Long Rates, Life Insurers, and Credit Spreads

Ziang Li Imperial College London

Conference on Fixed Income Markets May 2025

Introduction

- ► The corporate bond market has expanded dramatically in recent years (\$10 tn in 2022)
 - It has become the dominant funding source for US firms (vs. \$2.4 tn bank credit)
 - Credit spreads play an important role in firm borrowing and investment decisions
- Life insurers are the largest institutional investors in the US bond market (>20%)
 - Since the GFC, US life insurers have sustained large negative duration gaps
- ▶ How do life insurers matter for corporate bond pricing? Existing literature:
 - 1. risk-based capital constraint and fire sales (Ellul et al., 2011; Murray and Nikolova, 2022)
 - 2. stability in crises (Chodorow-Reich et al., 2021; Coppola, 2024)

This Paper: a new channel through their interest rate risk exposure

The Duration Mismatch Channel

- ► After the GFC, life insurers face a new and large duration mismatch
 - negative duration gap: $D_{\text{asset}} < D_{\text{liability}} \implies D_{\text{net worth}} < 0$
 - 1% † in the 10-year Treasury yield \implies 7.2% † in insurers' market equity Source Details
- ► The Duration Mismatch Channel

```
10-year Treasury yield \uparrow \implies insurers' net worth \uparrow \implies risk-bearing capacity \uparrow, risky bond demand \uparrow \implies equilibrium credit spreads \downarrow
```

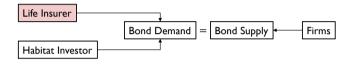
► This Paper: theoretical model and empirical evidence on the duration mismatch channel

Main Results

- ► An Intermediary Asset Pricing Model:
 - 1. Analytical insights: long rate $\uparrow \implies$ credit spread \downarrow when insurers' duration gap < 0
 - 2. Extensions: quantitative importance, duration management
- ► Long Rates and Credit Spreads:
 - 1. Unconditional co-movement: cov(long rate, credit spread) < 0, esp. in low credit ratings
 - 2. High-frequency MP shocks: long rate $\uparrow \implies$ credit spread \downarrow
 - 3. Bond issuance: long rate $\uparrow \Longrightarrow HY$ bond issuance \uparrow relative to IG bond issuance
- ► The Key Role of Life Insurers:
 - 1. Risk exposure: life insurers face severe duration mismatch, rates $\uparrow \Longrightarrow$ net worth \uparrow
 - 2. Identification via RDD: life insurer ownership $\uparrow \Longrightarrow$ stronger co-movement
 - 3. Bond transactions: insurers rebalance towards risky bonds after long rates \(\tau \)

Road Map

I. A Model of the Bond Market

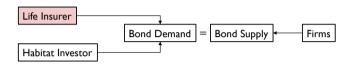

2. The Comovement between Long-term Rates and Credit Spreads

3. The Role of Life Insurers

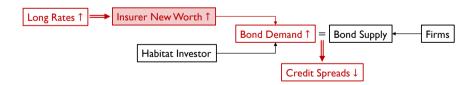
4. Conclusions

Model Setup

▶ I build a model of bond demand from life insurers



Life insurers are the key corporate bond investors in the model


Assets	Liabilities
Corporate Bonds	Annuities
Treasuries	Net Worth

The Duration Mismatch Channel

▶ I build a model of bond demand from life insurers

► The Duration Mismatch Channel:

Road Map

I. A Model of the Bond Market

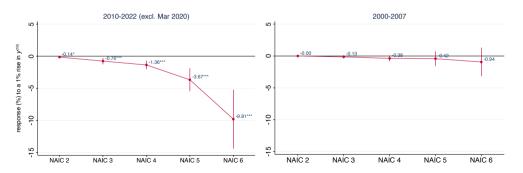
2. The Comovement between Long-term Rates and Credit Spreads

3. The Role of Life Insurers

4. Conclusions

Corporate Bond Ratings

Corporate bond ratings (Becker and Ivashina, 2015)


NAIC Category	Credit Ratings	Investment Grade	5-year Default Rate (1990-2010)	Capital Requirement
NAIC I (highest)	AAA, AA, A	√	0.00%, 0.09%, 0.69%	0.3%
NAIC 2	BBB	\checkmark	2.62%	0.96%
NAIC 3	BB	×	6.76%	3.39%
NAIC 4	В	×	8.99%	7.38%
NAIC 5	CCC	×	34.38%	16.96%
NAIC 6 (lowest)	CC, C, D	х	n.a.	19.50%

Long-term Rate and Credit Spreads

► I next estimate comovements between credit spreads and 10-year yields ► by maturity

$$\Delta y_{it} = \alpha_i + \alpha_{D(i),t} + \sum_{k=2}^{6} \beta_k \cdot \mathbf{1}_{\{\text{NAIC }k\}} \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}$$

- $-y_{it}$: bond yield α_i : bond FE $\alpha_{D(i),t}$: duration-time FE $y_t^{(10)}$: 10-year yield X_{it} : controls
- $-\beta_k$: change in the (NAIC k)-(NAIC I) spread (%) when $y_t^{(10)}$ increases by 1% \longrightarrow Merton EDF

High-Frequency Evidence from FOMC Meetings

Impulse responses of spreads to high-frequency $y_t^{(10)}$ shocks Yield CDS News

$$\mathsf{Spread}_{t+h} - \mathsf{Spread}_{t-1} = lpha_h + eta_h \left(\Delta y_t^{(10)} ig|_{\mathsf{FOMC}}
ight) + arepsilon_{t,h}$$

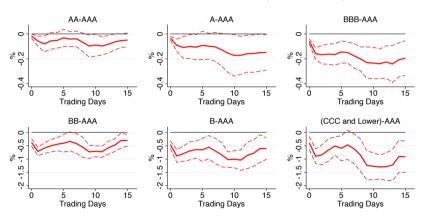


Figure: Cumulative responses to a 1% increase in $y_t^{(10)}$ and 90% confidence intervals (2010-2022)

High-Frequency Evidence from FOMC Meetings

Impulse responses of spreads to high-frequency $y_t^{(10)}$ shocks Yield CDS News

$$\mathsf{Spread}_{t+h} - \mathsf{Spread}_{t-1} = lpha_h + eta_h \left(\Delta y_t^{(10)} ig|_{\mathsf{FOMC}}
ight) + arepsilon_{t,h}$$

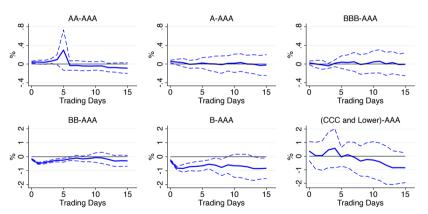


Figure: Cumulative responses to a 1% increase in $y_t^{(10)}$ and 90% confidence intervals (1997-2007)

Credit Spreads and Bond Issuance

▶ I study how the differential impacts of long rates on the issuance of IG and HY bonds

Δlssuance Rate_{k,t} =
$$\alpha_t + \alpha_k + \beta \cdot \mathbf{1}_{\{k=HY\}} \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_{kt} + \varepsilon_{kt}$$
,

- $-k \in \{IG, HY\}$, Issuance Rate = 6-month issuance/outstanding
- $\beta = \Delta$ (HY issuance rate) Δ (IG issuance rate) when $y_t^{(10)}$ increases by 1%
- $-y_t^{(10)}\uparrow \Longrightarrow {\sf credit\ spreads}\downarrow \Longrightarrow {\sf HY\ yield}\downarrow {\sf against\ IG\ yield}\Longrightarrow {\it eta}>0$

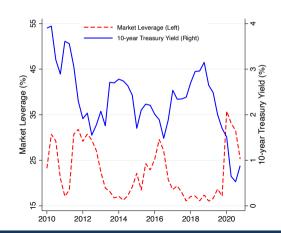
	Pre-2007	Post-2009
β	-0.136	0.939**
	[0.712]	[0.047]
NAIC FE	✓	✓
Time FE	\checkmark	\checkmark
R^2	.589	.725

Road Map

I. A Model of the Bond Market

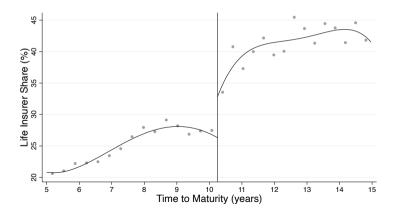
2. The Comovement between Long-term Rates and Credit Spreads

3. The Role of Life Insurers


4. Conclusions

Interest Rate Exposure of Life Insurers

► After the GFC, the duration of life insurers' liabilities exceeded their assets (e.g., Hartley et al., 2016, Ozdagli and Wang 2020) ► Source ► DA, DL ► Rolling Estimates


$$y_t^{(10)}\uparrow \Longrightarrow \textit{market equity}\uparrow, \textit{market leverage}\downarrow$$

	Pre-2007	Post-2019	
$\Delta y_t^{(10)}$	-0.0723	6.008***	
	[0.947]	[0.000]	
S&P 500 Return	✓	✓	
$\Delta y_t^{(1m)}$	\checkmark	\checkmark	
Observations	260	663	
(p < 0.1, p < 0.05, p < 0.01)			

Causal Impact of Life Insurers' Bond Holdings

- ▶ Next, I study causal impact of life insurers' bond holdings on the negative comovement
- ► Identification: regression discontinuity design
 - Many mutual funds are mandated to invest in bonds with maturity ≤ 10 years □ Cutoff
 - ⇒ A discontinuity in investor composition

Causal Impact of Life Insurers' Bond Holdings

- Next, I study causal impact of life insurers' bond holdings on the negative comovement
- ► Identification: regression discontinuity design
 - Many mutual funds are mandated to invest in bonds with maturity \leq 10 years \bigcirc Cutoff
 - ⇒ A discontinuity in investor composition
- lacktriangle Specification: interact $y_t^{(10)}$ with life insurer share $\varphi_{it}^{\ln s}$

$$\Delta y_{it} = \alpha_t + \left(\beta + \frac{\gamma \varphi_{it}^{\mathsf{lns}}}{2}\right) \mathbf{1}_{\{\mathsf{NAIC}\ 3-6\}} \Delta y_t^{(10)} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}.$$

- $oldsymbol{eta}$ measures comovements between HY-IG spreads and $y_t^{(10)}$ in bonds not held by insurers
- $-\gamma$ measures how life insurers' ownership enhances the comovement
- RDD: I use the discontinuity to instrument for insurer share φ_{it}^{lns}

$$\varphi_{it}^{\mathsf{Ins}} = \alpha + \delta \cdot \mathbf{1}_{\{\mathsf{maturity}_{it} > c\}} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}$$

Discontinuity

First stage

$$\varphi_{it}^{\mathsf{Ins}} = \alpha + \beta \cdot \mathbf{1}_{\{\mathsf{maturity}_{it} > c\}} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}$$

► I test the validity of the discontinuity using the robust bias-corrected method developed by Calonico, Cattaneo, and Titiunik (2014)

Method	δ	<i>p</i> -value	[95% Conf. Interval]
OLS	4.73	0.000	[4.15, 5.32]
RDD, Conventional	4.43	0.000	[2.46, 6.39]
RDD, Bias-corrected	4.52	0.000	[2.55, 6.48]
RDD, Bias-corrected, Robust	4.52	0.000	[2.22, 6.81]

Causal Impact of Life Insurers' Bond Holdings

$$\Delta y_{it} = \alpha_t + \left(\beta + \gamma \varphi_{it}^{\mathsf{lns}}\right) \mathbf{1}_{\{\mathsf{NAIC}\ 3-6\}} \Delta y_t^{(10)} + \Gamma \mathbf{X}_{it} + \varepsilon_{it}.$$

- Hypothesis: $\gamma < 0$ (i.e., insurance ownership $\uparrow \Longrightarrow$ stronger negative comovements)
- ▶ Post-GFC, the negative comovement is stronger in bonds owned more by life insurers

	Pre-2007	Post-2009
γ	-1.529	-13.81***
	[0.593]	[0.001]
Controls	✓	✓
Time FE	\checkmark	\checkmark
Kleibergen-Paap F -stat	131.927	79.925
Observations	4447	10795

→ Holding Stats

▶ Pass-through

First Stage

► Robustness: Excluding New Bonds, Issuance Maturity > 10yrs

Life Insurers' Bond Transactions

Next, I examine how insurers adjust bond transactions following changes in $y_t^{(10)}$

$$\Delta\left(\frac{\mathsf{Net}\;\mathsf{Purchase}^{\mathsf{HY},\;h}_t}{\mathsf{Net}\;\mathsf{Purchase}^{\mathsf{Total},\;h}_t}\right) = \alpha + \beta \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_t + \varepsilon_t$$

- Hypothesis ($\beta > 0$): $y_t^{(10)} \uparrow \Longrightarrow$ risk-bearing capacity $\uparrow \Longrightarrow$ more risky bond purchases

	Pre-2007		Post-2009	
	h = 3m	h = 6m	h = 3m	h = 6m
β	-0.269	0.562	0.750*	2.346***
	[0.571]	[0.280]	[0.071]	[0.000]
R^2 Observations	.537	.723	.305	.387
	54	54	114	

Life Insurer Bond Transactions

- ► Variable annuity (VA) insurers are more exposed than non-VA insurers
 - VAs typically have minimum return guarantees (e.g., 2% for 10 years), which have very high convexity and caused negative duration gaps post-2008 (Koijen Yogo, 2022; Sen, 2022)
- ▶ VA insurers should adjust their bond purchases more in response to long rates

$$\Delta\left(\frac{\mathsf{Net\ Purchase}^{\mathsf{HY},\ h}_{jt}}{\mathsf{Net\ Purchase}^{\mathsf{Total},\ h}_{jt}}\right) = \alpha_j + \alpha_t + \beta \cdot (\mathsf{VA\ Share})_{j,2009} \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_{jt} + \varepsilon_{jt}$$

	h=3m		h=6m	
(VA Share) $_{j,2009} \cdot \Delta y_t^{(10)}$	0.133** [0.016]	0.152** [0.012]	0.926*** [0.000]	0.963***
Insurer FE	<u>[0.010]</u> ✓	<u>[0.012]</u> ✓	<u>[0.000]</u> √	<u>[0.000]</u>
Time FE		\checkmark		\checkmark
R^2	.009	.021	.019	.034
Observations	27518	27518	23755	23755

Quantity Purchased and Back-of-the-Envelope Calculations

▶ How net purchases of HY bonds move relative to net purchases of IG bonds

$$\begin{aligned} \text{Net Purchase}_t^{\mathsf{NAIC}\;k,\;h} &= \alpha_t + \sum \pmb{\beta_k} \cdot \mathbf{1}_{\{\mathsf{NAIC}\;k\}} \cdot \Delta y_t^{(10)} + \Gamma \mathbf{X}_t + \varepsilon_t \\ &- \beta_k = \Delta(\mathsf{NAIC}\;k \;\mathsf{purchases}) - \Delta(\mathsf{IG}\;\mathsf{purchases}) \;\mathsf{if}\; y_t^{(10)} \uparrow \mathsf{I}\% \end{aligned}$$

	Pre-2007	Post-2009	Excess HY purchase = 6.11 + 6.90 + 7.27 = 20.28
eta_3	0.712 [0.855]	6.112** [0.017]	Total HY outstanding = 727.6 bn
eta_4	0.549	6.900**	Fraction purchased = 20.28 / 727.6 = 2.8%
, -	[0.892]	[0.014]	 Active MF elasticity = 0.75 (Darmouni et al., 2025)
β_{5-6}	0.659	7.268**	Price impact = 2.8%/0.75 = 3.73%
	[0.878]	[0.013]	 HY bond duration = 4.45 yrs
Time FE R^2	√ .162	√ .108	- Spread impact \approx 3.73%/4.45 = 0.84%
Observations	270	582	Empirical counterpart: 1.27%

Road Map

I. A Model of the Bond Market

2. The Comovement between Long-term Rates and Credit Spreads

3. The Role of Life Insurers

4. Conclusions

Conclusions

- ▶ I propose a *duration mismatch channel* where life insurers' interest rate risk exposure affects corporate bond pricing
 - long rates $\uparrow \implies$ net worth $\uparrow \implies$ risk-bearing capacity $\uparrow \implies$ credit spreads \downarrow
- Consistent with the channel, I find an empirical shift in how bond credit spreads co-moves with long rates
 - after the GFC, credit spreads tighten when the 10-year Treasury yield increases
- In the cross-section, the channel is stronger in bonds held more by life insurers
- Implications for (unconventional) monetary policy