Why Are Interest Rates So Low? The Role of Demographic Change

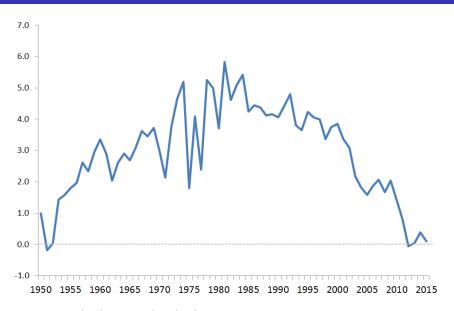
Noëmie Lisack Rana Sajedi Gregory Thwaites

Bank of England

April 2017

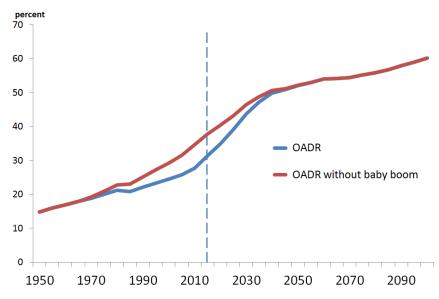
Disclaimer

This does not represent the views of the Bank of England

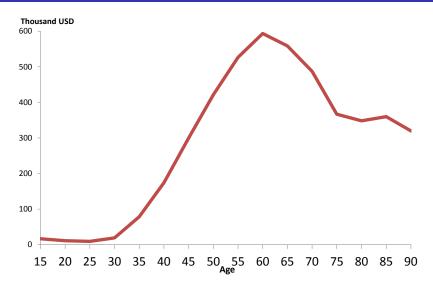

Key points

- Real interest rates have fallen to unprecedented lows
- Many things affecting past and future interest rates
- We quantify in an OLG model the extent to which the fall in interest rates can be explained by population ageing
- We find that ageing can explain:
 - About 160bp of fall in advanced-country interest rates since 1980, with 40bp still to come.
 - More than 3/4 of the rise in house prices, housing wealth to GDP ratio and private credit to GDP ratio
 - Some labour productivity slow down from the 2000s on
 - About 30% of global NFA positions
- These effects would be larger without the presence of housing and tradable claims to monopoly profits
- Rising retirement age and international capital-market integration pose risks

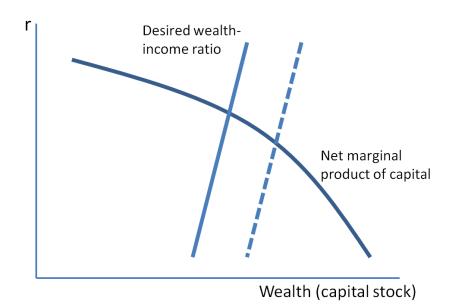
Plan of talk


- Key facts and intuition
- Model
- Results
- Sensitivities, extensions and caveats

World real interest rate since 1950


Ageing and the baby boom

Aging of baby boomers cannot explain the persistent rise in the OADR



Age-wealth profile

(Survey of Consumer Finances, Average Net Worth excl. Housing)

Intuition: How demographics affect interest rates

Related literature

- Closed economy: Carvalho et al (2016), Eggertsson et al (2017), Gagnon et al (2016), Marx et al (2016)
- Open economy: Backus et al (2014), Domeij and Floden (2006), Krueger and Ludwig (2007)

Model: overview

- Calibrated neoclassical overlapping generations model
- Consumers value consumption, housing and bequests
- Net savings of households invested by firms
- Variable birth rates and life expectancy
- Solved assuming perfect foresight

Model: Household's Problem

The household born at time t maximises:

$$\max_{\{c_{\tau,t}, \, a_{\tau,t}, \, h_{\tau,t}\}_{\tau=1}^T} \quad \sum_{\tau=1}^T \beta_\tau \tilde{\psi}_{\tau,t} \left(\ln c_{\tau,t} + \theta_\tau \ln h_{\tau,t} \right) + \beta_T \tilde{\psi}_{T,t} \phi \ln a_{T,t}$$

subject to, for $\tau = 1, ..., T$:

$$c_{\tau,t} + a_{\tau,t} + p_{t+\tau-1}^h(h_{\tau,t} - h_{\tau-1,t}) \leq w_{t+\tau-1}\epsilon_{\tau}l_{\tau,t} + (1 + r_{t+\tau-1})a_{\tau-1,t} + \pi_{\tau,t}$$

au: age ; t: birth year

 $\psi_{ au,t}$: survival probability up to age au

Labor supply is inelastic

Fixed number of periods when the household is able to "move"; otherwise, we impose $h_{\tau,t}=h_{\tau-1,t}$.

Model: Firm's Problem

At each period t, the firm maximises:

$$\max_{l \in K_t} F(K_t, L_t) - w_t L_t - (r_t + \delta) K_t$$

$$F(K,L) = A \left[(1 - \alpha) L^{\frac{\sigma - 1}{\sigma}} + \alpha K^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}$$

Model: Market Clearing

 \tilde{X}_t : value of X_t per aggregate capita.

Market Clearing at every period *t*:

Capital/Asset Market

$$\tilde{A}_{t-1} = \tilde{K}_t$$

Labour Market

$$\tilde{\rho}' \epsilon I_t = \tilde{L}_t$$

Housing Market

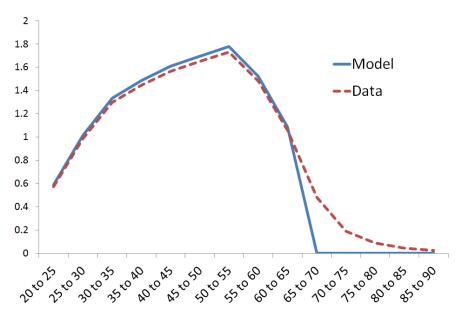
$$\tilde{H}_t = \tilde{H}$$

Goods Market

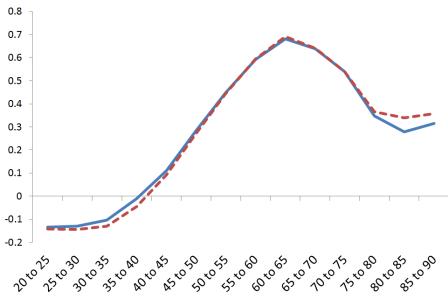
$$\tilde{Y}_t = \tilde{C}_t + \tilde{I}_t$$

Steady state exists in per capita terms.

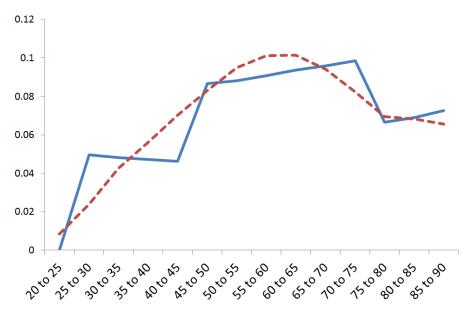
Housing supply exogenously increases with total population size.


Calibration

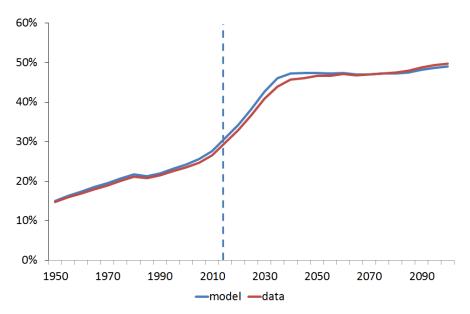
Population data for advanced economies: Western Europe, North America, Japan, Australia, New Zealand • details

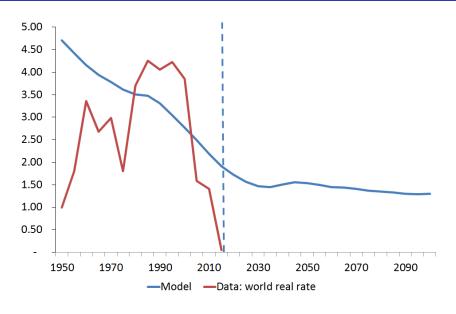

Calibration to match moments from the data:

- Average aggregate values in the 1970s
 - World interest rate: 3.7%
 - Housing wealth/GDP ratio: 145%
 - Credit/GDP ratio: 35%
- Life-cycle patterns from the US Survey of Consumer Finances, from 1989 to 2013
 - Labour productivity
 - Net wealth (excluding housing)
 - Housing wealth

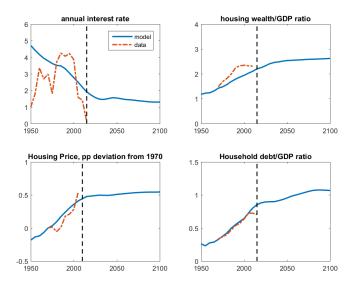

Calibration: Labour productivity

Calibration: Net Worth (excl. housing)

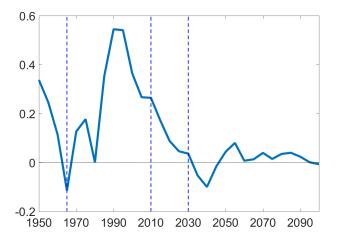

Calibration: Housing Wealth


Using the model

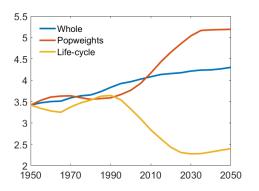
- Incorporate both the baby boom and the increase in life expectancy in our model
- Compute the transition from the 1950s to the 2100s according to the UN population predictions
- Match the data in the 1970s
- Let the model speak before and after these dates


Model outcome: Old age dependency ratio

Model outcome: Annual interest rate



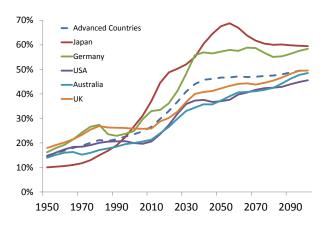
Model outcome: Housing and credit


Model outcome: Labour productivity

Deviation from trend of labour productivity (annualised growth)

Life-cycle pattern of labour productivity generates some of recent slowdown

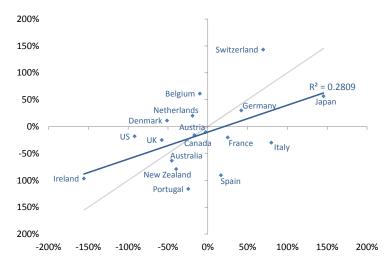
Decomposing the drivers of the capital-output ratio



Powerful general equilibrium effects in the model from prices to saving

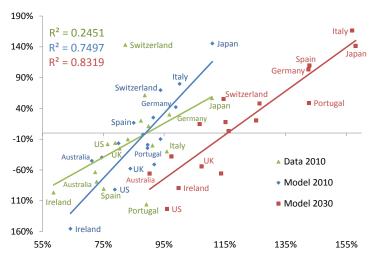
- Popweights: changing only the population age structure
- Life-cycle: changing only the household's optimal behaviour

Open economy


OADR Across Countries

Ageing trends are very different across the industrialised world

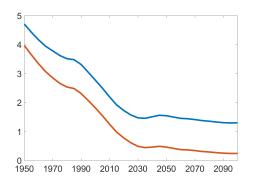
Open economy: model vs data


NFA/GDP in the Model vs Data

Note: Model on x-axis and Data on y-axis, grey line is the 45 degree line.

Open economy: model predictions

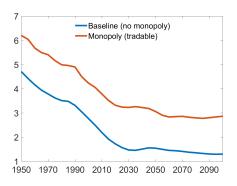
Demographic Changes and NFA accumulation


Note: HWR on x-axis and NFA/GDP on y-axis.

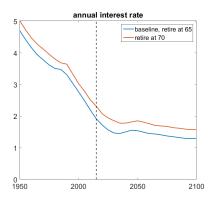
Sensitivities and extensions

- Housing
- Monopoly profits
- Retirement age

Sensitivities and extensions: housing


- Housing facilitates life-cycle saving, somewhat attenuating effects of demographics
- Prevents negative interest rates

- Red line baseline model
- Blue line same calibration, no housing


Sensitivities and extensions: monopoly profits

- Add monopolistic competition and supernormal profits to the corporate sector.
- ullet In partial equilibrium, this pushes down on the interest rate $r_t=rac{1}{\mu}rac{\partial Y_t}{\partial K_t}$
- Tradable claims constitute an additional store of value, again attenuating fall in interest rates and preventing them going negative

Sensitivities and extensions: retirement age

Simulations varying retirement age by 5 years

Effects of retirement age increase surprisingly small

Conclusions and next steps

- The population share over 50 is a reasonable summary statistic of the demographic pressure on the level of interest rates
- Demographic pressures explain around half the fall in real interest rates since the 1970s, most of the rise in house prices and household debt and about 30% of cross-sectional variation in NFA positions.
- Housing and tradable claims on supernormal profits attenuate these effects, and absent frictions prevent rates going negative
- Not a forecast that rates will remain low many other factors in play