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Climate Change

• Global warming is a growing threat (to economic well being,...).

• Portends massive human suffering.

• Tipping points place us in catastrophic danger.
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Why Uncertainty Quantification in a Stochastic IAM?

• Carbon taxation: Widely supported policy response to a climate

change problem.

• Level of carbon tax is based on the social cost of carbon (SCC -

marginal loss caused by an extra ton of CO2 emissions).

• SCC values are computed with integrated assessment models

(IAMs) that link economy and climate.

• IAMs are subject to significant parametric uncertainty, model

uncertainty, and climate risks of tipping points.

• Numerically difficult task since IAMs are complex non-linear

models that are highly susceptible to the curse of dimensionality.
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Our contribution

• Generic global solution method to efficiently compute global

solutions to stochastic IAMs that include economic and climate risks.

• Perform global sensitivity analysis with respect to uncertain

parameters most discussed in the literature.

1. To alleviate the curse of dimensionality we exploit a novel numerical

approach based on deep learning.

2. To take into account parametric uncertainty, we add the model

parameters as pseudo-states to the state space → we need to solve

the model only once.

3. We construct surrogate models for the Social Cost of Carbon (and

other quantities of interest) as a function of all relevant model

parameters by using Gaussian Process regression and Bayesian

active learning.
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Related Literature

• Literature on IAMs with economic and climate risks:
• IAMs taking risks into account are focusing only on one type of the risk, such as

long-run growth uncertainty (Jensen and Traeger, 2014) or climate tipping points

(Lemoine and Traeger, 2016).

• IAM that includes both economic and climate risks (Cai and Lontzek, 2019) were

solved using thousands of node-hours on a supercomputer.1

• Literature on parametric uncertainty quantification:
• Local sensitivity analysis based on Monte-Carlo simulations (Anthoff et al., 2009;

Ackerman et al., 2010; Gillingham and Stock, 2018).

• Global sensitivity analysis available only for deterministic IAMs (Anderson et al., 2014;

Butler et al., 2014; Miftakhova, 2021).

→ We introduce a generic way of performing global sensitivity analysis

for stochastic IAMs.

1
One model solution corresponds to about 11 years on a laptop.
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Outline of this talk

1. Integrated Assessment Models (IAMs) in a Nutshell

2. Deep Equilibrium Nets for IAMs

3. Global Uncertainty Quantification

4. Some Tentative Results
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Integrated Assessment Models

(IAMs) in a Nutshell



Integrated Assessment Models (IAMs)

• Pioneered by Nordhaus (DICE, RICE): Quantitative, often numerical.

• Key components:

• (Simplified) climate system.

• (Stylized) economic model of emissions AND damages.

• Economic model: needs to be dynamic, forward-looking, possibly

allowing stochasticity (temperature variations, disasters, TFP), and

potentially heterogeneous agents (“who is how impacted?”).
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Global Atmospheric Models

• AOGCM: Atmosphere Ocean Global Climate Models.

• Back-bone of IPCC (Intergov. Panel on Climate Change).

• Costly & complex (few hours wall-clock per model year & ≈ 1mio

lines of code)

• One 1y of simulation uses about 3,000 CPUh.

• Simplifications needed (DICE, FAIR, ...).

→ Need a climate model that is numerically affordable!

7



The blue marble in 5 state variables (I)

• Climate: functional form of DICE-2016 (Nordhaus, 2017a).

• Parameterization by Folini et al. (2021) (match CMIP5 output).

• DICE-2016 models the carbon cycle via three carbon reservoirs.

• Atmosphere (A), Upper ocean (U), Lower ocean (L).

• Aggregate distribution of carbon in the world given by 3 boxes:

Mt = (MA,t ,MU,t ,ML,t)
T

• Carbon concentrations evolve as linear dynamic system:

Mt+1 = (I +∆t · B) ·Mt +∆t · Et .

• Carbon Emissions (econ. activity + exogenous source): Et = Eind,t + ELand .

• Can easily afford to add more reservoirs (Eftekhari et al. (2023), in preparation).
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The blue marble in 5 state variables (II)

• The two-layer energy balance model in DICE-2016 reads as

TAT
t+1 = TAT

t +∆t · c1
(
Ft − λTAT

t − c3
(
TAT
t − TOC

t

))
,

TOC
t+1 = TOC

t +∆t · c4
(
TAT
t − TOC

t

)
.

• Radiative forcing:

Ft = F2XCO2

log(MAT
t /MAT

EQ)

log(2)
+ FEX

t .
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A Source of Uncertainty: Equilibrium Climate Sensitivity
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Another Source of Uncertainty: Damage Functions

• Weitzmann (2012):

Ωt
(
TAT,t

)
=

1

1 +
(

1
ψ1

TAT,t

)2
+

(
1

2·TPt
TAT,t

)6.754
.

• Nordhaus (2013):

ΩN
t

(
TAT,t

)
=

1

1 + π1TAT,t + π2T 2
AT,t

.

• Degree of convexity is of key importance in determining the optimal taxes, not

only the level.

• Tipping points: include losing much of the Amazon rain forest, faster onset of El

Nino, the reversal of the Gulf Stream, etc.
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Quantifying uncertainty about ECS

• Temperature equation:

TAT,t+1 =

(
1− φ21 − φ1

F2xco2

∆TAT,×2

)
TAT,t + φ21TOC,t+ (1)

φ1

(
F2xco2 log2

(
MAT,t

M∗
AT

)
+ FEX,t

)
(2)

• Follow Roe and Baker (2007) to make ECS stochastic.

• ECS = λ0

1−f F2XCO2, with f ∼ N (µf ,Sf ).

• This is controversial, see Zaliapin and Ghil (2010) and Roe and

Baker (2011) and Zaliapin and Ghil (2011).
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Bayesian learning mechanics

• Temperature evolves as:

TAT,t+1 =

(
φ1

F2xco2

∆T 0
AT,×2

f̃t+1 + 1− φ21 − φ1
F2xco2

∆T 0
AT,×2

)
TAT,t

+ φ21TOC,t + φ1

(
F2xco2 log2

(
MAT,t

M∗
AT

)
+ FEX,t

)
+ ϵ̃T ,t+1

where f̃t+1 ∼ N
(
µf ,t ,Sf ,t , f , f

)
- uncertain climate sensitivity,

ϵ̃T ,t+1 - shock to the temperature.

• The agent observes a realisation of the shocks in climate sensitivity

and temperature at the beginning of the period t before the

decisions are made.

• Under Gaussian assumption analytic formulas for updating:

µf ,t+1 =
SϵTµf ,t + φ1CTAT,t

(
φ1CTAT,t f̃t+1 + ϵ̃T ,t+1

)
Sf ,t

SϵT + (φ1CTAT,t)
2 Sf ,t

Sf ,t+1 =
SϵTSf ,t

SϵT + (φ1CTAT,t)
2 Sf ,t
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Economy

• Standard DICE model with the single representative agent

• Epstein-Zin preferences:

Ut =

[
(1− β) (Ct/Lt)

1−1/ψ

1− 1/ψ
Lt + e−ρEt

[
U1−γ
t+1

] 1−1/ψ
1−γ

] 1
1−1/ψ

, (3)
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A Stochastic IAM with Bayesian Learning about the ECS

V (Xt)
1−1/ψ = max

Ct ,Kt+1,µt

{(
Ct

Lt

)1−1/ψ

Lt + e−ρEt

[
V (Xt+1)

1−γ
] 1−1/ψ

1−γ

}
s.t. (1−Θ(µt)) Ωt (TAT,t)K

α
t (AtLt)

1−α − Ct − It = 0

(1− δ)Kt + It − Kt+1 = 0

1− µt ≥ 0

(1− ϕ12)MAT,t + ϕ21MUO,t + (1− µt)σtK
α
t (AtLt)

1−α + ELand,t −MAT,t+1 = 0

ϕ12MAT,t + (1− ϕ21 − ϕ23)MUO,t + ϕ32MLO,t −MUO,t+1 = 0

ϕ23MUO,t + (1− ϕ32)MLO,t −MLO,t+1 = 0

(1− φ21 − φ1C )TAT,t + φ21TOC,t + φ1

(
F2xco2 log2

(
MAT,t

M∗
AT

)
+ FEX,t

)
+

φ1C f̃t+1TAT,t + ϵ̃T ,t+1 − TAT,t+1 = 0

φ4TAT,t + (1− φ4)TOC,t − TOC,t+1 = 0

SϵTµf ,t + φ1CTAT,t

(
φ1CTAT,t f̃t+1 + ϵ̃T ,t+1

)
Sf ,t

SϵT + (φ1CTAT,t)
2 Sf ,t

− µf ,t+1 = 0

SϵTSf ,t

SϵT + (φ1CTAT,t)
2 Sf ,t

− Sf ,t+1 = 0

f̃t+1 ∼ N
(
µf ,t ,Sf ,t , f , f

)
, ϵ̃T ,t+1 ∼ N (0,SϵT )

• Xt =
[
kt ,MAT,t ,MUO,t ,MLO,t ,TAT,t ,TOC, µf ,t , Sf ,t , t; θ

]
.

• Minimal model has a 9+N-dimensional state space. 15



Deep Equilibrium Nets for IAMs



Roadblocks for Performing UQ in Stochastic IAMs

1. Models suffer from the curse of dimensionality.

2. Models suffer from non-linearities.

3. Have to approximate and interpolate high-dimensional functions on

irregular-shaped geometries.
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→ “Deep Equilibrium Nets” (Azinovic et al., 2022).
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Deep Equilibrium Nets & IAMs

• DEQNs can solve nonlinear stochastic models globally, even if geometry is

oddly-shaped, in minutes to hours on a laptop.

• Allows to deal with large state spaces (up to dozens of state variables).

• Add pseudo-states for uncertainty quantification at a small extra cost.

• Only one SINGLE model evaluation needed.

• The remaining UQ tasks are just “post-processing”, and come at low

computational costs, as we can query a surrogate.
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Deep equilibrium nets (Azinovic et al., 2022)

A functional rational expectations equilibrium: {fi}Nout

i=1 , where

fi : D ⊂ RNin → R : x︸︷︷︸
state

→ fi (x)︸︷︷︸
endogenous variables

, s.t. : G(x, f1, . . . , fNout
) = 0︸ ︷︷ ︸

equilibrium conditions

A deep equilibrium net: Nρ, where

Nρ : D ⊂ RNin → RNout : x︸︷︷︸
state

→ Nρ(x)︸ ︷︷ ︸
approximate endogenous variables

≈

 f1(x)

. . .

fNout(x)


Key ideas:

1. use the definition of the equilibrium functions, i.e. the implied error

in the optimality conditions, as loss function.

2. learn the equilibrium functions with stochastic gradient descent.

3. take the data points from a simulated path.
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What is a deep neural net

input := x→ ϕ1(W 1
ρx+ b1ρ) =: hidden 1

→ hidden 1→ ϕ2(W 2
ρ(hidden 1) + b2ρ) =: hidden 2

→ hidden 2→ ϕ3(W 3
ρ(hidden 2) + b3ρ) =: output

The neural net is then given by the choice of activation functions and the

parameters ρ.
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How to find good parameters ρ

The standard way:

Step 1 : get “labeled data” D := {(x1, y1), . . . , (x|D|, y|D|)} where
yi = f(xi ) is the correct output for input xi .

Step 2 : Define a loss function, for example:

lρ :=
1

|D|
∑

(xi ,yi )∈D

(yi −Nρ(xi ))
2

Step 3 : Adjust the parameters to minimize the loss via (stochastic)

gradient descent:

ρnewi = ρoldi − αstep ∂lρold

∂ρoldi

the step-width αstep is called the “learning rate” and the process of

adjusting the parameters is called “learning”.
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Our loss function

As a loss function, we implement

lρ :=
1

Npath length

∑
xi on sim. path

(G(xi ,Nρ))
2

where we use Nρ to simulate a path. G is chosen, such that the true

equilibrium policy f(x) is defined by G(x, f) = 0 ∀x. Therefore, there is no

need for labels to evaluate our loss function.
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Training deep equilibrium nets2

1. Simulate a sequence of states Di
train ← {xi1, xi2, . . . , xiT} from the

policy encoded by the network parameters ρi .

2. Evaluate the errors of the equilibrium conditions on the newly

generated set Dtrain.

3. If the error statistics are not low enough:

3.1 Update the parameters of the neural network with a gradient descent

step (or a variant):

ρi+1
k = ρik − αlearn

∂ℓDi
train

(ρi )

∂ρik
.

3.2 Set new starting states for simulation: xi+1
0 = xiT .

3.3 Increase i by one and go back to step 1.

2Sample codes here: https://github.com/sischei/DeepEquilibriumNets.
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Mapping IAMs into the DEQN solver

• IAMs are not stationary. Hence we add time as an exogenous state

variable (see, e.g., Traeger (2014)).

• We normalize capital, consumption, investment, and the value

function by TFP and labor (standard approach due to numerical

stability reasons).

• We need FOCs with respect to policy variables and climate states

tomorrow (denote as ∗) to feed them into the loss function, but we

cannot compute analytically ∂ṽ
∂∗t+1

.

• Solution: we use envelope theorem to get an analytical expression

for ∂ṽ
∂∗t
→ shift it one period forward → substitute it to FOCs.
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Mapping the Model to DEQN

DEQN architecture: 2 hidden layers; 1024 nodes; selu activation function;

minibatch size: 128; Adam optimizer; learning rate αlearn = 10−5.

→ Compute first-order conditions and feed them into the DEQN.
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Global Uncertainty

Quantification



Why Global Uncertainty Quantification?

• How are quantitative results of IAMs sensitive to a specific

parameterization?

• Importance ranking informs the researcher on which parts to focus on

when calibrating or extending a model, or the policymaker on which

parameters need further scrutiny.

• Today, often “one-at-a-time” approaches tend to be unstructured and

suffer from the fact that they are only local, that is, highly dependent on

the chosen parameter values.

→ Need for principled global sensitivity analysis (see e.g., Sudret (2008)

and Harenberg et al. (2019)).
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Global Uncertainty Quantification: 3 Quantities

• We aim at determining which input parameters (or combinations)

contribute the most to the uncertainty of the quantities of interest

(QoI) such as the SCC.

• Measures for UQ that we use:

• Sobol’ index gives prioritization of the uncertain parameters based

on the outcome variance explained.

• Shapley value identifies how much model variance can be attributed

to the uncertainty in input parameters.

• Univariate effect shows how each parameter affects the outcomes.

→ Want to identify which uncertain parameters potentially impact our

QoIs based on UQ.

→ Construct a cheap-to-evaluate surrogate model based on Gaussian

Processes for QoI’s (Scheidegger and Bilionis, 2019), e.g.,

SCC(θ1, θ2, ...θN).
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Why Surrogate Models?

• We solved the IAM as a function of exogenous and endogenous

states as well as parameters.

• Our computed policies are functions of this extended state space.

• To obtain QoIs as a function of the parameters, we need to simulate

the economy with the derived policy functions to compute SCC at N

points.

• Solution: Surrogates – high-precision approximations of structural

models.
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Gaussian Processes in a Nutshell

→ Create a surrogate model for QoIs such as SCC(θ1, θ2, ...θN) with GPs.

28



Bayesian Active Learning

• Training of standard GPs scales as O(N3) with the number of observations N.

• Runtime consequently would increase drastically with increasing N.

• Bayesian active learning: “add points where needed the most”.

U(x̃) = σmµ̃(x̃) +
σv

2
log (σ̃(x̃)) (4)

σm > 0, σv > 0, and where µ̃ and σ̃ are the predictive mean and variance of a GP, trained at input

locations X = {x1, ..., xn}, and evaluated at x̃ , respectively. →Fit a GP over the SCC(θ1, ..., θN ).
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Sobol’ indices

• Consider a generic mathematical modelM (·) which has N number

of uncertain parameters θ as an input and Q number of model

outputs, y summarizes the QoI (e.g., SCC):

θ ∈ Dθ ⊂ RN 7→ y =M (θ1, θ2, · · · , θN) ∈ RQ .

• The first-order Sobol indices are defined as:3

Si ≡
Varθi

[
EΘ\θi [y | θi ]

]
VarΘ [y ]

• The nominator Varθi
[
EΘ\θi [y | θi ]

]
tells you how much the first

order effect of θi on model output y .

• We normalize the index by the total model variance VarΘ [y ] to be

scaled in [0, 1].

3For simplicity, we assume Q = 1.
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When to use Sobol’ indices?

• Screening: the first-order Sobol’ index indicates by what percentage

the total variance D would be reduced, should the parameter Θi be

perfectly known and set to a fixed value.

• If first-order Sobol’ index (in practice < 1%): parameter Θi could be

set to a deterministic value without changing the distribution of the

quantity of interest.
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Univariate Effect (UE)

• UE: Measures the non-linear relationship between the target QoI and

an uncertain input parameter.

• UE: is the conditional expectation, which integrates over the other

uncertain parameters θ−i , of QoI as a function of an input

parameter θi fixed at an arbitrary value ϑi :

M1
i (ϑi ) = Eθ−i [Y | θi = ϑi ] .

→Sobol’ indices do not include information about the direction in which

it affects the quantities of interest.

→Univariate effect: They help to find regions of high and low sensitivity,

and can be interpreted as a robust direction of change under parameter

uncertainty.

32



Some Tentative Results



Parameter Ranges for the UQ Analysis

Parameter θ0i θi θi Source etc.

ρ 0.015 0.01 0.02 Stern (2007)

γ 10. 5.0 10.0 Jensen and Traeger (2014) and

Cai and Lontzek (2019)

ψ 1.5 0.5 2.0 –//–

π2 0.00236 0.002 0.008 Nordhaus (2017b) and

Weitzman (2012)

µf ,0 0.45 0.65 0.73 Roe and Baker (2007)

Sf ,0 0.169 0.1 0.14 Roe and Baker (2007)
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Social Cost of Carbon [$/tonC] - Distribution Matters
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Model with learning (parameters set at benchmark values; left: ψ = 0.5;

right: ψ = 1.5); SCC behaves like a random variable, as Temperature

and ECS is stochastic (our results confirm Cai and Lontzek (2019)).
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Tail learning
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Figure 1: The posterior probability density function of ∆TAT,×2 is shown when

the true equilibrium sensitivity ∆T ∗
AT,×2 is set to 2.0, 3.42, and 4.5,

respectively.

• Social planner learns the upper tail of the prior distribution very quickly (less than a decade

for 99% percentile; ECS < 3.42).

• In the case where the ECS is set to 4.5, that is, relatively high, learning slows as the Bayes

rule requires more observations to move the mean estimate from the prior ECS to the true

high value.
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Learning: Importance of Parameters for SCC in 2020

µf Sf ρ γ ψ π2
0.0

0.2

0.4

0.6

0.8

1.0

Shi

Si

36



Learning: Importance of Parameters for SCC in 2100
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Learning: Univariate effects on the SCC in 2020
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Learning: Univariate effects on the SCC in 2100
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Conclusion & Outlook

• SCC in 2020 with learning is equally sensitive towards climatic

uncertainty (equilibrium climate sensitivity and damages) and

economic uncertainty (intertemporal elasticity of substitution).

• SCC in 2100 with learning is less sensitive towards climatic

uncertainty and more sensitive towards economic uncertainty.

• We provide, to the best of our knowledge, the most comprehensive

and scalable computational framework to solve large-scale dynamic

stochastic integrated models and perform UQ.

• Some open-source codes here:

• https://github.com/ClimateChangeEcon/Climate_in_Climate_

Economics

• https://github.com/sischei/DeepEquilibriumNets

• Moving forward: We intend to add multiple global regions to the

model to study the distributional effects of climate change.
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Questions?
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