Virtual Seminar on Climate Economics

Organizing Committee:

Glenn Rudebusch (Brookings Institution)
Michael Bauer (University of Hamburg)
Stephie Fried (Arizona State University)
Òscar Jordà (UC Davis, Federal Reserve Bank of San Francisco)
Fernanda Nechio (Federal Reserve Bank of San Francisco)
Toan Phan (Federal Reserve Bank of Richmond)

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000

Expecting Floods: Firm Entry, Employment, and Aggregate Implications

Ruixue Jia Xiao Ma Victoria Wenxin Xie UCSD Peking University Santa Clara University

Virtual Seminar on Climate Economics, June 2022

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
●0000	000	00000	00000	00000	00000	0	0000

Introduction

- Floods: more frequent and severe with climate change
 - 13 million Americans lived within FEMA 100-year flood zone in 2018 (Federal Emergency Management Agency, FEMA)
 - floodplains are expected to grow by 45% by 2100
- Existing papers: individual and housing market responses to floods
- Less is known about impact of floods on firms and aggregate implication
 - less attention is paid to changes in flood risk
- We ask:
 - What is the impact of floods and flood risk on firms and workers?
 - How large is aggregate productivity impact of floods and flood risk?

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Empirically, increases in flood risk lower firm entry in the long run

- Data: FEMA flood zone maps in 1998 and 2018, Business Dynamic Statistics, and actual flood data from DFO
- Long run: Between 1998-2018, one std increase in a county's flood risk
 - reduces firm entry by 1.2% and reduces real GDP by 2.4%
 - leads to decrease in employment (1.2%) and population (0.8%)
- Short run: In contrast, annual occurrence of actual floods has very little impact on firm entry/exits and employment

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Why is impact of long-run change in flood risk larger?

- We develop a spatial model with firms and workers' long-run adjustments
- In response to changes in regions' flood risk:
 - firms decide entry; workers decide location & labor supply
- Occurrence of actual floods has direct damage on output, but does not affect firm entry and workers' choices too short time to adjust
- Impact of increases in flood risk on output:
 - direct productivity impact due to more flood events
 - expectation channel through long-run adjustments: lower employment and firm entry ("love of variety")

Quantitatively, we find that

- 1. Flood risk in 2018 cause a 0.52% decline in annual output
 - direct damage channel: 0.11%
 - employment channel: 0.33%; the variety channel: 0.08%
- 2. Larger regional heterogeneity: 7–14% loss in top 5% counties (such as Cape May and New Jersey)
- 3. Expected increase in flood risk btw 2020-50 cause 0.12% output loss
 - heterogeneity: 0.8-4.4% loss in top 5% counties

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Related literature

1. Aggregate impact of SLR: e.g. Balboni (2019), Desmet et al. (2021)

Our contribution: 1) incorporate all types of flood risk rather than coastal floods; 2) we reconcile the quantitative analysis with reduced form evidence and examine endogenous labor supply

 Empirical literature on the impact of natural disasters: e.g. Gallagher (2014), Hsiang and Jina (2014), Deryugina (2017), Hsiang et al. 2017, Kocornik-Mina et al. (2020)

Our contribution: 1) we use national digitized historic flood zone maps; 2) show changes in flood risk can induce larger long-run consequences

3. Flood risk and housing/households: Hino and Burke (2021), Mulder (2021)

Our contribution: we incorporate firm and employment margins both empirically and quantitatively

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	•00	00000	00000	00000	00000	0	0000

Data

- Historic flood zone designation: Q3 (newly digitized)
 - corresponds to FEMA Flood Insurance Rate Map in 1998
 - available for 1368 counties in the U.S.
 - "Special Flood Hazard Areas" (SFHA) represent areas that will be inundated by flood event having 1-percent chance in any given year
- Current flood zone designation: National Flood Hazard Layer in 2018
- Additional data: flood risk projection (First Street Foundation), actual flood occurrence (DFO), spatial and climate variables (ERA5), county-level and zipcode-level data on firm dynamics, employment, demographics, etc.

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Change in US flood risk: 1998 to 2018

Figure 1: Change in share of areas in 100-year FEMA flood zone

Regions are based on US ZIP Code

Motivational evidence: Glance at the raw data

(a) Firm Entry

(b) Employment

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 0000
 00000
 00000
 00000
 00000
 00000

Empirical specification

 $\textit{In} Y_{i,t} = \alpha + \beta_1 \textit{FloodRisk}_{i,t} + \sigma_i + \gamma_{s,t} + X_{i,t} + \beta_2 \textit{ActualFlood}_{i,t} + \epsilon_{i,t}$

- *Y_{i,t}* is number of establishment entry (other outcomes)
- *Floodrisk*_{*i*,*t*} is percentage of land area within 100-year floodplain in county *i*, year *t*
- σ_i : county fixed effects; $\gamma_{s,t}$: state-level business cycles.
- X_i: a rich set of economic, demographic, and geographic controls (e.g., manufacturing employment share, China import penetration)
- We also control for actual flood area ActualFlood_{i,t}
- Standard errors are clustered at the county level

1. Introduction	2. Data	Empirics	Model	5. Quantification	6. Counterfactual Exercises	Conclusion	8. Appendix
00000	000	0000	00000	00000	00000	0	0000

Long-run effects

Table 1: The Impact of Long Run Change in Flood Risk

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	log(E	Entry)	log(Exit)	log(Emp	oloyment)	log(Pop	oulation)	log(O	utput)"
Flood risk	-0.172** (0.079)	-0.173** (0.079)	-0.119* (0.072)	-0.119* (0.072)	-0.171*** (0.059)	-0.171*** (0.059)	-0.114*** (0.041)	-0.115*** (0.041)	-0.337*** (0.072)	-0.337*** (0.072)
Observations County FE State×Year FE OtherControls	5188 Yes Yes Yes	5188 Yes Yes Yes	5174 Yes Yes Yes	5174 Yes Yes Yes	5280 Yes Yes Yes	5280 Yes Yes Yes	5282 Yes Yes Yes	5282 Yes Yes Yes	5222 Yes Yes Yes	5222 Yes Yes Yes
ymean	4.080	4.080	4.022	4.022	9.03	9.03	9.914	9.914	13.73	13.73

One std increase in a county's flood risk reduces firm entry by 1.2%, real GDP by 2.4%, employment by 1.2%, and population by 0.8%.

ZIP code level Q3 IV Placebo

1. Introduction	2. Data	Empirics	Model	5. Quantification	6. Counterfactual Exercises	Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Long-run Effects: IV

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Δlog(Entry)	∆log	(Exit)	∆log(Em	ployment)	$\Delta \log(Pc$	pulation)	$\Delta log(Output)$	
Δ Flood risk	-0.188** (0.080)	-0.167** (0.085)	-0.134* (0.073)	-0.097 (0.079)	-0.183*** (0.060)	-0.193*** (0.065)	-0.123*** (0.042)	-0.136*** (0.053)	-0.328*** (0.070)	-0.308*** (0.074)
Observations	2594	2593	2587	2586	2640	2639	2641	2640	2611	2610
KP F stat		63		66		66		65		65
State FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Other Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cum. Floods	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Specification	OLS	IV	OLS	IV	OLS	IV	OLS	IV	OLS	IV

Table 2: Change-on-Change Estimates

- Bartik-style instruments: average change in flood risk in the rest of the state * own geo-climatic features
- Intuitively, this general change likely matters more for counties with certain geo-climatic conditions such as heavy rainfalls

main

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Long-run Effects: Placebo for IV

Table 3: Change-on-Change Estimates, Placebo

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
	$\Delta log(Entry)$		∆log	$\Delta log(Exit)$		$\Delta log(Employment)$		pulation)	
∆Flood risk	0.001	0.088	0.063	0.072	-0.049	-0.026	0.079*	0.031	
	(0.060)	(0.120)	(0.063)	(0.147)	(0.039)	(0.111)	(0.043)	(0.151)	
Observations	2607	1154	2613	1155	2643	1163	2644	1163	
State FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Other Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Flood Cumulative	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Sample		Q3		Q3		Q3		Q3	

 pre-trend test: flood risk changes from 1998-2018 on pre-period outcomes between 1990-1998 (Goldsmith-Pinkham et al. 2020)

main

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 00000

Short-run effects

Table 4: The Impact of Short Run Actual Floods

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	log(E	ntry)	log(Exit)	log(Emp	loyment)	log(Pop	ulation)	log(O	utput)
Flood share	0.002 (0.004)	0.001 (0.004)	0.002 (0.004)	0.003 (0.004)	-0.000 (0.001)	-0.001 (0.001)	0.001*** (0.000)	0.001*** (0.000)	-0.005*** (0.002)	-0.005*** (0.002)
Observations	51595	50782	51584	50931	53195	52666	53244	52683	52320	51816
County FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
State×Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Initial Controls		Yes		Yes		Yes		Yes		Yes
ymean	4.018	4.036	3.979	3.991	8.864	8.870	9.816	9.825	13.66	13.67

Lagged Shocks

real gdp loss of -0.5% comparable to Kocornik-Mina et al. (2020)

Overview of model setup

We model realization of floods with a set of possible states of nature $S = \{s_1, s_2, ...\}$ —each associated with prob Pr(s) and specific flooding events.

1. Introduction	2. Data	Empirics	Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Production

• Each region *m* produces a composite final good composed of varieties:

$$Y_m(s) = \left(\int_{\omega \in \Omega_m(s)} y(\omega, s)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}}$$

- $\Omega_m(s)$: the set of varieties produced in region m and state s
- we abstract from trade in baseline model
- Establishing a firm in region *m* requires *f_m* units of labor
 - each firm obtains a blueprint for a differentiated variety

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 00000

Firms' production

• Firms' production uses labor:

$$y_m(s) = A_m(s)I$$

-
$$A_m(s) = \bar{A}_m \exp(-\delta \xi_m(s))$$
 $(\xi_m(s) = 1$ if floods occur)

- portion $\kappa(s) = \bar{\kappa} \exp(\delta_\kappa \xi_m(s))$ of firms exit before production
- Firms are engaged in monopolistic competition
- Free entry requires that expected profits equal entry costs:

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 00000

Households

• Workers' utility function:

$$U_m(s) = v_m B_m(s) \left(c_m(s) I_m - \psi_m \frac{I_m^{1+1/\phi_L}}{1+1/\phi_L} \right),$$

s.t. $P_m(s) c_m(s) \le W_m(s).$

- location preferences
$$\{v_m\} \sim i.i.d. G(v) = \exp(-v^{-\phi_M})$$

- amenities $B_m(s)=ar{B}_m^{1/\phi_M}\exp(-\eta\xi_m(s))$ with flood damage $\eta>0$

- $c_m(s)$ denotes expenditures per labor on final goods in state s

Household chooses location and labor supply to maximize expected utility:

$$\max_{m,l_m} \sum_{s} \Pr(s) U_m(s)$$

Regional responses to changes in flood risk

Proposition. Let $r_m = \sum_s \Pr(s)\xi_m(s)$ be the probability of floods occurring in region *m*. For a small region *m*, in response to a change in flood risk dr_m ,

1. Changes in labor supply

$$d\hat{l}_m = -\phi_L \frac{\delta + \frac{1}{\sigma - 1}\bar{\kappa}\delta_{\kappa} + \frac{1}{\sigma - 1}\phi_M\eta}{1 - \frac{1}{\sigma - 1}(\phi_L + (\phi_L + 1)\phi_M)}dr_m.$$

2. Changes in population share

$$d\hat{\Lambda}_m = \phi_M \left[(1+1/\phi_L) d\hat{l}_m - \eta dr_m \right].$$

3. Changes in aggregate labor supply

$$d\hat{L}_m = d\hat{l}_m + d\hat{\Lambda}_m.$$

4. Changes in number of entry firms

$$d\widehat{\mathbb{E}N}_m = d\hat{L}_m - \bar{\kappa}\delta_k dr_m.$$

5. Changes in aggregate output

$$d\widehat{\mathbb{E}Y}_m = -\underbrace{\delta dr_m}_{\text{direct damage}} + \underbrace{d\hat{L}_m}_{\text{employment response}} + \underbrace{\frac{1}{\sigma - 1} d\widehat{\mathbb{E}N}_m}_{\text{variety effects}}.$$

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Quantification

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Calibration procedure

- · Several parameters directly from literature and data
- Internally calibrated parameters
 - method of moments: calibrate region-specific parameters

 $\{\underbrace{\bar{A}_m}_{\text{productivity amenity labor disutility entry costs}}, \underbrace{\bar{P}_m}_{\text{productivity amenity labor disutility entry costs}}\}$ to match regional GDP, population, employment, and firm count

- indirect inference: discipline labor elasticities $\{\phi_L, \phi_M\}$ by reduced-form evidence on emp and pop responses to flood risk

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Exogenously calibrated parameters

Parameter	Value	Sources
$\begin{array}{l} M & - \text{Number of counties} \\ \sigma & - \text{Elast. of substitution across varieties} \\ \bar{\kappa} & - \text{Constant in firm exit rates} \\ r_m & - \text{Region-specific probability of floods} \\ \delta & - \text{GDP loss due to flooding events} \\ \delta_k & - \text{Firm exits due to flooding events} \\ \eta & - \text{Utility loss due to flooding events} \end{array}$	2,772 5 0.08 0.18 (0.10) 0.005 0.003 0.002	data Head and Mayer (2014) data data see regression table see regression table Barrage (2020)

Notes: Parameter values for $\{r_m\}$ are averages across all M counties. The standard deviations are in parentheses.

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Internally calibrated parameters

Parameter	Value	Targeted Moments
\bar{A}_m —Region-specific productivity \bar{B}_m —Region-specific amenity ψ_m —Region-specific labor supply disutility f_m —Region-specific firm entry costs ϕ_L —Convexity of labor disutility ϕ_M —Shape param of loc preferences	$\begin{array}{c} 2.40 & (2.53) \\ 0.41 & (0.66) \\ 0.35 & (0.34) \\ 0.09 & (0.03) \\ 1.55 \\ 0.83 \end{array}$	regional real GDP regional population regional emp-to-pop ratio regional firm count { Emp and pop responses to flood risk

Notes: Parameter values for $\{\bar{A}_m, \bar{B}_m, \psi_m, f_m\}$ are averages across all M counties. The standard deviations are in parentheses.

• elasticity of regional population to real wages is $\phi_M(1 + \phi_L) \approx 2.1$, within the range of 1.1–2.5 (mean 1.8) surveyed by Fajgelbaum et al. (2018)

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Comparison of actual and model-generated regression results

	(1) (2) Targeted		(3) (4) (5) Non-targeted				
	log(Emp)	log(Pop)	log(Output)	log(Entry)	$\log(Exit)$		
Actual Data:							
flood risk	-0.171*** (0.059)	-0.114*** (0.041)	-0.337*** (0.072)	-0.173** (0.079)	-0.119* (0.072)		
Model-generated Data:							
flood risk	-0.176*** (0.003)	-0.103*** (0.002)	-0.182*** (0.003)	-0.176*** (0.003)	-0.174*** (0.003)		

Note: We perform the panel regression using the observed and model-generated data in 1998 and 2018.

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Counterfactual Exercises

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	0000	0	0000

Aggregate effects of flood risk in 2018

	Output	Employment	Firm Entry	Firm Exits		
Overall risks in 2018	-0.52%	-0.31%	-0.30%	-0.24%		
Panel B: Decomposition of Output Losses Decomposition of Output Losses						
	Direct Damage	Labor Relocation	Labor Supply	Variety Effects		
Overall risks in 2018	-0.11%	0%	-0.33%	-0.08%		

 FEMA estimates cost of flood damage as approximately \$17 billion annually between 2010–18 (Grimm 2020), representing roughly 0.1% of annual GDP.

Distribution of population responses to floods across regions

As a result, there is large regional heterogeneity in output losses: 7% and 14% losses in top 5% and 1% counties

1. Introduction	2. Data	Empirics	Model	5. Quantification	Counterfactual Exercises	Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Alternative model setup and quantitative results

	Output	Employment	Firm Entry	Firm Exits
 (1) Baseline model (2) Entry costs in goods (3) With interregional trade (4) With capital & intermediate inputs 	-0.52%	-0.31%	-0.30%	-0.24%
	-0.57%	-0.31%	-0.56%	-0.51%
	-0.62%	-0.47%	-0.41%	-0.35%
	-0.67%	-0.38%	-0.36%	-0.31%

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

Impact of future changes in flood risk

- Use First Street Foundation's predicted flood risk in 2050
- On average, flood risk increase by 4.2% between 2020 and 2050 (increase by more than 14% in top 5% counties)

Panel A: Aggregate Effects								
	Output	Employment	Firm Entry	Firm Exits				
Δ risks, 2020–2050	-0.12%	-0.05%	-0.05%	-0.04%				
Panel B: Decomposition of Output Losses Decomposition of Output Losses								
	Direct Damage	Labor Relocation	Labor Supply	Variety Effects				
Δ risks, 2020–2050	-0.014%	0%	-0.086%	-0.024%				

Regional heterogeneity: 0.8% and 4.4% loss in top 5% and 1% counties

1. Introduction	2. Data	3. Empirics	4. Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	•	0000

Conclusion

- Increased flood risk has larger long-run impact whereas actual floods reduce output in the short run
 - only accounting for direct damages largely underestimates actual losses of natural disasters
 - firms and workers rationally change economic activities in long run
- Policy aiming to alleviate climate damages needs to take into account firms' and workers' long-run adjustments

Suggestions and feedback: wxie@scu.edu

1. Introduction	2. Data	Empirics	Model	5. Quantification	6. Counterfactual Exercises	Conclusion	8. Appendix
00000	000	00000	00000	00000	00000	0	0000

ZIP-Code-Level Results

Table 5: The Impact of Long Run Change in Flood Risk

Panel B: ZIP Code Level								
	(1) (2) log(Establishment)		(3) log(Emp	(3) (4) log(Employment)		(5) (6) log(Payroll)		
Flood risk	-0.233*** (0.040)	-0.234*** (0.040)	-0.240*** (0.066)	-0.242*** (0.066)	-0.221*** (0.072)	-0.223*** (0.072)		
Observations	43330	43330	41032	41032	41034	41034		
ZCTA FE	Yes	Yes	Yes	Yes	Yes	Yes		
$State \times YearFE$	Yes	Yes	Yes	Yes	Yes	Yes		
OtherControls	Yes	Yes	Yes	Yes	Yes	Yes		
ActualFlood		Yes		Yes		Yes		
ymean	4.330	4.330	6.611	6.611	9.964	9.964		

main

 1. Introduction
 2. Data
 3. Empirics
 4. Model
 5. Quantification
 6. Counterfactual Exercises
 7. Conclusion
 8. Appendix

 00000
 00000
 00000
 00000
 00000
 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Long-run Effects: Q3 Only

Table 6: Fixed Effects Estimates, Q3

	(1)	(2)	(3)	(4)	(5)
	log(Entry)	log(Exit)	log(Employment)	$\log(Population)$	log(Output)
Flood risk	-0.357**	-0.217	-0.333***	-0.240**	-0.226*
	(0.150)	(0.159)	(0.115)	(0.104)	(0.130)
Observations	2304	2298	2326	2326	2300
County FE	Yes	Yes	Yes	Yes	Yes
State×Year	Yes	Yes	Yes	Yes	Yes
Other Controls	Yes	Yes	Yes	Yes	Yes
Flood Cumulative	Yes	Yes	Yes	Yes	Yes

main

1. Introduction	2. Data	Empirics	Model	5. Quantification	6. Counterfactual Exercises	7. Conclusion	Appendix
00000	000	00000	00000	00000	00000	0	0000

Short-run Effects: Controlling for Lagged Shocks

Table 7: The Impact of Short Run Actual Floods, 2001-2018

	(1)	(2)	(3)	(4)	(5)
	log(Entry)	$\log(\text{Exit})$	log(Employment)	$\log(Population)$	$\log(Output)$
E 1 1 1	0.000	0.000	0.001	0.001***	0.005***
Flood share	0.000	0.003	-0.001	0.001***	-0.005***
	(0.00+)	(0.00+)	(0.001)	(0.000)	(0.002)
L.Flood share	-0.004	0.004	-0.000	0.000	-0.000
	(0.004)	(0.004)	(0.001)	(0.000)	(0.002)
Observations	50782	50931	52666	52683	51816
County FE	Yes	Yes	Yes	Yes	Yes
$State \times Year FE$	Yes	Yes	Yes	Yes	Yes
Initial Controls Trends	Yes	Yes	Yes	Yes	Yes
ymean	4.036	3.991	8.870	9.825	13.67

Distribution of direct damages of floods across regions

