not only with respect to the economic choice variables, such

as �𝑡 and 𝑐𝑡 , but also with respect to the climate variables, even though they are not

choice variables. The reason for this is that the marginal effects of the change in choice

variables that propagate through the climate system need to be assessed. These effects

cannot be computed analytically here, which is why we need Lagrange multipliers

associated with every single climate equation (cf. Eqs. (87) to (91)) to estimate the

shadow price of a marginal change in a respective constraint.

Using all the above definitions, the eleven individual components that enter the

loss function amendable for the DEQN algorithm read as follows:

𝑙1 :=
𝑐

1−1/𝜓
𝑡

1 − 1/𝜓 + 𝛽𝑡E𝑡

[
𝑣𝑡+1

1−𝛾
1−1/𝜓

] 1−1/𝜓
1−𝛾
− 𝑣𝑡 (106)
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𝑙2 := (1 − Θ (�𝑡))Ω (𝑇AT,𝑡) 𝑘𝛼𝑡 − 𝑐𝑡 + (1 − 𝛿) 𝑘𝑡 − exp

(
𝑔𝐴𝑡 + 𝑔𝐿𝑡

)
𝑘𝑡+1 (107)

𝑙3 := �
�
𝑡 + (1 − �𝑡) −

√
�
�2

𝑡 + (1 − �𝑡)
2

(108)

𝑙4 := �𝑡 exp

(
𝑔𝐴𝑡 + 𝑔𝐿𝑡

)
− 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑘,𝑡+1

]
(109)

𝑙5 := �AT

𝑡 − 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑀AT ,𝑡+1

]
(110)

𝑙6 := �UO

𝑡 − 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑀UO ,𝑡+1

]
(111)

𝑙7 := �LO

𝑡 − 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑀LO ,𝑡+1

]
(112)

𝑙8 :=

∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�AT

𝑡+1
(𝜖 𝑓 , 𝜖𝑇)pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇

− 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑇AT ,𝑡+1

]
(113)

𝑙9 := �OC

𝑡 − 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑇OC ,𝑡+1

]
(114)

𝑙10
:=

∫ +∞

−∞

∫ 𝜖 𝑓

𝜖 𝑓
�
� 𝑓
𝑡+1
(𝜖 𝑓 , 𝜖𝑇)pdf(𝜖 𝑓 )𝑑𝜖 𝑓pdf(𝜖𝑇)𝑑𝜖𝑇

− 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣� 𝑓 ,𝑡+1

]
(115)

𝑙11
:= �

𝑆 𝑓
𝑡 − 𝛽𝑡E𝑡

[
𝑣

1−𝛾
1−1/𝜓
𝑡+1

] 𝛾−1/𝜓
1−𝛾

E𝑡

[
𝑣

1/𝜓−𝛾
1−1/𝜓
𝑡+1

𝑣𝑆 𝑓 ,𝑡+1

]
(116)

and result in the total loss function given by

ℓν :=
1

𝑁
path length

∑
x𝑡on sim. path

𝑁eq=11∑
𝑚=1

(𝑙𝑚(x𝑡 ,𝒩(x𝑡)))2 . (117)

The final ingredient we need for the DEQN algorithm is the evolution of the state x𝑡
one period forward such that the loss function (117) can be evaluated along a simulated

path. In our application, x𝑡+1 is given by

x𝑡+1 =

(
𝑘𝑡+1, 𝑀

AT

𝑡+1
, 𝑀UO

𝑡+1
, 𝑀LO

𝑡+1
, 𝑇AT

𝑡+1
, 𝑇OC

𝑡+1
, � 𝑓 ,𝑡+1, 𝑆 𝑓 ,𝑡+1, 𝑇𝑃𝑡+1, 𝑡 + 1,ϑ

)𝑇
, (118)

where 𝑘𝑡+1 is updated through the law of motion using a choice variable from the
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policy function Eq. (83) and the climate variables 𝑀AT

𝑡+1
, 𝑀UO

𝑡+1
, 𝑀LO

𝑡+1
, 𝑇AT

𝑡+1
, and 𝑇OC

𝑡+1
can

be updated via Eqs. (74) to (80), tipping points follow an exogenous process Eq. (33)

whereas time 𝑡 is simply incremented by one unit, and the pseudo-states ϑ are re-

sampled from their distribution at every iteration step.

B.2 Hyperparameter selection and neural network training
Solving the stochastic IAM under consideration with DEQN can be a challenging pro-

cedure due to the extensive hyperparameter space available for modelers. This process,

therefore, requires some degree of experimentation. In our numerical experiments,

we employed a neural network architecture with two hidden layers, each consisting of

1,000 neurons activated by the scaled exponential linear unit (SELU) function. We uti-

lized the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 𝛼𝑙𝑒𝑎𝑟𝑛 = 1·10
−5

.

Our approach involved choosing 512 points and simulating them forward. To stabilize

training, we initially limited the simulation path length to 𝑁
path

= 4, subsequently

increasing it to 8, 16, 32, 64, 128, 256, and finally 300 steps, contingent upon the stabi-

lization of the policies. Additionally, we began with a mini-batch size of 64, adjusting

it to 128 towards the end of training when the training error was already low and

exhibited negligible improvement.

Solving one IAM outined in full detail in appendix B.1 from scratch with the

settings just discussed until full convergence requires about 4 hours on an ordinary

laptop. This time can be reduced to minutes if a pre-trained model solution exists. All

the models presented in the paper were solved on an 8-core Intel compute node on

https://nuvolos.cloudwith 64GB of RAM, and 100GB of fast local storage (SSD).

Appendix C More details on Gaussian processes

C.1 Leave-one-out error with Gaussian processes
The selection of the number of sample points 𝑛 contained in the training set 𝒟 is a

trade-off between accuracy and efficiency. Our design philosophy aims to minimize

𝑛 but still ensure the accuracy of the surrogate model predictions based on GPs in a

computationally affordable way.

One common choice in the UQ literature to strike a balance between these two

opposing factors, although primarily discussed with polynomial chaos expansions

(see, e.g., Blatman and Sudret (2010), Le Gratiet et al. (2017), Harenberg et al. (2019)),

is to use the leave-one-out (LOO) error estimator. Recall that, as in Eq. (45), we have

a computational modelℳ(·) that maps an input vector 𝑥𝑖 to a scalar output 𝑦𝑖 . We

repeatedly evaluate Eq. (45) 𝑛 times to obtain a training dataset𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑛𝑖=1
= [𝑋, 𝑦].

Then, we fit the GP to the original modelℳ(·), denoted asℳ
GP|𝑋,𝑦(·), as discussed

in Section 4.1.2. To measure the LOO error, we first construct a GP surrogate model

ℳ
GP|𝑋−𝑖 ,𝑦−𝑖 on experimental design points 𝑋−𝑖 ≡ 𝑋 \ 𝑥𝑖 = {𝑥1, · · · , 𝑥𝑖−1, 𝑥𝑖+1, · · · , 𝑥𝑛},

and estimate the error Δ𝑖 on the excluded point 𝑥𝑖 between the outcome from the true

model and the prediction from the GP model, that is,

Δ𝑖 ≡ ℳ(𝑥𝑖) −ℳGP|𝑋−𝑖 ,𝑦−𝑖 (𝑥𝑖) (119)
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Next, we compute the sum of Δ𝑖 over 𝑖 and define the LOO error, that is,

𝜖GP

LOO
≡ 1

𝑛

𝑛∑
𝑖=1

Δ2

𝑖 =
1

𝑁

𝑛∑
𝑖=1

(
ℳ(𝑥𝑖) −ℳGP|𝑋−𝑖 ,𝑦−𝑖 (𝑥𝑖)

)
2

. (120)

In our numerical applications below, we choose the size of the training set 𝑛 for the

GP surrogate such that we achieve 𝜖GP

LOO
≤ 10

−2
, which guarantees the required high

accuracy of the GP surrogate for our QoIs, obtained at moderate computational costs.

If a given initial 𝑛 is insufficient, we systematically increase the size of the training set,

for example, by applying Bayesian active learning, as will be discussed in appendix C.2.

C.2 Experimental design
To enhance the precision of our GP-based surrogate models in UQ experiments, the

efficient selection of training observations for the dataset 𝒟, used to fit the GPs, is

crucial. As discussed in Section 4.1.2, this selection process, known as “experimental

design,” systematically identifies a subset of input data points from the available space

ℬ ⊂ R𝑁
. A comprehensive discussion on experimental design is available in Santner

et al. (2018). In our target application, as is common in science, where stochastic

simulations are employed, the generation of training data (e.g., for the SCC in 2100)

relies on lengthy simulations, rendering it computationally expensive. Therefore, an

accurate estimation of the relationship between model inputs and outputs with a

limited number of simulations becomes imperative.

In the realm of GPR, the primary objective is to judiciously select the experimental

design. This selection aims to minimize computational costs and uncertainty while

ensuring accurate modeling of the target function or process. In essence, the challenge

is to develop a training set that enables the creation of high-quality surrogates via GPs,

using the least amount of data points feasible. Techniques like Bayesian optimization

and Bayesian active learning (see, e.g., Renner and Scheidegger (2018), and references

therein) are pivotal in this context. They facilitate the selection of data points that either

maximize predictive performance or minimize prediction uncertainty. This approach

addresses the “exploration-exploitation dilemma”, which involves balancing the ac-

quisition of new statistical knowledge (exploration) against utilizing existing insights

about an unknown function we seek to approximate with minimal observations (ex-

ploitation). Our goal is to improve the global accuracy of model predictions, focusing

primarily on exploration. Subsequently, we will elaborate on the implementation of an

efficient, model-dependent experimental design for our applications and compare the

efficacy of three different sampling methods.

Given a set of parameter vectors 𝜗𝑖 within a compact set

[
𝜗, 𝜗

]
⊂ ℬ , 𝜗, 𝜗 ∈ R𝑁 , as

detailed in Table 1, the initial approach for generating training data involves adopting

space-filling designs such as the Sobol sequence (Sobol, 1967), the Halton sequence

(Halton, 1960), and Latin hypercube sampling (LHS; McKay et al. (1979)). LHS is par-

ticularly prominent in GSA (Butler et al., 2014, Harenberg et al., 2019). However, Chen

and Zhou (2014) noted that while space-filling designs are adequate for deterministic

simulations, they may fall short for stochastic models. This shortfall arises because
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these designs not only require that the locations of design points be pre-determined,

but these designs also require that substantial computational resources be allocated to

each point. Furthermore, non-sequential designs may be inefficient, especially when

constructing surrogate models for high-dimensional input spaces.

An alternative approach involves Bayesian active learning with various types of

“acquisition functions”. Recall that GPs, at each design point, provide both the poste-

rior mean and variance with minimal computational effort (cf. Eqs. (41) and (42)). This

feature is leveraged to sequentially query new candidate points, not initially included

in the design, which most significantly enhance the model’s approximation quality.

Such a strategy effectively minimizes the computational budget.
32

In our study, we adopt two design criteria for GP surrogate models as outlined

by Sacks et al. (1989). The first criterion utilizes an acquisition function, denoted as

𝛼MSE, which aims to minimize the Mean Squared Error (MSE). Following Binois et al.

(2019), we use the noise-free posterior variance for computational simplicity. This MSE

corresponds to the de-noised posterior variance:

𝛼MSE(𝑥) = 𝑘(𝑥, 𝑥) − 𝑘(𝑥, 𝑋)𝐾(𝑋, 𝑋)−1𝑘(𝑋, 𝑥). (121)

To enhance the basic training set, we select a point 𝑥𝑛+1 from the domain of interest ℬ
by solving the following optimization problem:

𝑥𝑛+1 = arg max

𝑥∈ℬ
𝛼MSE (𝑥) , (122)

and then add this point to the current set𝒟.

The second criterion we consider in our work is the Integrated Mean Square Error

(IMSE). For this, we define 𝛼IMSE according to the existing literature:

𝛼IMSE =

∫
𝑥∈B

(
𝑘(𝑥, 𝑥) − 𝑘(𝑥, 𝑋)𝐾(𝑋, 𝑋)−1𝑘(𝑋, 𝑥)

)
𝑑𝑥, (123)

where the integration is performed over the domain of interest ℬ. Again we assume

the de-noised posterior variance. The next point 𝑥𝑛+1 is selected to minimize the IMSE:

𝑥𝑛+1 = arg min

𝑥∈ℬ
𝛼IMSE (𝑥) . (124)

These acquisition functions, defined in Eq. (121) and Eq. (123), are designed to

improve the global predictive accuracy of a GP surrogate model by leveraging posterior

variance information. Choosing between these criteria depends on the specific models

under consideration. We further investigate the performance of the MSE and IMSE

acquisition functions compared to a space-filling LHS design, examining their impact

on the convergence of the LOO error.

We investigate the convergence of the LOO error for the SCC in the year 2100 em-

ploying three different experimental design criteria: LHS and active learning with the

MSE, and the IMSE criteria. To assess the LOO error with the LHS design, we gen-

32
Bayesian active learning can be viewed as a grid-free method that emulates the adaptivity of sparse

grids (see, for instance, Brumm and Scheidegger (2017), Brumm et al. (2022)).
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Figure 11: Convergence of the GP LOO error for different sizes of the experimental

design. We consider LHS, and Bayesian active learning with the MSE and IMSE

acquisition functions.

erate a series of experimental designs with incremental sizes 𝑛 = {100, 105, · · · , 200}
utilizing LHS. For each size, we compute the error following Eq. (120).

Conversely, for the MSE and IMSE criteria, we begin with an initial design of

𝑛 = 100, sampled via LHS, and progressively add observations by optimizing the

acquisition functions. With the MSE criterion, we apply the L-BFGS-B routine to

optimize the acquisition function in Eq. (121). On the other hand, for the IMSE criterion,

we first randomly sample 𝑛MC points from the domain of interest ℬ to integrate the

variance as shown in Eq. (123). We then optimize the Monte Carlo integration using

the L-BFGS-B routine. Since both acquisition functions are non-linear and challenging

to optimize, we restart from multiple initial conditions, select the best candidate, and

add this point to the training data𝒟 for the next iteration.
33

The convergence pattern of each criterion concerning the SCC in 2100 are illustrated

in Figure 11. We observe that while the error associated with LHS displays a random

behavior, active learning approaches using both MSE and IMSE criteria exhibit a more

consistent rate of convergence. Notably, the IMSE criterion demonstrates superior

performance compared to the MSE for our specific measure of interest. Consequently,

we utilize the IMSE criterion to construct a surrogate model in Section 4. In line with

the recommendations of Le Gratiet et al. (2017), a LOO error 𝜖LOO ≤ 0.05 is considered

adequate for calculating the first-order Sobol’ indices. However, given our intention to

compute the Shapley values as well, we aim for higher accuracy in the surrogate model

and thus select 𝑛 = 200 for all subsequent global sensitivity analyses.

33
In our numerical applications, we select 𝑛MC = 128 and restart 20 times with different initial

conditions, which are randomly chosen from the domain of interest ℬ. In every active learning step, we

add the best point from these 20 candidate points to the training data set.
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