Virtual Seminar on Climate Economics

Organizing Committee:

Glenn Rudebusch (Brookings Institution)
Michael Bauer (Federal Reserve Bank of San Francisco)
Stephie Fried (Federal Reserve Bank of San Francisco)
Òscar Jordà (UC Davis, Federal Reserve Bank of San Francisco)
Fernanda Nechio (Federal Reserve Bank of San Francisco)
Toàn Phan (Federal Reserve Bank of Richmond)

An Empirical Test of the Green Paradox for Climate Legislation

Maya Norman¹ and Wolfram Schlenker^{1,2}

¹ Columbia University ² National Bureau of Economic Research (NBER)

Virtual Seminar on Climate Economics

Motivation 1

Data 2

- 3 Empirical Strategy
- 4 Empirical Results
- Discussion Policy Implications

Conclusions 6

▶ < ∃ ▶</p>

Э

Outline

1 Motivation

< A

Э

Climate Legislation: Setting Cap in Future

- Climate legislation often establishes goals for the future
 - Give companies and consumers time to adapt and plan for a transition away from fossil fuels
 - Examples:
 - * European Union enacted the goal to be climate neutral (net zero emissions) by 2050
 - \star China established the same goal for 2060

★ Ξ ► < Ξ ►</p>

Climate Legislation: Setting Cap in Future

- Climate legislation often establishes goals for the future
 - Give companies and consumers time to adapt and plan for a transition away from fossil fuels
 - Examples:
 - * European Union enacted the goal to be climate neutral (net zero emissions) by 2050
 - \star China established the same goal for 2060
- Fossil fuels are exhaustible resources
 - Finite availability dictates their use and price path
 - Large scarcity rents for producers
 - * Saudi Arabia: cost to extract oil at \$8 per barrel, sell for \$70per barrel
 - Why does price exceed marginal cost?
 - $\star\,$ Higher price ensures that some of the resource is saved for future periods

★ ∃ ► < ∃ ►</p>

Climate Legislation: Setting Cap in Future

- Climate legislation often establishes goals for the future
 - Give companies and consumers time to adapt and plan for a transition away from fossil fuels
 - Examples:
 - * European Union enacted the goal to be climate neutral (net zero emissions) by 2050
 - \star China established the same goal for 2060
- Fossil fuels are exhaustible resources
 - Finite availability dictates their use and price path
 - Large scarcity rents for producers
 - * Saudi Arabia: cost to extract oil at \$8 per barrel, sell for \$70per barrel
 - Why does price exceed marginal cost?
 - $\star\,$ Higher price ensures that some of the resource is saved for future periods
- Green Paradox: limiting fossil fuel use in the future through legislation
 - puts a cap on how much producers want to save for the future
 - \blacktriangleright shifts production towards the present \rightarrow lower price

▶ < ⊒ ▶

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024

5/34

- Optimal allocation
 - Exhaustible resource
 - Zero extraction cost
 - Availability is fixed

 $\star \ q_1+q_2=\bar{q}$

- Demand $D_1(q_1)$
 - ► Period 2: discounted
 - $D_2(q_2) = \frac{D_1(q_1)}{1+r}$
- Equate price
 - Optimal split
- Limit in period 2

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024

5/34

• Optimal allocation

- Exhaustible resource
- Zero extraction cost
- Availability is fixed

 $\star \ q_1+q_2=\bar{q}$

- Demand $D_1(q_1)$
 - ► Period 2: discounted
 - $D_2(q_2) = \frac{D_1(q_1)}{1+r}$
- Equate price
 - Optimal split
- Limit in period 2

• Optimal allocation

- Exhaustible resource
- Zero extraction cost
- Availability is fixed

 $\star \ q_1+q_2=\bar{q}$

- Demand $D_1(q_1)$
 - ► Period 2: discounted
 - $D_2(q_2) = \frac{D_1(q_1)}{1+r}$
- Equate price
 - Optimal split
- Limit in period 2

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

• Optimal allocation

- Exhaustible resource
- Zero extraction cost
- Availability is fixed

$$\star \ q_1+q_2=\bar{q}$$

- Demand $D_1(q_1)$
 - Period 2: discounted
 - $D_2(q_2) = \frac{D_1(q_1)}{1+r}$
- Equate price
 - Optimal split
- Limit in period 2
 - $q_2 \downarrow, q_1 \uparrow$
 - ▶ p_2 ↑ , p_1 ↓

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024

- Green Paradox: large theoretical literature
 - ► E.g., Sinn (2008), Hoel (2010), Van der Ploeg and Withagen (2012, 2015)
 - ► Supply response to announcements that future use might be limited
 - ► Anticipation effect: rational actors will adjust even before laws are passed

- Green Paradox: large theoretical literature
 - ► E.g., Sinn (2008), Hoel (2010), Van der Ploeg and Withagen (2012, 2015)
 - Supply response to announcements that future use might be limited
 - ► Anticipation effect: rational actors will adjust even before laws are passed
- Some empirical evidence
 - Di Maria, Lange & van der Werf (2014), Merrill (2018), Grafton, Kompas, Long & To (2014)
 - * Pre-post comparison after passage of environmental regulation
 - $\star\,$ Less clear when markets updated their beliefs / what beliefs were
 - ► Lemoine (2017)
 - \star Closest to our study
 - \star Abnormal coal price returns on day when Senator Graham abandoned bill
 - ★ Challenge: same week as Deep Horizon Disaster

Contributions of Our Study

Various data sources and time scales

- High-frequency (daily) data
- Monthly data on environmental policy spanning decades
- Event study of surprise court ruling

▶ < ⊒ ▶

3

Contributions of Our Study

Various data sources and time scales

- High-frequency (daily) data
- Monthly data on environmental policy spanning decades
- Event study of surprise court ruling
- Osing data that reveal market beliefs and awareness
 - Estimate of market belief from prediction market (InTrade)
 - Internet searches (google trends) to establish salience of topic

Contributions of Our Study

Various data sources and time scales

- High-frequency (daily) data
- Monthly data on environmental policy spanning decades
- Event study of surprise court ruling
- Osing data that reveal market beliefs and awareness
 - Estimate of market belief from prediction market (InTrade)
 - Internet searches (google trends) to establish salience of topic

• Focus on temporal aspect across different maturities of futures contracts

- Classical short-term shocks to spot price phase out over time
- ► Green Paradox effects *all* maturities, i.e., consistent effect across maturities
 - $\star\,$ Might even phase-in if production decision in short-term are fixed

1 Motivation

2 Data

- 3 Empirical Strategy
- 4 Empirical Results
- 5 Discussion Policy Implications

6 Conclusions

Э

590

8/34

• WTI crude oil prices from Cushing, Oklahoma

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< □ > < 同

Э

- WTI crude oil prices from Cushing, Oklahoma
- Oil Futures
 - Oil futures contracts are the market's assessment of future oil prices
 - ► NYMEX: futures on the West Texas Intermediate (WTI) crude price
 - ★ 24 actively traded maturities $f = 1 \dots 24$ months into the future

N 4 E N

3

- WTI crude oil prices from Cushing, Oklahoma
- Oil Futures
 - Oil futures contracts are the market's assessment of future oil prices
 - NYMEX: futures on the West Texas Intermediate (WTI) crude price
 - ★ 24 actively traded maturities $f = 1 \dots 24$ months into the future
- Coal Futures
 - NYMEX: futures on Central Appalachian Contract
 - * 24 actively traded maturities $f = 1 \dots 24$ months into the future

Oil Prices

Oil Prices

Norman & Schlenker (Columbia & NBER)

February 1, 2024

- Prediction market contract
 - Bet on the realization of a particular event by a given date
 - Our study: "A cap-and-trade system for emissions trading to be established before midnight ET on 31 Dec 2010"

▶ < ⊒ ▶

3

- Prediction market contract
 - Bet on the realization of a particular event by a given date
 - ► Our study: "A cap-and-trade system for emissions trading to be established before midnight ET on 31 Dec 2010"
- Waxman-Markey bill
 - US climate bill (passed by House, taken up by Senate)
 - $\star\,$ Sizable reduction in CO_2 emissions: 83-percent emissions reduction from 2005 levels by 2050
 - ► Intrade prices from May 1, 2009 to December 31, 2010
 - \star Prices exceeded 50% (probability of passing larger than 50%)

Prediction Market Prices (May 2009 - December 2010)

- Prices (cents)
 - Probability of law passing
- Initial above 50%
 - ► House passed bill 219–212
 - June 26, 2009
- Probability approached zero
 - Bill was abandoned

- Market movement (S&P500 index)
 - Obtained from Bloomberg terminals
 - Oil prices respond to overall market conditions
 - ★ We control for S&P500 index

▶ < ⊒ ▶

э

- Market movement (S&P500 index)
 - Obtained from Bloomberg terminals
 - Oil prices respond to overall market conditions
 - ★ We control for S&P500 index
- Google trends data on internet searches
 - Search volume for "Waxman-Markey"
 - Results are normalized
 - \star Day with highest search volume is set to zero
 - $\star\,$ Day with value of 5 implies search volume is 5% of the day with the highest search volume

Policy Salience

- Monthly index from Noailly et al. (2021) from text-mining 15 million articles
 - ▶ Published between 1981 and 2019 in 10 major newspapers
 - ★ New York Times, Washington Post, Wall Street Journal, Houston Chronicle, Dallas Morning News, San Francisco Chronicle, Boston Herald, Tampa Bay Times, San Jose Mercury News, and San Diego Union Tribune
 - Vector machine algorithm trained on 2,464 labeled articles

э
Policy Salience

- Monthly index from Noailly et al. (2021) from text-mining 15 million articles
 - ▶ Published between 1981 and 2019 in 10 major newspapers
 - ★ New York Times, Washington Post, Wall Street Journal, Houston Chronicle, Dallas Morning News, San Francisco Chronicle, Boston Herald, Tampa Bay Times, San Jose Mercury News, and San Diego Union Tribune
 - Vector machine algorithm trained on 2,464 labeled articles
- Also classify environmental policy articles into sub-topics (topic modeling, an unsupervised learning algorithm)
 - International climate negotiations
 - * Words/ phrases such as agreement, united, international, government, country, state, world, trade, president, European, Mexico, China, etc.
 - ★ Correlated with US climate policy
 - Renewable policy
 - ★ Words/phrases such as renewable energy, wind, solar, energy, turbine, energy, power, electricity, renewable, wind power, farm, solar energy, turbine, etc.

э

Policy Salience

share of all environmental articles attributed to a given topic 50% 45% Other topics 40% 35% 30% **Air Pollution** 25% 20% Water Renewables Pollution 15% 10% **Cleanup & Courts** 5% **Climate Change** 0% 1980 2000 2006 2008 2010 2012 2014 2016 2018 1982 1984 1988 1000 1994 1996 1998 2002 2004 イロト イヨト イヨト

• Share of topics

over time

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024

Э

Sac 15/34

Policy Salience

February 1, 2024

Motivation

3 Empirical Strategy

< 17

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta_f \ \Delta p_t + \gamma_f \ \Delta z_t + \epsilon_{ft}$$

- * 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - \star We focus on variation within a calendar month
 - Δp_t : Change in oil spot price on day t
 - Δz_t : Market movement on day t (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day in baseline)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta_f \ \Delta p_t + \gamma_f \ \Delta z_t + \epsilon_{ft}$$

- ★ 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - $\star\,$ We focus on variation within a calendar month
 - Δp_t : Change in oil spot price on day t
 - Δz_t : Market movement on day t (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day in baseline)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta_f \ \Delta p_t + \gamma_f \ \Delta z_t + \epsilon_{ft}$$

- * 24 actively traded maturities $f = 1 \dots 24$ months into the future
- * Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - \star We focus on variation within a calendar month
 - Δp_t : Change in oil spot price on day t
 - Δz_t : Market movement on day t (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta_f \ \Delta p_t + \gamma_f \ \Delta z_t + \epsilon_{ft}$$

- * 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - \star We focus on variation within a calendar month
 - Δp_t : Change in oil spot price on day t
 - Δz_t : Market movement on day t (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta_f \ \Delta p_t + \gamma_f \ \Delta z_t + \epsilon_{ft}$$

- * 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - \star We focus on variation within a calendar month
 - Δp_t : Change in oil spot price on day t
 - Δz_t : Market movement on day t (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta_f \ \Delta p_t + \gamma_f \ \Delta z_t + \epsilon_{ft}$$

- * 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - \star We focus on variation within a calendar month
 - Δp_t : Change in oil spot price on day t
 - Δz_t : Market movement on day t (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day)
 - ★ Errors of 24 maturities allowed to be correlated

Step 2: Cap & Trade Prediction Market

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta \ \Delta x_t + \gamma_f \ \Delta z_t + \epsilon_{ft}$$

where

 Δy_{ft} : Percent change in the price of oil future on day t with maturity f

- * 24 actively traded maturities $f = 1 \dots 24$ months into the future
- ***** Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - \star We focus on variation within a calendar month
 - Δx_t : Change in prediction price on day t
 - * Price in cents (0-100) equivalent to probability of law passing
 - * Change in price is belief update (change in probability)
 - ★ In sensitivity check we estimate a separate β_f by maturity
 - * In sensitivity check we estimate a flexible $g(\Delta x_t)$ using restricted cubic splines
 - Δz_t : Market movement on day t (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day in baseline)
 - ★ Errors of 24 maturities allowed to be correlated

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024

Step 2: Cap & Trade Prediction Market

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta \ \Delta x_t + \gamma_f \ \Delta z_t + \epsilon_{ft}$$

where

 Δy_{ft} : Percent change in the price of oil future on day t with maturity f

- * 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - \star We focus on variation within a calendar month
 - Δx_t : Change in prediction price on day t
 - * Price in cents (0-100) equivalent to probability of law passing
 - * Change in price is belief update (change in probability)
 - ★ In sensitivity check we estimate a separate β_f by maturity
 - ★ In sensitivity check we estimate a flexible $g(\Delta x_t)$ using restricted cubic splines
 - Δz_t : Market movement on day t (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day in baseline)
 - ★ Errors of 24 maturities allowed to be correlated

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024

化压压 化压

Step 3: Urgenda v. Netherlands Ruling

- First successful climate liability suit brought under human rights and tort law
 - Ruling released on June 24, 2015
 - Judge stated that climate change's threat was severe
 - * Under Dutch law a threat of damage suffices for injunctive relief

▶ < ⊒ ▶

- First successful climate liability suit brought under human rights and tort law
 - ► Ruling released on June 24, 2015
 - Judge stated that climate change's threat was severe
 - \star Under Dutch law a threat of damage suffices for injunctive relief
- Ruling was unexpected, notable and historic
 - ▶ NYTimes (6/29/15) "Ruling Says Netherlands Must Reduce Greenhouse Gas Emissions"
 - ★ Marjan Minnesma (director of Urgenda) "everybody in the legal scene said, 'This will never happen this is just a P.R. stunt.' This is not a P.R. stunt."
 - ★ Michael Gerrard (Sabin Center for Climate Change Law at Columbia): "I think this will encourage lawyers in several other countries to see if they have opportunities in their domestic courts to pursue similar litigation"
 - Dutch share of global fossil fuel consumption is minimal
 - \star Precedent that other countries subject to the European Convention might follow

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Step 3: Urgenda v. Netherlands Verdict Announcement

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta \, \mathbb{1}_{v} + \gamma_{f} \Delta z_{t} + \epsilon_{ft}$$

- where
 - Δy_{ft} : Percent change in the price of oil future on day t with maturity f
 - * 24 actively traded maturities $f = 1 \dots 24$ months into the future
 - \star Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - $\star\,$ We focus on variation within a calendar month
 - $\mathbb{1}_{v}$: Dummy for June 24, 2015, the day the Urgenda v. Netherlands verdict was rendered
 - ★ In sensitivity check we estimate a separate β_f by maturity
 - Δz_t : Market movement on day *t* (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day in baseline)
 - * Errors of 24 maturities allowed to be correlated

February 1, 2024

Step 3: Urgenda v. Netherlands Verdict Announcement

$$\Delta y_{ft} = \alpha_{fm(t)} + \beta \, \mathbb{1}_{v} + \gamma_{f} \Delta z_{t} + \epsilon_{ft}$$

- where
 - Δy_{ft} : Percent change in the price of oil future on day t with maturity f
 - * 24 actively traded maturities $f = 1 \dots 24$ months into the future
 - \star Price change derived using closing prices on day t relative to t-1
- $\alpha_{fm(t)}$: Maturity-by-month fixed effects
 - \star We focus on variation within a calendar month
 - $\mathbb{1}_{v}$: Dummy for June 24, 2015, the day the Urgenda v. Netherlands verdict was rendered
 - ★ In sensitivity check we estimate a separate β_f by maturity
 - Δz_t : Market movement on day *t* (percent change of S&P500)
 - ϵ_{ft} : Error term (clustered by day in baseline)
 - * Errors of 24 maturities allowed to be correlated

$$\Delta y_{fm} = \alpha_{fq(m)} + \beta I_m + \theta R_m + \lambda E_m + \gamma_f \Delta z_m + \epsilon_{fm}$$

 Δy_{fm} : Percent change in the price of oil future during month *m* with maturity *f*

- \star 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on last day of month *m* relative to m-1
- $\alpha_{fq(m)}$: Maturity-by-quarter fixed effects
 - ***** We focus on variation within a quarter q(m) 3 data points per quarter
 - *I_m*: International climate policy index (standardized)
 - R_m: Renewable energy policy index (standardized)
 - *E_m*: Environmental policy index (standardized)
 - Δz_m : Market movement during month *m* (percent change of S&P500)
 - $\epsilon_{\textit{fm}}$: Error term (clustered by month)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{fm} = \alpha_{fq(m)} + \beta \ I_m + \theta \ R_m + \lambda \ E_m + \gamma_f \ \Delta z_m + \epsilon_{fm}$$

 Δy_{fm} : Percent change in the price of oil future during month *m* with maturity *f*

- \star 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on last day of month *m* relative to m-1
- $\alpha_{fq(m)}$: Maturity-by-quarter fixed effects
 - ***** We focus on variation within a quarter q(m) 3 data points per quarter
 - *I_m*: International climate policy index (standardized)
 - R_m: Renewable energy policy index (standardized)
 - *E_m*: Environmental policy index (standardized)
 - Δz_m : Market movement during month *m* (percent change of S&P500)
 - $\epsilon_{\textit{fm}}$: Error term (clustered by month)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{fm} = \alpha_{fq(m)} + \beta I_m + \theta R_m + \lambda E_m + \gamma_f \Delta z_m + \epsilon_{fm}$$

 Δy_{fm} : Percent change in the price of oil future during month *m* with maturity *f*

- \star 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on last day of month *m* relative to m-1
- $\alpha_{fq(m)}$: Maturity-by-quarter fixed effects
 - ***** We focus on variation within a quarter q(m) 3 data points per quarter
 - *I_m*: International climate policy index (standardized)
 - R_m: Renewable energy policy index (standardized)
 - *E_m*: Environmental policy index (standardized)
 - Δz_m : Market movement during month *m* (percent change of S&P500)
 - $\epsilon_{\textit{fm}}$: Error term (clustered by month)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{fm} = \alpha_{fq(m)} + \beta I_m + \theta R_m + \lambda E_m + \gamma_f \Delta z_m + \epsilon_{fm}$$

 Δy_{fm} : Percent change in the price of oil future during month *m* with maturity *f*

- \star 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on last day of month *m* relative to m-1
- $\alpha_{fq(m)}$: Maturity-by-quarter fixed effects
 - ***** We focus on variation within a quarter q(m) 3 data points per quarter
 - *I_m*: International climate policy index (standardized)
 - R_m: Renewable energy policy index (standardized)
 - *E_m*: Environmental policy index (standardized)
 - Δz_m : Market movement during month *m* (percent change of S&P500)
 - $\epsilon_{\textit{fm}}$: Error term (clustered by month)
 - ★ Errors of 24 maturities allowed to be correlated

$$\Delta y_{fm} = \alpha_{fq(m)} + \beta I_m + \theta R_m + \lambda E_m + \gamma_f \Delta z_m + \epsilon_{fm}$$

 Δy_{fm} : Percent change in the price of oil future during month *m* with maturity *f*

- \star 24 actively traded maturities $f = 1 \dots 24$ months into the future
- \star Price change derived using closing prices on last day of month *m* relative to m-1
- $\alpha_{fq(m)}$: Maturity-by-quarter fixed effects
 - ***** We focus on variation within a quarter q(m) 3 data points per quarter
 - *I_m*: International climate policy index (standardized)
 - R_m: Renewable energy policy index (standardized)
 - *E_m*: Environmental policy index (standardized)
 - Δz_m : Market movement during month *m* (percent change of S&P500)
 - $\epsilon_{\textit{fm}}$: Error term (clustered by month)
 - ★ Errors of 24 maturities allowed to be correlated

Outline

Motivation

4 Empirical Results

< A

	(1)	(2)	(3)	(4)
International Climate Negotiations	-0.918**			
	(0.385)			
Renewable Policy	2.667**			
	(1.256)			
Environmental Policy	0.306			
	(0.942)			
Quarter × Year FEs	Yes			
Maturity × Quarter × Year FEs	No			
S&P 500 × Maturity	No			
Observations	9240			

< □ > < 同

	(1)	(2)	(3)	(4)
International Climate Negotiations	-0.918**			
	(0.385)			
Renewable Policy	2.667**			
	(1.256)			
Environmental Policy	0.306			
	(0.942)			
Quarter × Year FEs	Yes			
Maturity × Quarter × Year FEs	No			
S&P 500 × Maturity	No			
Observations	9240			

< □ > < 同

	(1)	(2)	(3)	(4)
International Climate Negotiations	-0.918**			
	(0.385)			
Renewable Policy	2.667**			
	(1.256)			
Environmental Policy	0.306			
	(0.942)			
Quarter × Year FEs	Yes			
Maturity × Quarter × Year FEs	No			
S&P 500 × Maturity	No			
Observations	9240			

< □ > < 同

	(1)	(2)	(3)	(4)
International Climate Negotiations	-0.918**			
	(0.385)			
Renewable Policy	2.667**			
	(1.256)			
Environmental Policy	0.306			
	(0.942)			
Quarter × Year FEs	Yes			
Maturity × Quarter × Year FEs	No			
S&P 500 × Maturity	No			
Observations	9240			

< □ > < 同

	(1)	(2)	(3)	(4)
International Climate Negotiations	-0.918**	-0.918*		
	(0.385)	(0.472)		
Renewable Policy	2.667**	2.719*		
	(1.256)	(1.533)		
Environmental Policy	0.306	0.252		
	(0.942)	(1.151)		
Quarter × Year FEs	Yes	No		
Maturity × Quarter × Year FEs	No	Yes		
S&P 500 × Maturity	No	No		
Observations	9240	9193		

< □ > < 同

	(1)	(2)	(3)	(4)
International Climate Negotiations	-0.918**	-0.918*	-0.958**	
	(0.385)	(0.472)	(0.373)	
Renewable Policy	2.667**	2.719^{*}	2.571**	
	(1.256)	(1.533)	(1.234)	
Environmental Policy	0.306	0.252	0.435	
	(0.942)	(1.151)	(0.905)	
Quarter × Year FEs	Yes	No	Yes	
Maturity × Quarter × Year FEs	No	Yes	No	
S&P 500 × Maturity	No	No	Yes	
Observations	9240	9193	9240	

< □ > < 同

	(1)	(2)	(3)	(4)
International Climate Negotiations	-0.918**	-0.918*	-0.958**	-0.975**
	(0.385)	(0.472)	(0.373)	(0.453)
Renewable Policy	2.667**	2.719*	2.571**	2.581^{*}
	(1.256)	(1.533)	(1.234)	(1.501)
Environmental Policy	0.306	0.252	0.435	0.436
	(0.942)	(1.151)	(0.905)	(1.096)
Quarter × Year FEs	Yes	No	Yes	No
Maturity × Quarter × Year FEs	No	Yes	No	Yes
S&P 500 × Maturity	No	No	Yes	Yes
Observations	9240	9193	9240	9193

→ ∃ > < ∃ >

< □ > < 同

Persistence of Oil Spot Price Shocks On Futures Prices

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

Persistence of Oil Spot Price Shocks On Futures Prices

	(1)	(2)	(3)	(4)	(5)	(6)	
	A: Cutoffs for Prediction Market						
Prediction Market	-3.43*						
	(1.87)						
Observations	10072						
Fixed Effects	480						
Clusters	420						
Prediction Market							
Observations							
Observations Fixed Effects							
Observations Fixed Effects Clusters							
Observations Fixed Effects Clusters Cutoff c ($ \Delta x_t > c$)	0	1	2	3	4	5	

90

/ 34

	(1)	(2)	(3)	(4)	(5)	(6)	
	A: Cutoffs for Prediction Market						
Prediction Market	-3.43*	-3.68*					
	(1.87)	(1.98)					
Observations	10072	2880					
Fixed Effects	480	456					
Clusters	420	120					
Prediction Market	B: Cut	offs for Pı	ediction l	Market ar	nd Google	Trends	
Observations							
Fixed Effects							
Clusters							
Cutoff c ($ \Delta x_t > c$)	0	1	2	3	4	5	

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024 25 / 34

Sac

	(1)	(2)	(3)	(4)	(5)	(6)
		A: Cut	offs for P	rediction	Market	
Prediction Market	-3.43*	-3.68*	-3.49*			
	(1.87)	(1.98)	(1.97)			
Observations	10072	2880	1920			
Fixed Effects	480	456	384			
Clusters	420	120	80			
	B: Cut	offs for P	rediction l	Market aı	nd Google	Trends
Prediction Market					-	
Observations						
Fixed Effects						

Clusters

 Cutoff c ($|\Delta x_t| > c$)

 Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

1

2

3

0

900

5

4

	(1)	(2)	(3)	(4)	(5)	(6)
		A: Cut	offs for P	rediction	Market	
Prediction Market	-3.43*	-3.68*	-3.49*	-3.89*		
	(1.87)	(1.98)	(1.97)	(2.26)		
Observations	10072	2880	1920	1344		
Fixed Effects	480	456	384	360		
Clusters	420	120	80	56		
Prodiction Market	B: Cut	offs for P	rediction	Market an	d Google	Trends

Prediction Warket

Observations Fixed Effects Clusters **Cutoff** c ($|\Delta x_t| > c$) 0 2 3 1 5 4 500

25 / 34

	(1)	(2)	(3)	(4)	(5)	(6)
		A: Cut	offs for P	rediction	Market	
Prediction Market	-3.43*	-3.68*	-3.49*	-3.89*	-6.83***	
	(1.87)	(1.98)	(1.97)	(2.26)	(2.07)	
Observations	10072	2880	1920	1344	912	
Fixed Effects	480	456	384	360	264	
Clusters	420	120	80	56	38	
	B: Cut	offs for P	rediction	Market ar	nd Google ⁻	Trends

Prediction Market

Observations Fixed Effects Clusters **Cutoff** c ($|\Delta x_t| > c$) 0 2 3 1 5 Λ 500 25 / 34
Prediction Market and Oil Futures

	(1)	(2)	(3)	(4)	(5)	(6)	
	A: Cutoffs for Prediction Market						
Prediction Market	-3.43*	-3.68*	-3.49*	-3.89*	-6.83***	-7.08***	
	(1.87)	(1.98)	(1.97)	(2.26)	(2.07)	(2.39)	
Observations	10072	2880	1920	1344	912	624	
Fixed Effects	480	456	384	360	264	240	
Clusters	420	120	80	56	38	26	
	B: Cut	offs for P	rediction	Market aı	nd Google	Trends	

Prediction Market

Observations **Fixed Effects** Clusters **Cutoff** c ($|\Delta x_t| > c$) 0 2 ર 1 4 5 500 25 / 34

Prediction Market and Oil Futures

	(1)	(2)	(3)	(4)	(5)	(6)
		A: Cut	offs for P	rediction	Market	
Prediction Market	-3.43*	-3.68*	-3.49*	-3.89*	-6.83***	-7.08***
	(1.87)	(1.98)	(1.97)	(2.26)	(2.07)	(2.39)
Observations	10072	2880	1920	1344	912	624
Fixed Effects	480	456	384	360	264	240
Clusters	420	120	80	56	38	26
	B: Cut	offs for P	rediction	Market ar	nd Google	Trends
Prediction Market	-3.43*	-4.34*	-4.35*	-5.03**	-5.23**	-6.99**
	(1.87)	(2.55)	(2.39)	(2.43)	(2.38)	(2.97)
Observations	10072	1992	1296	936	672	384
Fixed Effects	480	456	360	312	240	144
Clusters	420	83	54	39	28	16
Cutoff c ($ \Delta x_t > c$)	0	1	2	3	4	5

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024

୬ ۹ ເ∾ 25 / 34

Results By Maturity

Green Paradox - Climate Legislation

February 1, 2024

27 / 34

Prediction Market and Coal Futures

	(1)	(2)	(3)	(4)	(5)	(6)		
	A: Cutoffs for Prediction Market							
Prediction Market	-1.02	-1.39	-2.60	-3.00	-3.75*	-5.50*		
	(1.63)	(1.66)	(1.81)	(1.89)	(1.99)	(2.91)		
Observations	10080	2880	1920	1344	912	624		
Fixed Effects	480	456	384	360	264	240		
Clusters	420	120	80	56	38	26		
	B: Cut	offs for Pi	rediction l	Market an	d Google	Trends		
Prediction Market	-1.02	-4.12*	-4.55*	-4.96*	-5.22*	-8.45**		
	(1.63)	(2.29)	(2.66)	(2.65)	(2.94)	(3.24)		
Observations	10080	1992	1296	936	672	384		
Fixed Effects	480	456	360	312	240	144		
Clusters	420	83	54	39	28	16		
Cutoff c ($ \Delta x_t > c$)	0	1	2	3	4	5		

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

February 1, 2024

シへで 28/34

	(1)	(2)	(3)	(4)	(5)
$\mathbb{1}_{v}$	-0.573**				
	(0.276)				
Observations	6275				
Fixed Effects	300				
Clusters	251				
Years	[15,15]				

	(1)	(2)	(3)	(4)	(5)
$\mathbb{1}_{v}$	-0.573**	-0.618**			
	(0.276)	(0.260)			
Observations	6275	31449			
Fixed Effects	300	1500			
Clusters	251	1258			
Years	[15,15]	[13,17]			

	(1)	(2)	(3)	(4)	(5)
1_{v}	-0.573**	-0.618**	-0.653**		
	(0.276)	(0.260)	(0.258)		
Observations	6275	31449	56515		
Fixed Effects	300	1500	2700		
Clusters	251	1258	2261		
Years	[15,15]	[13,17]	[11,19]		

	(1)	(2)	(3)	(4)	(5)
1_{v}	-0.573**	-0.618**	-0.653**	-0.929***	
	(0.276)	(0.260)	(0.258)	(0.281)	
Observations	6275	31449	56515	181665	
Fixed Effects	300	1500	2700	8819	
Clusters	251	1258	2261	7538	
Years	[15,15]	[13,17]	[11,19]	[90,19]	

	(1)	(2)	(3)	(4)	(5)
1_{ν}	-0.573**	-0.618**	-0.653**	-0.929***	-0.895***
	(0.276)	(0.260)	(0.258)	(0.281)	(0.277)
Observations	6275	31449	56515	181665	200539
Fixed Effects	300	1500	2700	8819	9719
Clusters	251	1258	2261	7538	8294
Years	[15,15]	[13,17]	[11,19]	[90,19]	[90,22]

Outline

Motivation

(5) Discussion - Policy Implications

Э

Sac

30 / 34

< 17

- Counterfactual: global oil consumption if US cap-and-trade policy had passed
 - Using the average long-term demand elasticity $\epsilon = -0.6$ from Hamilton (2009, Table 3)
 - Price coefficients from Permit Market table

э

Discussion

	(1)	(2)	(3)	(4)	(5)	(6)			
	A: Cutoffs for Prediction Market								
Prediction Market	-3.43*	-3.68*	-3.49*	-3.89*	-6.83***	-7.08***			
	(1.87)	(1.98)	(1.97)	(2.26)	(2.07)	(2.39)			
Observations	10072	2880	1920	1344	912	624			
Fixed Effects	480	456	384	360	264	240			
Clusters	420	120	80	56	38	26			
	B: Cut	offs for P	rediction	Market ar	nd Google	Trends			
Prediction Market	-3.43*	-4.34*	-4.35*	-5.03**	-5.23**	-6.99**			
	(1.87)	(2.55)	(2.39)	(2.43)	(2.38)	(2.97)			
Observations	10072	1992	1296	936	672	384			
Fixed Effects	480	456	360	312	240	144			
Clusters	420	83	54	39	28	16			
Cutoff c ($ \Delta x_t > c$)	0	1	2	3	4	5			

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation

ッへで 31/34

- Counterfactual: global oil consumption if US cap-and-trade policy had passed
 - Using the average long-term demand elasticity $\epsilon = -0.6$ from Hamilton (2009, Table 3)
 - Price coefficients from Permit Market table
 - Increase in global oil consumption $dQ = \epsilon dP = 2.0-4.2\%$

э

- Counterfactual: global oil consumption if US cap-and-trade policy had passed
 - Using the average long-term demand elasticity $\epsilon = -0.6$ from Hamilton (2009, Table 3)
 - Price coefficients from Permit Market table
 - Increase in global oil consumption $dQ = \epsilon dP = 2.0-4.2\%$
- Uncertainty itself has an effect
 - Additional oil consumption induced by the bill's deliberation
 - Starting with an undisturbed price path
 - Average short-term demand elasticity of $\epsilon = -0.26$ from Hamilton (2009, Table 3)
 - * As the probability of the law passing increases, the price is suppressed from undisturbed path
 - $\star\,$ As the bill collapses, it returns to undisturbed path
 - * We calculate $dQ = \epsilon dP$ daily and add the disturbances over May 2009 December 2010

→ ∃ → < ∃ →</p>

3

Discussion

- Prices (cents)
 - Probability of law passing
- Initial above 50%
 - ► House passed bill 219–212
 - June 26, 2009
- Probability approached zero
 - Bill was abandoned

- Counterfactual: global oil consumption if US cap-and-trade policy had passed
 - Using the average long-term demand elasticity $\epsilon = -0.6$ from Hamilton (2009, Table 3)
 - Price coefficients from Permit Market table
 - Increase in global oil consumption $dQ = \epsilon dP = 2.0-4.2\%$
- Uncertainty itself has an effect
 - Additional oil consumption induced by the bill's deliberation
 - Starting with an undisturbed price path
 - Average short-term demand elasticity of $\epsilon = -0.26$ from Hamilton (2009, Table 3)
 - * As the probability of the law passing increases, the price is suppressed from undisturbed path
 - $\star\,$ As the bill collapses, it returns to undisturbed path
 - * We calculate $dQ = \epsilon dP$ daily and add the disturbances over May 2009 December 2010
 - * Combined additional oil consumption are 7.7-26.69 million metric tons
 - ★ Annual consumption is 4.4 billion tons

3

• Carbon tax

- Almost entirely absorbed by producers
 - * If tax was passed through to consumers, not all oil would be sold (Heal & Schlenker 2019)
 - \star Reduction in scarcity rents of oil producers
- ► Global carbon tax would not regressive as cost born by oil producers
- Even if there is no pass-through to consumers
 - * Still changes the relative competitiveness of various fossil fuels (depending on carbon intensity)

• Carbon tax

- Almost entirely absorbed by producers
 - * If tax was passed through to consumers, not all oil would be sold (Heal & Schlenker 2019)
 - \star Reduction in scarcity rents of oil producers
- ► Global carbon tax would not regressive as cost born by oil producers
- Even if there is no pass-through to consumers
 - * Still changes the relative competitiveness of various fossil fuels (depending on carbon intensity)
- Agreement on minimum corporate tax (includes China and India)
 - Can the same group pass a minimum energy tax?

Outline

Motivation

6 Conclusions

Э

590

33 / 34

< A

Conclusions

- Novel evidence on the "Green Paradox"' for climate change legislation
 - ► Climate bills that limit future oil use shift oil consumption from the future towards the present
- Daily shocks to the oil spot price
 - historically quickly phase out over time, i.e., maturities further into the future show less responsiveness to changes in oil spot prices
 - during the time period when a US climate bill was deliberated, the daily shocks to the spot price became much more persistent
- Monthly changes in oil futures respond to the salience of climate policy
 - negative relationship between the salience of international climate negotiations
 - positive relationship between the salience of renewable energy policy
 - $\star\,$ Market sees this as reduced pressure to limit fossil fuel consumption
- Daily future returns respond to changes in prediction market for climate bill
 - ► Effect bigger for larger prediction market changes when google trends show search activity
 - Effect increases for longer maturities
- Dutch court ruling lead to abnormal negative oil future return

Norman & Schlenker (Columbia & NBER)

Green Paradox - Climate Legislation