Eaton Comments on

"Technological Diversification"

Miklós Koren and Silvana Tenreyro

Federal Reserve Bank of San Francisco

November 2007

- Complex model
- Connects Producer Level and Aggregate Shocks in a very clever way

- Connection to Klette Kortum
 - Continuum of products
 - Continuum of firms
 - Heterogeneity across firms in number of products
 - Over time firms take products from other firms or lose products to them

- Here
 - Continuum of firms
 - Firms combine an integer number of inputs
 - In the static version of the model we can think of each firm using its own set of inputs
 - Firms add or lose inputs but we don't need to think of them taking inputs away from other firms or losing inputs to other firms.

• Each firm j combines inputs to produce its output with elasticity of substitution ε

$$y(j) = \left[\sum_{i=1}^{n(j)} l(i,j)^{(\varepsilon-1)/\varepsilon}\right]^{\varepsilon/(\varepsilon-1)}$$

• Consumers combine outputs of a measure 1 of firms to produce utility with elasticity of substitution ε :

$$Y = \left[\int_0^1 y(j)^{(\varepsilon-1)/\varepsilon} dj\right]^{\varepsilon/(\varepsilon-1)}$$

so that:

$$Y = \left[\int \sum_{i=1}^{n(j)} l(i,j)^{(\varepsilon-1)/\varepsilon} dj \right]^{\varepsilon/(\varepsilon-1)}$$

• It's easy to show that each firm will employ the same measure of workers \tilde{l} on each activity so that $\tilde{l} = L/N$ where:

$$N = \int n(j) dj$$

so that:

$$Y = LN^{1/(\varepsilon - 1)e}$$

• Progress occurs as firms add inputs

- Up to this point we haven't had to say anything about whether one firm's input is the "same" as another's or not.
- All that matters is the number of inputs that each firm is using

- But now rank inputs so that all firms using 1 input use the input 1, all firms using 2 inputs use the input 1 and 2, etc.
- Allow for an input to "die" with hazard γ .
- If input 1 dies every firm loses it: N falls by the measure of firms 1.
- If input *i* dies then all the firms using $i' \ge i$ are affected. If the measure is m(i) then N falls by m(i). Note that m(i) is decreasing in *i*.
- Hence the death of an input creates an aggregate shock.

- The range of different inputs in use can increase when the frontier firm adds a new input.
- But passing the frontier isn't any harder than acquiring an input that is already used by other firms.

- Much of the workings of the model can be described without the need for any dynamic optimization
 - A firm adds an input with hazard λ which is independent of the number of firms using or that have ever used that input
 - All firms using input i lose it with hazard γ
- But, as in KK, the authors introduce an activity that increases the probability of finding a new input for the firm
- The added difficulty here is that, since the economy is subject to aggregate shocks, the dynamic optimization is much more challenging

Here is where I got lost

• The authors specify demand for firm *j* as:

 $Yp(j)^{-\varepsilon}$

where "aggregate output is taken as the numeraire."

• But I would have specified it as:

$$\frac{p(j)^{-\varepsilon}}{P^{-\varepsilon}}Y$$

where P is the CES price index

$$P = \left[\int_0^1 p(j)^{1-\varepsilon} dj\right]^{1/(1-\varepsilon)}$$

(See, e.g., Atkeson Burstein)

• In Koren Tenreyro

$$p(j) = \overline{m}wn(j)^{1/(1-\varepsilon)}$$

where:

$$\overline{m} = rac{arepsilon}{arepsilon - \mathbf{1}}$$

so that:

$$P = \overline{m}wN^{1/(1-\varepsilon)}$$

• With this difference I get that the profit of firm *j* is:

$$\frac{wL}{(\varepsilon-1)N}n(j)$$

as opposed to their:

$$\frac{1}{\varepsilon} N^{(2-\varepsilon)/(\varepsilon-1)} Ln(j)$$

 $\bullet\,$ So I can't find a value of ε that eliminates feedback from N to profits

- Whatever the resolution any flaw is not fatal
- I don't think that the optimizing dynamics are playing that much of a role.
- The dynamics can be summarized in terms of the probability of gaining a new input
- I checked most of the rest of the paper and we agreed
- The key contribution, a connection between firm-level and aggregate shocks, remains

Suggestions

- Do much more with the simulations
- Compare the moments generated by the model with firm and aggregate correlations
- Get through regressions at the front faster: get to the model and simulations