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This paper: policymakers can only affect the price of clean energy

Use macro climate-economy model to:

1 Characterize constrained-efficient subsidy
▶ When do clean energy subsidies decrease emissions and improve

welfare?

2 Quantify impact of Inflation Reduction Act (IRA)
▶ Emissions & welfare relative to no policy?
▶ ‘Impacts of IRA’ for short

3 Quantify constrained-efficient subsidy
▶ Emissions & welfare relative to no policy?
▶ Emissions & welfare relative to dirty energy tax?
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Macro models suggest limited effectiveness of clean energy subsidies

1 Constrained-efficient subsidy = indirect externality
▶ Indirect externality = (impact of clean on dirty) × (MCext of dirty)
▶ Subsidies ↓ emissions ⇐⇒ clean and dirty energy gross substitutes
▶ Substitutability not relevant for Pigouvian tax

2 Small impacts of subsidies in IRA
▶ Standard values suggest subsidies ↑ emissions (gross complements)

3 Carbon tax yields order of magnitude ↓ emissions and ↑ welfare
relative to constrained-efficient subsidy
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Related literature and contribution

Macro Climate Models: Nordhaus and Boyer (2003), Nordhaus and
Barrage (2023), Golosov et al (2014), Hassler et al (2016, 2018), Traeger
(forthcoming)

Contribution: Clean energy subsidies

Second-best in static/CGE models: Palmer and Burtaw (2005),
Fullerton and Wolverton (2005), Bennear and Stavins (2007), Goulder and
Parry (2008), Holland et al (2009, 2012), Kalhul et al., (2013), Newell et
al (2019).

Contribution: Characterize best subsidy, quantification in dynamic model

Macro & second-best: Rezai and van der Ploeg (2017), Hassler et al
(2020, 2021), Bistline et al (forthcoming)

Contribution: Characterize best subsidy, quantify IRA & best subsidy

Casey, Jeon, Traeger Clean Energy Subsidies VSCE 5 / 30



Outline

1 General characterization in simple model

2 Functional forms in simple model

3 Dynamic model

4 Conclusion
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Study a (really) simple model to get intuition

Gross output: q = f(l, ed, ec)
▶ labor (l), dirty energy (ed), clean energy (ec)
▶ CRS, Inada conditions
▶ fj > 0 and fjj < 0, j = l, c, d
▶ Price normalized to one

Inelastic labor supply: l = 1

Energy extracted from environment using final good
▶ Real extraction costs: pd, pc

Final output: y = f(l, ed, ec)− pcec − pded

Utility: U = u(y)−med

Policy: Can tax or subsidize ec (τc > 0 is a tax)
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Competitive equilibrium (CE) determined by firm optimization

Firm solves:

max
l,ed,ec

f(l, ed, ec)− pded − (pc + τc)ec − wl,

First order conditions determine equilibrium (l = 1):

fd(1, ed, ec) = pd

fc(1, ed, ec) = pc + τc

Key result:

ded
dec

=
fcd
−fdd

≡ D′(ec)

ded
dec

> 0 ⇐⇒ fcd > 0
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Constrained social planner can subsidize/tax clean energy

Choose τc to maximize U , subject to CE.
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Equivalently,
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(
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)
−mD(ec).
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∗
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∂y
∂ec

+(fd(1, e
∗
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Constrained social planner can subsidize/tax clean energy

Choose τc to maximize U , subject to CE.

Equivalently,

max
ec

u
(
f(1, D(ec), ec)− pdD(ec)− pcec

)
−mD(ec).

Substitute from competitive equilibrium:

fc(1, e
∗
c , D(e∗c))− pc︸ ︷︷ ︸

=τ∗c

+(fd(1, e
∗
c , D(e∗c))− pd)D

′(e∗c)︸ ︷︷ ︸
=0

=
m

u′(y)
D′(e∗c)︸ ︷︷ ︸

indirect externality

.
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Constrained-efficient subsidy

τ∗c =
m

u′(y)

ded
dec

=

(
m

u′(y)

)(
fcd
−fdd

)

So, τ∗c > 0 ⇐⇒ fcd > 0.

Clean energy subsidy/tax = indirect externality

Best to tax clean energy when ded
dec

> 0

Best to subsidize clean energy when ded
dec

< 0

Note, fcd wouldn’t matter for optimal carbon tax.

Casey, Jeon, Traeger Clean Energy Subsidies VSCE 10 / 30



Constrained-efficient subsidy

τ∗c =
m

u′(y)

ded
dec

=

(
m

u′(y)

)(
fcd
−fdd

)

So, τ∗c > 0 ⇐⇒ fcd > 0.

Clean energy subsidy/tax = indirect externality

Best to tax clean energy when ded
dec

> 0

Best to subsidize clean energy when ded
dec

< 0

Note, fcd wouldn’t matter for optimal carbon tax.

Casey, Jeon, Traeger Clean Energy Subsidies VSCE 10 / 30



What about non-optimal subsidies?

dU

dτc

1

u′(y)

∣∣∣
τc=0

=
m

u′(y)

ded
dτc

=
m

u′(y)

ded
dec

dec
dτc

=
m

u′(y)

fcd
−fdd

dec
dτc

.

The no-policy equilibrium maximizes y.

But, it has too much dirty energy: ∂U/∂ed < 0.

Envelope theorem: marginal ↑ U ⇐⇒ marginal ↓ ed.

If fcd > 0, then ded/dec > 0 and a subsidy decreases welfare.
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Learning-by-doing (LBD) doesn’t change intuition

LBD common justification for clean energy subsidies
▶ But, separate market failure
▶ Separate instruments to implement optimal allocation

LBD: ↑ ec →↓ pc

Maybe good for welfare (better tech), but not environment

If fcd > 0, still ded/dec > 0
▶ Clean subsidy still increases dirty energy use.
▶ Impact of subsidy is now bigger, because stronger response of dec

dτc

(Also, no need to raise revenue in this model.)
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Use nested CES-in-CD to map results to model parameters

Standard approach in macro climate-economy models:

q = g(l, e) = l1−νeν

e = h(ed, ec) =

(
ωe

ϵ−1
ϵ

d + (1− ω)e
ϵ−1
ϵ

c

) ϵ
ϵ−1

⇒ q = f(l, ed, ec) = g(l, h(ed, ec)).
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c
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Key parameters:

∂ ln ed
ec

∂ ln pd
pc

= −ϵ

∂ ln e

∂ ln pe
= −(1− ν)−1
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ϵ
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ϵ−1
ϵ

c
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⇒ q = f(l, ed, ec) = g(l, h(ed, ec)).

With these functional forms

fcd > 0 ⇐⇒ ϵ < (1− ν)−1.
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Use nested CES-in-CD to map results to model parameters

Standard approach in macro climate-economy models:

q = g(l, e) = l1−νeν

e = h(ed, ec) =

(
ωe

ϵ−1
ϵ

d + (1− ω)e
ϵ−1
ϵ

c

) ϵ
ϵ−1

⇒ q = f(l, ed, ec) = g(l, h(ed, ec)).

With these functional forms:

d ln ed
d ln(pc + τc)

=
(
ϵ− (1− ν)−1

) (pc + τc)ec
(pc + τc)ec + pded

.

Energy mix: ϵ determines ∆(ed/e)

Energy use: ν determines ∆e
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Use nested CES-in-CD to match results to data

ν measured from national accounts: 4%-8%
▶ Hassler et al (2021); Casey (forthcoming)

Cutoff value for ϵ : 1.04− 1.09.

Standard value of ϵ = 0.95 ⇒ τ∗c > 0
▶ Meta-study by Stern (2012)
▶ Used in Golosov et al (2014); Hassler et al (2016, 2018)
▶ Close to cutoff ⇒ ded

dτc
is small

Alternate value of ϵ is ≈ 2 ⇒ τ∗c < 0
▶ Papageorgiou et al (2017)
▶ Electricity sector + average of other sectors
▶ Acemoglu et al (2023) summarize as ϵ = 1.85
▶ How close to cutoff?

Key results:
▶ Standard parameters imply detrimental impacts of subsidies
▶ Reasonable parameter values reverse sign of impact signs
▶ Either way, impacts likely to be small
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Outline
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Aggregate climate-economy model of US economy

Simple model intuition hold in dynamic setting?

Emissions & welfare impacts of subsidies in Inflation Reduction Act?
▶ Compare to no policy

Constrained-efficient subsidy? Compare to ...
▶ No policy
▶ IRA
▶ Dirty energy tax
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Model equations: production

Yt = Kα
y,tE

ν
y,t (Ay,tLy,t)

1−α−ν

Et =

(
ω

1
ϵZ

ϵ−1
ϵ

d,t + (1− ω)
1
ϵZ

ϵ−1
ϵ

c,t

) ϵ
ϵ−1

Zj,t = Kα
j,tE

ν
j,t(Aj,tLj,t)

1−α−ν , j = c, d

Aj,t+1 = (1 + gj)Aj,t, j = y, c, d

10-year periods

Symmetric productions functions for easy solution method

Capital in energy production (differs from GHKT)

Parameters:
ϵ ∈ {0.95, 1.85}, ν = 0.08, α = 0.27, ω = 0.60, gj = 2%/year
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Model equations: utility

U =

∞∑
t=0

βt

(
Lt ln(Ct)−m

t∑
v=0

ηvZd,v

)
ηt = (1 + gη)ηt−1

Ct +Kt+1 = wtLt + (1 + rt − δ)Kt

Linear utility similar to GHKT (2014), but with endogenous savings

Linear utility → ignore earlier/ROW emissions

SCC × 2020 emission = 4% of GDP (Rennert et al, 2020)

Parameters: gη = −2.3%/year, m = 0.60, β = 0.77, δ = 6.0%/year
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Closing the model

Kt = Ky,t +Kd,t +Kc,t

Lt = Ly,t + Ld,t + Lc,t

Kt+1 = Yt − Ct + (1− δ)Kt

Lt+1 = (1 + n)Lt.

Parameter: n = 1.1%/year.

Overall, fairly ‘off-the-shelf’ macro model

Casey, Jeon, Traeger Clean Energy Subsidies VSCE 20 / 30



Inflation Reduction Act

Need to ignore nuances. Goal is order of magnitude and sign.

Model everything as a 20% production tax credit
▶ 0.80pc,t paid by energy service producer
▶ Lump sum taxes and transfers

Bistline et al (forthcoming): IRA will lower the prices of utility-scale
solar, onshore wind and offshore wind by 20%, 12%, and 23%,
respectively

Announced and implemented in 2030. Permanent.

Compare to baseline where economy remains on no-policy BGP

Casey, Jeon, Traeger Clean Energy Subsidies VSCE 21 / 30



IRA impacts with ϵ = 0.95

2020 2040 2060 2080 2100 2120
1

1.05

1.1

1.15

1.2

1.25
Dirty Energy
Clean Energy
Energy Services
Baseline

(a) Energy Use

2020 2040 2060 2080 2100 2120

0.998

1

1.002

1.004

1.006

1.008

1.01 Consumption
Capital
Output
Baseline

(b) Macro Dynamics

Effects on dirty energy small, because close to ϵ = (1− ν)−1.

↑ dirty energy + ↓ consumption ⇒ ↓ welfare (0.15% CEV).

Casey, Jeon, Traeger Clean Energy Subsidies VSCE 22 / 30



IRA impacts with ϵ = 1.85

2020 2040 2060 2080 2100 2120

1

1.1

1.2

1.3

1.4
Dirty Energy
Clean Energy
Energy Services
Baseline

(a) Energy Use

2020 2040 2060 2080 2100 2120

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01
Consumption
Capital
Output
Baseline

(b) Macro Dynamics

ϵ > (1− ν)−1 ⇒ emissions ↓ 6.5%

Welfare increase by 0.02% CEV
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Constrained-efficient subsidies

Emissions & welfare impacts of IRA are small, possibly detrimental

Poor choice of subsidy level or ineffective instrument?

What is the best we can do with subsidies?

Use ϵ = 1.85

Find constrained-efficiency subsidy
▶ Compare to no policy, IRA, dirty energy tax
▶ Check grid: 80%, 79%, . . .
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Constrained-efficiency subsidy is 12% (vs 20% in IRA)

2020 2040 2060 2080 2100 2120
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Dirty Energy
Clean Energy
Energy Services
Baseline

(a) Energy Use

2020 2040 2060 2080 2100 2120
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Consumption
Capital
Output
Baseline

(b) Macro Dynamics

Emissions ↓ 4%

Welfare ↑ 0.06% CEV (vs no policy)

Casey, Jeon, Traeger Clean Energy Subsidies VSCE 25 / 30



Dirty energy tax

Clean subsidies have small welfare impact
▶ Just low climate damages?
▶ Benefit relative to carbon pricing?

Compare best subsidy to best tax
▶ ϵ = 1.85

Similar constraints: constant tax on dirty energy
▶ Check grid: 0%, 1%, . . .
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Constrained-efficient dirty energy tax is 49%

2020 2040 2060 2080 2100 2120
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Dirty Energy
Clean Energy
Energy Services
Baseline

(a) Energy Use

2020 2040 2060 2080 2100 2120
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

Consumption
Capital
Output
Baseline

(b) Macro Dynamics

Qualitatively different energy and macro dynamics

Dirty energy ↓ 45%

Welfare ↑ 0.7% CEV (vs no policy)
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Comparison to engineering models

Bistline et al (2023, forthcoming): REGEN suggest IRA reduces
emissions by ≈11% relative to no policy.

Possible to read this as supporting ϵ > 1.85

But, another important difference: treatment of energy demand.
▶ Partially-exogenous in REGEN
▶ ⇒ overstates emissions reductions
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Conclusion: climate policy when can’t affect dirty energy prices

Best subsidy = indirect externality

Are clean and dirty substitutes or complements?

Complements at standard parameter values ⇒ subsidies increase
emissions

▶ but EoS highly uncertain

Even with a high elasticity:
▶ limited impact of IRA on emissions
▶ dirty energy tax much more effective than best subsidy

Standard macro climate-economy models:
big return to moving to carbon pricing

Email: gpc2@williams.edu
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Outline

5 What is a plausible elasticity?
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What determines ϵ?

In general, macro elasticities depend on:

Average of sector-level elasticities

Heterogeneity between sector-level elasticities

Substitution between sectors

For clean-dirty EoS:

Elasticity within electric power sector

Average ease of electrification within end-use sectors

Substitution between end-use sectors
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What is a plausible elasticity?

e =

(
ω

1
ϵ e

ϵ−1
ϵ

d + (1− ω)
1
ϵ e

ϵ−1
ϵ

c

) ϵ
ϵ−1

=⇒

ln
sd

1− sd
= constant+ (ϵ− 1) ln

pc
pd

,

where

sd,t :=
pded
pee

.
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Dirty share fairly constant despite rising price
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With constant pc, trend implies ϵ = 1.05
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Short-run elasticity appears even lower
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