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Abstract

The labor income share has fallen steadily since the 1980s in most advanced
economies. The most widely accepted explanations of this phenomenon evolve
around the substitution between capital and labor, but micro-level estimates more
often than not show that capital and labor are complements. Using firm- and
establishment-level data from Korea, we divide capital into equipment and soft-
ware. Our estimated elasticities of substitution show that equipment and labor are
complements (0.5), consistent with other micro-level estimates, but software and
labor are substitutes (1.7), a novel finding that reconciles conflicting views on the
elasticities in the literature. As the quality of software improves, the labor share falls
within firms. In addition, production reallocates to those firms that use software more
intensively, as they become relatively more productive. It turns out these firms tend
to have low labor shares (an empirical question, since in theory software-intensive
firms may have above-average labor shares and below-average equipment shares),
and hence the reallocation further reduces the aggregate labor share. Software, not
equipment capital, is the key to the decline of the labor income share.
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Software is eating the world.

— Marc Andreessen (The Wall Street Journal, August 20, 2011)

1 Introduction

The labor share remained more or less constant over time for much of the 20th century.

For example, Keynes (1939) wrote that “the stability of the proportion of the national

dividend accruing to labour” was “one of the most surprising, yet best-established,

facts, both for Great Britain and for the United States.” However, the labor share

started to show a downward trend in the US and other advanced economies since the

1980s. With the heightened interest in economic inequality after the financial crisis of

2007–08, economists have raised a variety of explanations regarding the decline of the

labor share. Grossman and Oberfield (2022) gives a thorough review of the literature.

Three leading explanations have emerged. The first is that capital and labor are

substitutes, and the more efficient production of capital goods decreased the labor

share over time (Karabarbounis and Neiman, 2013). Second, the growing importance

of intangible capital and systemic mismeasurement of labor’s contribution to intan-

gible capital resulted in lower labor share in the data (Koh et al., 2020). Third, the

reallocation of production toward large firms with low labor shares and fast-growing

firms with falling labor shares reduced the aggregate labor share (Autor et al., 2020;

Kehrig and Vincent, 2021)

This paper contributes to this debate in two ways. First, we reconcile the tension

between the first explanation above, which requires an elasticity of substitution be-

tween capital and labor larger than one (e.g., Karabarbounis and Neiman, 2013; Hub-

mer, 2021), and the micro-level estimates of this elasticity that are less than one found

many times over (Antras, 2004; Raval, 2019; Oberfield and Raval, 2021, among oth-

ers). Second, we clarify the connection among these three explanations via a common

causal factor: the rise of software.

The price of capital has declined for decades, because of the fast productivity

growth of the capital-producing sectors (known as capital-embodied technological

change). What is less known is that the measured quality of software in the National

Accounts has improved faster than that of equipment—i.e., software price has fallen

faster than equipment price.
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Using firm-level and establishment-level data from Korea, we divide capital into

equipment (machinery) and software. This is possible because Korean firms keep

track of software investment to comply with the local accounting standards. Extend-

ing the approach of Oberfield and Raval (2021) to our environment with three factors

of production (labor, equipment, and software), we estimate the elasticity of substi-

tution between labor and either type of capital by instrumenting for wage variations

across regions, while assuming that the price of equipment and software is similar

across regions.

Our estimation shows that the elasticity of substitution between labor and equip-

ment is less than one (0.5), consistent with the micro-level estimates from the US and

some other countries, which implies that the substitution between equipment and la-

bor is not the source of the declining labor income share. Our novel finding is that the

elasticity of substitution between labor and software is greater than one (1.7), imply-

ing that the rise of software is the reason for the decline in the labor income share.

A change in factor prices not only changes the factor income shares within a firm,

but also reallocates resources across firms that are heterogeneous in terms of factor

intensity. The “macro” elasticity that takes into account such equilibrium effects will

differ from the micro elasticity (Oberfield and Raval, 2021). An elasticity of substitu-

tion between software and labor that exceeds one implies that firms using software

more intensively see a larger reduction in labor share than others. Such firms also be-

come effectively more productive than others and hence become larger, if the demand

elasticity across differentiated products is also larger than one. Unlike in two-factor

models, with three factors, whether such reallocation from low software share firms to

high software share firms further reduces the aggregate labor income share is an em-

pirical question. It is possible that high software share firms have above-average labor

shares and below-average equipment shares, in which case this reallocation channel

will raise the aggregate labor income share. In the data, the correlation between a

firm’s software share and its labor share is negative, which means that the realloca-

tion channel further reduces the aggregate labor income share.

Quantitatively, the decline in software price explains about half of the labor share

decline in Korea between 1976 and 2019. The reallocation channel accounts for 31

percent of the fall in the labor share in the model, with the within-firm channel ac-
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counting for the remaining 69 percent. The fall in equipment price, on the other hand,

pushes up the labor share, since equipment and labor are complements.

In the Korean data, we also document that a firm’s software intensity correlates

positively with (i) a decrease in (within-firm) labor share, (ii) sales growth, (iii) an in-

crease in markup, and (iv) faster total factor productivity (TFP) growth. All these pat-

terns are consistent with the conclusion that software-embodied technological change

has played a key role in the decline of the aggregate labor income share. At the in-

dustry level, we find that industries with relatively higher ratios of software capital to

value-added are more concentrated.

In relation to the literature, we clarify that it is software not equipment that substi-

tutes labor and reduces the labor income share, and reconcile the disagreement among

previous estimates on the capital-labor substitution elasticities. Our emphasis on soft-

ware also supports the view that highlights the role of intangibles, of which software

is one of the better measured components. Moreover, we capture the equilibrium

effect and the reallocation across firms, which accords with the recent work empha-

sizing reallocation to low labor share firms or firms with falling labor shares. Overall,

our analysis implies that it is crucial to distinguish between capital types when look-

ing at the elasticity of substitution between labor and capital, which is an essential

parameter in understanding the labor share dynamics over long periods.

The rest of the paper is structured as follows. We document empirical evidence on

the relationship between a firm’s software intensity and its other variables in Section

2. In Section 3, we introduce a model framework that relates software-embodied

technological change to the observed patterns in the data. We show how software-

embodied technological change interacts with the elasticity of substitution between

labor and capital to determine the direction and magnitude of factor income share

changes. We then estimate the micro-elasticity and aggregate it into macro-elasticity in

Section 4. In Section 5, we assess the contribution of software-embodied technological

change to the decline in the aggregate labor income share. Section 6 concludes.
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2 Motivating Facts

2.1 Labor Income and Capital Income

We begin by documenting the evolution of labor income and capital income by capital

type in Korea. Figure 1 plots the aggregate labor income share between 1975 and

2019. Our measure of the labor income share is compensation of employee plus the

labor income of the proprietors as a share of gross domestic product, where the labor

income of the proprietors is estimated by assuming that the labor income share of the

proprietors’ income is the same as that in the rest of the economy (Gollin, 2002).1 The

labor share shows a declining trend, with the most pronounced decline between the

mid 1990s and the early 2000s.
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Fig. 1: Labor share

The denominator of the labor share consists of labor income, capital income, and

profits. To be specific, the labor share is

LS =
wL

μ(wL + ∑j RjKj)
, (1)

where wL is labor income, μ is the aggregate markup, and RjKj is income of capital

type j. To compute capital income, we need an estimate on Rj for each capital type j.

1To be specific, we first compute the net labor share NLS = CE+NLS×PI
GDP−CFC , where NLS is the net labor

share, CE is the compensation of employees, PI is proprietors’ income, CFC is the consumption of fixed
capital (depreciation), and GDP is the gross domestic product. Then the total labor income in the aggregate
economy is wL = CE + NLS × PI, and the aggregate labor share is LS = wL/GDP. Since the Korean
National Accounts do not report the proprietors’ income before 2009, we use the operational surplus in the
household sector as proxy for proprietors’ income.
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For this purpose, we assume that the gross rate of return on capital Rj satisfies

Rj = (1 + r)pj
t−1 − (1 − δj)pj

t, (2)

where r is the net rate of return, pj is the price of capital j (in period t − 1 and t), and

δj is the depreciation rate of capital j.

We first get LS, wL, Kj, pj, and δj from the National Accounts. Specifically, wL is

the compensation of employees plus the labor income of the self proprietors. pj is the

price index of investment of capital type j divided by the price index of consumption

expenditure, and Kj is the net capital stock of capital type j. We estimate δj from

the investment minus the change in the net capital stock, divided by the previous

period’s capital stock (δj = (Kj
t−1 + I j

t − Kj
t)/Kj

t−1). For the aggregate markup, we

estimate μ following De Loecker et al. (2020) from the firm-level data—see Appendix

B for details. We then impute the rate of return on capital from equations (1) and (2).
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Fig. 2: Labor income relative to capital income by type of capital

In Figure 2, we compare log wL
RjKj across capital type j’s. By construction, the labor

income share declines when the capital income grows faster than the labor income.

Figure 2 demonstrates that the pattern is not the same across capital types. In partic-

ular, software income has shown the fastest growth, whereas equipment income has

even decreased relative to labor income. Moreover, the growth of software income

has been concentrated in the 1990s and the early 2000s, when the labor share declined

the most in Figure 1.
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2.2 Firm-Level Empirics

2.2.1 Data

For the firm-level analysis in this section, we use the data from the KISDATA database

between 2000 and 2018. KISDATA reports financial information for firms listed on the

Korea Stock Exchange and those unlisted firms required to publish external auditing

reports.2 We exclude financial firms and quasi-governmental and non-profit firms

from the sample. Comparing our sample with the National Accounts, our KISDATA

sample covers about 47 percent and 56 percent of the compensation of employees and

the operational surplus in the entire non-financial corporate sector in 2018.

Construction of the labor share requires labor compensation and value added. We

combine employee compensation and benefits in the income statement and the labor

cost in the manufacturing cost statement to obtain the labor compensation. We get

value added by adding up operational profit, depreciation and amortization, taxes

and dues, and labor compensation.

We use the variable “intangible asset - software” in firms’ balance sheet to measure

their software asset. A firm classifies its software purchases from outside as software

assets (in intangible assets) according to Korean Generally Accepted Accounting Prin-

ciples (K-GAAP). Detailed explanation for the data is in the Appendix B.

2.2.2 Software Intensity: Panel Regressions

We begin by documenting that firms’ software intensity is associated with a decline

in within-firm labor share and also with faster sales growth. Our regression equation

is as follows.

yi,t = γi + δt + βs × si,t−1 + βe × ei,t−1 + ε i,t, (3)

where yi,t is the variable of interest (e.g., a change in the labor share or sales) at time

t, si,t−1 is a firm i’s software intensity measured by software asset divided by its value

added at time t− 1, and ei,t−1 is a firm i’s equipment intensity measured by equipment

asset divided by its value added at time t − 1.

2Detailed criteria for external auditing requirement varies over time. Until 2008, firms whose asset
value exceeded 7 billion KRW had to be audited externally. Since 2009 (2014), (i) firms with asset value
greater than 10 billion (12 billion) KRW, (ii) asset value greater than 7 billion KRW and liability greater than
7 billion KRW, or (iii) asset value greater than 7 billion KRW and the number of employees more than 300
were subject to external auditing.
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Δ labor share Δ log sales

si,t−1 -1.122∗∗∗ 1.473∗∗∗
(0.132) (0.329)

ei,t−1 -0.008 0.028∗
(0.006) (0.014)

Obs. 42,225 42,217
R2 0.191 0.289

Table 1: Software Intensity and Changes in Labor Share and Sales at the Firm Level

Standard errors are clustered at the two-digit industry level. *, **, and *** indicate significance
at the 10, 5, and 1 percent level, respectively.

The estimation results are in Table 1. Firms’ software intensity correlates with a

faster decline of their labor share and a higher sales growth. The results suggest that a

more intense use of software could lead to a decline in the aggregate labor share, not

only through within-firm labor share declines, but also through a between-firm real-

location of their sales shares. More importantly, it implies that software intensity can

be a key factor behind the recent finding by Kehrig and Vincent (2021) that the decline

of the aggregate labor share in the US manufacturing sector is mostly accounted for

by those establishments whose labor share falls and sales increase at the same time.

On the other hand, the equipment intensity does not show a significant relation with

a change in the labor share although it has a weak positive relationship with a sales

growth.

In addition, software intensity may be related to firms’ productivity growth. We

estimate firm-level TFP following Olley and Pakes (1996) utilizing the adjustment

suggested by Ackerberg et al. (2015). We find that software intensity is positively

associated with firms’ TFP growth as can be seen in Table 2. Equipment intensity also

shows a positive relationship with the TFP growth, but the relationship was much less

tight.

Does the productivity growth get passed through to consumers or simply trans-

late into higher markups? To answer this question, we follow Baqaee and Farhi (2019)

and measure firms’s markups using three different methods: (i) the user cost approach

(μUC), (ii) the production function estimation approach (μPF), and (iii) the accounting

profits approach (μAP). The first method measures markups by comparing total costs

to sales, where total costs include the user cost of capital. The second method mea-

8



Δ ln TFPi,t

si,t−1 0.897∗∗
(0.390)

ei,t−1 0.033∗
(0.019)

Obs. 16,868
R2 0.300

Table 2: Software Intensity and TFP growth at the Firm Level

Standard errors are clustered at the two-digit industry level. *, **, and *** indicate significance
at the 10, 5, and 1 percent level, respectively.

sures markups by computing the ratio between the elasticity of the production func-

tion to variable input and the share of variable input in revenues. The elasticity of the

production function to variable input comes from the production function estimation,

as in De Loecker et al. (2020). Lastly, the accounting profit approach define markups

as sales divided by sales minus operating profit. The details on the measurement of

markups are in Appendix B.

Δ log μUC
i,t Δ log μPF

i,t Δ log μAP
i,t

si,t−1 0.287∗∗∗ 0.344∗∗∗ 0.388∗∗∗
(0.085) (0.074) (0.088)

ei,t−1 0.022∗∗ 0.017∗∗∗ 0.003∗
(0.009) (0.005) (0.002)

Obs. 36,757 38,369 40,762
R2 0.250 0.246 0.248

Table 3: Software Intensity and Markups

Standard errors are clustered at the two-digit industry level. *, **, and *** indicate significance
at the 10, 5, and 1 percent level, respectively.

Each method has pros and cons, and captures conceptually different objects. De-

spite their differences, software intensity shows a significant correlation with increas-

ing markups across all three measures (Table 3). Note that the increase in markups

implies the decline in the labor share, ceteris paribus. Again, the equipment intensity

is also positively associated with increasing markups, but the relation is less tight.

Finally, turning to an industry-level analysis, we ask whether the software inten-

sity of an industry is correlated with market concentration. Such a correlation is pos-
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sible if larger firms have disproportionately higher software intensity. We compute

the Herfindahl-Hirschman Index (HHI), concentration ratios (CR4 and CR8) for each

two-digit industry, and estimate following:

concentrationj,t = α + βs × sj,t + βe × ej,t + ε j,t, (4)

where concentrationj,t is the concentration measure of industry j in year t, and sj,t and

ej,t is the total software and equipment stock divided by the value added of industry

j in year t, respectively. The estimation results in Table 4 show that higher software

intensity correlates with higher market concentration at the industry level. For the

concentatration measures, equipment intensity also shows a significant and positive

relations as well.

HHI CR4 CR8

sj,t 0.747∗∗∗ 0.384∗∗∗ 0.353∗∗∗
(0.000) (0.000) (0.000)

ej,t 0.058∗∗∗ 0.045∗∗∗ 0.031∗∗∗
(0.000) (0.000) (0.000)

Obs. 1,143 1,143 1,143
R2 0.035 0.019 0.016

Table 4: Software Intensity and Market Concentration at the Industry Level

Robust standard errors are in parentheses. *, **, and *** indicate significance at the 10, 5, and
1 percent level, respectively.

To summarize, the empirical evidence from the firm-level data in Korea suggests

that software could be a factor that explains the decline of the labor income share.

A firm with higher software intensity has experienced a faster labor share decline, a

higher sales growth, and a rise in markups. Moreover, industries that use software

more intensively tend to have a higher market concentration. All these observations

suggest that the role of software merits a separate investigation, which we now turn

to.

3 Model

3.1 Production Function

To investigate a separate role of software in shaping factor income shares, we con-

sider a production function that has software as a separate input from equipment.
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Specifically, we define a production at firm i as

Yi =

[(
αL

i (ALLi)
σe−1

σe + αK
i (AKKi)

σe−1
σe

) σe(σs−1)
(σe−1)σs + αS

i (ASSi)
σs−1

σs

] σs
σs−1

, (5)

where Yi is value added, Li is labor, Ki is tangible capital (or equipment), and Si is

software stock of firm i. αL
i , αK

i , and αS
i are intensity of labor, tangible capital, and

software in firm i’s production technology, respectively. AL, AK, and AS represent

economy-wide factor-augmenting technologies for labor, equipment, and software,

respectively. For notational convenience, we also define the equipment-labor bundle

Xi as follows.

Xi =
(

αL
i (ALLi)

σe−1
σe + αK

i (AKKi)
σe−1

σe

) σe
σe−1

. (6)

Our production function (5) has two important advantages in investigating the

role of software. First, two different parameters govern the elasticity of substitution

between labor and equipment (σe) and the elasticity of substitution between labor and

software (σs). Therefore, it can capture different labor share responses to technolog-

ical changes embodied in different types of capital. Second, all firms are different

in how intensively they use each factor, as captured by αi’s. Therefore, how much

factor shares change in response to a factor-augmenting technological change is also

different across firms. This implies that aggregate changes in the factor income share

depend not only on within-firm adjustments but also on the composition changes

across firms. In other words, the elasticity of substitution at the aggregate level will

be different from the elasticity of substitution at the firm level (Oberfield and Raval,

2021).

An aggregate production function is defined as

Y =

(
∑

i
γiY

ε−1
ε

i

) ε
ε−1

, (7)

where Yi is a firm-level value added production in equation (5). Note that the aggre-

gate production function (7) implies the demand for Yi given by equation (8),

Yi = γε
i

(
pi

p

)−ε

Y, (8)

where p =
(

∑i γε
i p1−ε

i

) 1
1−ε

is the ideal price index.
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Firm i takes the factor price of labor (w), tangible capital (r), and software (q) as

given, and maximizes the profit:

max
pi ,Yi ,Ki ,Si

piYi − wLi − rKi − qSi,

subject to equations (5) and (8). The solution to the problem satisfies the following

FOCs:

w =piα
L
i Aσe−1

L σe

(
Yi

Xi

) 1
σs
(

Xi

Li

) 1
σe

, (9)

r =piα
K
i Aσe−1

K σe

(
Yi

Xi

) 1
σs
(

Xi

Ki

) 1
σe

, (10)

q =piα
S
i Aσs−1

S σs

(
Yi

Si

) 1
σs

, (11)

pi =
ε

ε − 1

[
φi

1−σs + αS
i

σs

(
q

AS

)1−σs
] 1

1−σs

. (12)

Note that we introduce φi, the price of the tangible capital-labor bundle Xi, for nota-

tional convenience.

φi :=

(
αL

i
σ

e

(
w
AL

)1−σe

+ αK
i

σ

e

(
r

AK

)1−σe
) 1

1−σe

. (13)

Lastly, the factor market clearing conditions are

L = ∑
i

Li, K = ∑
i

Ki, and S = ∑
i

Si. (14)

Given L, K, and S, we can solve the model from equation (5), (7), (8), (9), (10), (11),

(12), and (14).

3.2 Elasticity of Substitution

We now establish the changes in factor shares in response to capital-augmenting tech-

nological changes or exogenous changes in factor prices, which can be captured by

the elasticity of substitution (Stern, 2011). As Grossman and Oberfield (2022) pointed

out, the elasticity of substitution is essential in understanding the decline of the aggre-

gate labor share, no matter what the proposed mechanism is, because any changes in

the economic environment would also affect prices through the general equilibrium

effect.
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One problem when considering software as a separate input from the traditional

capital is that there are multiple ways to define the elasticity of substitution when

there are more than two inputs in the production function. For example, the elasticity

of substitution between labor and equipment will change, depending on whether we

fix output and software altogether or only output and allow the software to vary.

Hence, we need to clarify first what we call the elasticity of substitution between

factors.

Rather than discuss all different ways of defining the elasticity of substitution, we

focus on the simplest one. Here, we use the so-called Allen-Uzawa elasticity. The

Allen-Uzawa elasticity of substitution between factor x and y is defined as

εx,y =
CCxy

CxCy
,

where C is the optimal cost function and Cx is the partial derivative of the optimal cost

function with respect to a change in the price of input x while fixing all other prices

constant. In our framework, the Allen-Uzawa elasticity of substitution between labor

and tangible capital or software is simply σe or σs.

Now we can show the following.

Proposition 1 (Firm-level elasticity of substitution) σe and σs satisfy the following.

σe − 1 =
d ln rKi/wLi

d ln w/r
=

d ln ki/(1 − ki)

d ln w/r
, (15)

σs − 1 =
d ln qSi/(wLi + rKi)

(1 − ki)dlnw/q + kid ln r/q
=

d ln si/(1 − si)

d ln φi/q
. (16)

Proof In Appendix A.

Note that we introduced several notations that represent factor shares at the firm

level for convenience. Specifically,

ki :=
rKi

wLi + rKi
, si :=

qSi

wLi + rKi + qSi
,

�i :=
wLi

wLi + rKi + qSi
, κi :=

rKi

wLi + rKi + qSi
,

where ki is equipment income share in the equipment-labor bundle Xi, and si is soft-

ware income share in value-added, �i is labor income share in value-added, and κi is

equipment income share in value added.
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Proposition 1 establishes that the direction of changes in the factor income shares

in response to an exogenous change in the input price depends on whether σe or σs

is greater than one or not. For example, when the price of equipment (r) falls, the

ratio of labor income to equipment income falls when σe > 1 and rises when σe < 1.

Similarly, when the price of software (q) falls, the share of software income compared

to labor and equipment income rises when σs > 1 and falls when σs < 1.

We can easily obtain the following corollary that an exogenous change in the input

price mirrors a factor-augmenting technological change.

Corollary 1 σe and σs satisfy the following.

σe − 1 =
d ln rKi/wLi

d ln AK/AL
=

d ln ki/(1 − ki)

d ln AK/AL
, (17)

σs − 1 =
d ln qSi/(wLi + rKi)

(1 − ki)dlnAS/AL + kid ln AS/AK
=

d ln si/(1 − si)

d ln φi AS
. (18)

Proof In Appendix A.

Corollary 1 shows that factor-augmenting technological changes are equivalent to

the decrease in the price of the same factor. In other words, we cannot separately iden-

tify changes in the factor-augmenting technologies from changes in factor prices. In

this context, it is difficult to estimate σ from time series, as factor biased technological

changes are typically unobservable.

Since we do not restrict factor distribution across firms (or αi’s), the model does not

allow a well-defined aggregate production function with aggregate capital and labor.

However, as Oberfield and Raval (2021) showed, we can still derive the relationship

between the firm-level elasticity of substitution in Proposition 1 and changes in the

aggregate factor income shares in response to changes in factor prices. To see this,

we define the aggregate elasticity of substitution that captures the response of the

aggregate factor shares to changes in factor prices.

Definition 1 (Aggregate elasticity of substitution) The aggregate elasticity of substitu-

tions σ̄w
e , σ̄r

e , σ̄w
s , σ̄r

s , and σ̄
q
s are

σ̄w
e − 1 :=

d ln rK/wL
d ln w

(19)

σ̄r
e − 1 := −d ln rK/wL

d ln r
(20)
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σ̄w
s − 1 :=

d ln qS/(wL + rK)
wL/(wL + rK)× d ln w

(21)

σ̄r
s − 1 :=

d ln qS/(wL + rK)
rK/(wL + rK)× d ln r

(22)

σ̄
q
s − 1 := −d ln qS/(wL + rK)

d ln q
(23)

Different from Oberfield and Raval (2021), we need to define the aggregate elas-

ticity of substitution between factors for each input price w, r, and q. In other words,

even when a change in the relative wage to capital price is the same, the correspond-

ing change in the ratio of labor income to capital income will be different, depending

on whether the wage increased or the price of capital fell.

Intuitively, because the labor income share is not always equal to one minus the

equipment income share with three inputs (i.e., �i �= 1 − κi), the changes in the aggre-

gate labor share resulting from the change in wage or the change in capital price can

be different. For example, a firm with low �i can also feature low κi, when si is large.

If this is the case, firms that benefited more from a wage increase do not necessarily

benefit more from a fall in capital price. This would not be the case with two factors,

as then firms’ labor income share is perfectly negatively correlated with their capital

income share.3

Now we derive the main proposition that link the firm-level elasticity of substitu-

tion to the aggregate elasticity of substitution. As before, we introduce several nota-

tions for convenience:

k :=
rK

wL + rK
, s :=

qS
wL + rK + qS

,

� :=
wL

wL + rK + qS
, κ :=

rK
wL + rK + qS

,

θi :=
wLi + rKi

wL + rK
, ωi :=

wLi + rKi + qSi

wL + rK + qS
,

where k is aggregate income share of equipment to the income share of the equipment-

labor composite, s is aggregate software income share, � is aggregate labor income

3Oberfield and Raval (2021) has material input as another factor in the production function, but they
still obtain a symmetry. The reason is that they assume that a change in the relative price of the material
to capital is always proportional to a change in the wage relative to the price of capital. Their assumption
implies that material is produced by combining labor and capital (in a Cobb-Douglas manner), and so there
are still only two factors of production. We can not make the same assumption because our third input,
software, is an independent factor of production.
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share, κ is aggregate equipment income share, θi is firm i’s share of the labor-

equipment income, and ωi is firm i’s share of the aggregate value-added. Then we

have the following proposition.

Proposition 2 (Aggregation) The aggregate elasticities of substitution satisfy

σ̄w
e = (1 − χ)σe + χζwσs + χ(1 − ζw)ε, (24)

σ̄r
e = (1 − χ)σe + χζrσs + χ(1 − ζr)ε, (25)

σ̄
q
s = (1 − ξr)σs + ξqε, (26)

σ̄w
s = (1 − ξw)σs + ξwε, (27)

σ̄r
s = (1 − ξr)σs + ξrε, (28)

where, χ := ∑i(ki−k)2θi
k(1−k) , ξw := −∑i ωi(si−s)(�i−�)

s� , ξr := −∑i ωi(si−s)(κi−κ)
sκ , ξq := ∑i ωi(si−s)2

s(1−s) ,

ζw := ∑i(ki−k)(1−ki)θisi
∑i(ki−k)(1−ki)θi

, and ζr := ∑i(ki−k)kiθisi
∑i(ki−k)kiθi

.

Proof In Appendix A.

The aggregate elasticity of substitution is a weighted average of the firm-level

elasticity of substitution and other distributional moments that govern between-firm

reallocation. The aggregate elasticity of substitution between labor and equipment,

for example, is a weighted average of σe, σs, and ε, with ε being the elasticity of

substitution across differentiated products. The weight parameter χ is proportional to

the variance of ki, meaning that it gets larger as ki’s are more dispersed. Intuitively, as

ki’s are more dispersed, the reallocation across firms is more important than within-

firm adjustment (1 − χ)σe. When there is no difference in the equipment intensity

ki, for example, all firms will adjust the factor income ratio by the same proportion.

Hence the aggregate elasticity would be the same as the firm-level elasticity in this

case.

The between-firm reallocation also depends on σs and ε. Following the change in

input price, a firm’s share of the equipment-labor bundle in the aggregate economy

will change (depending on ε) and also because it substitutes its production toward or

away from software (depending on σs). Note that the importance of the latter depends

on how much software each firm uses, represented by si in ζ.

We now discuss the aggregate elasticity of substitution between software and labor

or equipment, which is our unique feature. The parameter σs in the production func-
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tion (5) captures the elasticity of substitution between software and the equipment-

labor bundle as a whole. Therefore, the aggregate elasticity of substitution between

software and equipment or labor does not depend on σe. However, the changes in the

software income share still depend on whether the shock is from the wage, the price

of equipment, or the price of software, as shown in equation (26), (27), and (28).

Suppose that the price of equipment goes down. Then the price of the equipment-

labor composite will go down, and there will be substitution away from software.

However, the magnitude of the decline in the bundle price depends on how inten-

sively a firm uses its equipment. As a firm with a higher κi will experience more drop

in the composite price φi, the firm level substitution will be more prominent in a firm

with a higher κi. Therefore, the overall importance of firm-level substitution away

from software will be smaller (i.e., higher ξr) when a firm with a higher κi tends to

have a lower si (i.e., negative covariance between κi and si). This is why ξr is propor-

tional to the minus of the covariance between κi and si.

Following the same logic, ξw is proportional to the minus of the covariance be-

tween �i and si. Importantly, a smaller si does not necessarily imply a bigger �i or κi

because we do not restrict the factor income distribution and because we have three

inputs. For example, suppose the covariance term between κi and si is positive in the

data. In that case, the reallocation responding to capital-specific technological change

will go in the direction opposite to the within-firm adjustment.

Lastly, the relative changes in the software income share depend more on between-

firm reallocation when si’s are more dispersed as ξq is proportional to the variance of

si. Moreover, considering that ε is greater than one under any reasonable parameteri-

zation, between-firm reallocation would lead to an increase in the aggregate software

income share (or a fall in the labor share, ceteris paribus) in response to a decline in

the software price (equation (23)).

In Section 2, we documented that firms with higher si tend to experience a faster

decline in labor share and a higher sales growth. Our model is consistent with these

observations if (i) σs > 1 (within-firm adjustment), (ii) ε > 1 (between-firm realloca-

tion), and (iii) the main source of exogenous variations are software-embodied tech-

nological change or a fall in the price of software. It is natural that ε > 1. It is also well

known that the price of capital goods has experienced a faster decline than the price
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of consumption goods, often referred to as investment-specific technological change.

Though less known, the price of software has declined even faster than the price of

equipment. We have yet to find out whether σs is greater than one or not, which we

examine in the next section.

4 Estimation Results

The elasticity of substitution between labor and capital is difficult to estimate because

the relative factor inputs and their relative prices are determined simultaneously. As

implied by Proposition 1 and Corollary 1, the elasticity of substitution is not identified

separately from the factor bias of technological change. To estimate the elasticity of

substitution from the observed factor income shares and relative factor prices, one

needs an instrument for the relative prices orthogonal to the biased technological

changes.

Using macro-level (time series) data, researchers have dealt with this issue by as-

suming a specific form of factor-biased technological change (such as a log-linear time

trend) (Antras, 2004; Herrendorf et al., 2015, among others). On the other hand, one

can bring more reasonable instruments when focusing on establishment or firm-level

variations. For example, Raval (2019) uses a shift-share variable that captures local

impacts of national changes in non-manufacturing industries (i.e., Bartik (1991) in-

strument) as instruments for shifts in labor market conditions. However, it does not

give the aggregate elasticity of substitution as Oberfield and Raval (2021) has shown.

In this section, we first estimate firm-level elasticity of substitution (σe and σs) and

then aggregate them into the aggregate elasticity of substitution using the model and

the data on the distribution of factor income shares (i.e., using Proposition 2).

4.1 Data

We use the manufacturing sector data of the Korea Economic Census 2015. It surveys

all establishments with more than one employee as of December 31, 2015. We exclude

branches, sole proprietorships, governmental and non-profit establishments as they

do not report intangible assets. We use annual payroll for wLi, equipment capital

(machinery and transportation equipment) for Ki and software assets for Si. Lastly, we

winsorize factor shares at 1 and 99 percentiles. For comparison, the total payroll and
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assets in the Census data cover 76 and 54 percent of total compensation of employees

and net capital stock in the manufacturing industry in the National Accounts.

We use wage differences across local areas as our main explanatory variable, and

we obtain local wages in manufacturing sector from the Regional Employment Sur-

vey 2015. The Regional Employment Survey is the household-level survey that re-

ports salary, demographic information, educational attainment, and experience. To

control for the skill heterogeneity across regions, we estimate a residual wage for each

person controlling for education, experience, and demographics. We then collapse

this residual by each local area to get the regional variation in the labor cost.4

Finally, we compute capital income by multiplying the rate of return on equipment

and software by the stock of equipment and software, respectively. We impute the rate

of return on different types of capital from the net capital stock and investment data in

the National Accounts (Section 2). To be specific, we assume no-arbitrage conditions

across asset types, which gives

Rj
t = (1 + rt)pj

t−1 − (1 − δ
j
t)pj

t,

where rt is the net rate of return, pj
t is the price of capital good j relative to consump-

tion good, and δ
j
t is the depreciation rate of the capital good j. Using the data on the

net stock of capital Kj
t and investment (It), we infer the depreciation rate from

δ
j
t = 1 − Kt − It

Kt−1 × pj
t/pj

t−1

.

Then the net rate of return can be imputed from

1 + rt =
(1/μ)− �t + ∑j(1 − δ

j
t)pj

tK
j
t/Yt

∑j pj
t−1Kt/Yt

,

where μ is the aggregate markup, �t is the aggregate labor share, and Yt is gross value

added.

Figure 3 depicts the relationship between relative factor shares and log wage at

the regional level. Each point in the figure represents an administrative region. It

clearly shows that the relation between software to labor shares (log qS/wL) and local

wage (log wr) is strictly positive whereas the relation between equipment to labor

4The unit of a region in our analysis is Si-Gun-Gu, which is an administrative division of South Korea.
For comparison, the average population size of commuting zones in the US is around 443.5 thousands,
while the average population size of Si-Gun-Gu is 319.2 thousands.
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shares (log rK/wL) has slightly negative trend. The difference in the trends suggests

a possibility that the elasticities of substitution between labor and capital would be

quite heterogeneous by capital type.

Fig. 3: Relation between local wage and factor shares

4.2 Estimation

Using the data we describe above, we run the following regressions at the firm level.

log
rKi

wLi
= βe log wr + γeX + εe,i, (29)

1
1 − ki

log
qSi

wLi + rKi
= βs log wr + γsX + εs,i, (30)

where wr is the residual wage described above, and X is a set of control variables

including three-digit industry fixed effects, age, and multi-unit status dummies. Note

that βe = σe − 1 and βs = σs − 1. The specification implicitly assumes that all firms

face same cost of capital but different wages across regions.5

When using the regional variations, an endogeneity issue could arise if local wages

are correlated with unobserved non-neutral productivity. Following Oberfield and

Raval (2021) and Raval (2019), we use Bartik (1991)’s instrument for labor market con-

ditions to alleviate this concern. Given initial industrial composition, Bartik (1991)’s

5This is why we focus only on equipment rather than structure and equipment. It is unlikely that firms
located in different regions face same price of structure.
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instrument measures the change in labor market demand due to the nationwide ex-

pansion in industrial employment. To be specific, we compute the instrument by

Zr = ∑
i∈Ns

ωr,i,0 log(Li,t/Li,0),

where Ns is the set of industries in services sector, ωr,i,0 is the industry i’s share of

employment in region r at time 0, and Li,t is the nationwide employment of industry

i.

Because the instrument covers service industries only, we interpret this as a change

in the labor market supply of the manufacturing sector.6 This implicitly assumes that

services and manufacturing sector share the common labor supply pool. For this to

be true, the most important industries would be those with more of workers who can

switch to jobs in the manufacturing industries more easily. Checking the contribution

of each industry by the Rotemberg weights computed following Goldsmith-Pinkham

et al. (2020), we found that research & development and business support services ac-

count for 93% of overall weights (80% of positive weights, details in Appendix B.3.1).

Since workers in those two industries are likely to be able to switch to manufacturing

sector more easily than workers in other services industries, we view the assumption

of the common labor supply pool as a plausible assumption.

Following Goldsmith-Pinkham et al. (2020), we report estimation results with IV

regression with two-stage least square (TSLS) and limited-information maximum like-

lihood (LIML) with each industry share separately as instrument to check the validity

and robustness of the Bartik (1991)’s instrument. In addition, we also add the estima-

tion result with an alternative instrument suggested by Beaudry et al. (2012).

Table 5 reports the estimated elasticity of substitution between labor and equip-

ment (σe) and between labor and software (σs). We report OLS estimates in columns

1, and IV estimates in columns 3 to 6. The elasticity of substitution between labor

and equipment ranges from 0.27 to 0.66, depending on the estimation method. These

estimates imply the complementarity between labor and equipment, and are in line

6The Bartik instrument herein does not account for the industry linkages. To alleviate this concern,
Oberfield and Raval (2021) employs a measure of local amenities based on climate and geography as an
alternative instrument. However, we do not use a measure of local amenities here because measures of
climate and geography do not make enough variation in a small country like Korea. Oberfield and Raval
(2021) found that the Bartik instrument and the measure of local amenities do not make a big difference in
the estimation of the substitution elasticity.
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with other estimates in previous studies in the US, such as Antras (2004); Herrendorf

et al. (2015); Knoblach et al. (2020); Oberfield and Raval (2021); Raval (2019).

OLS Bartik BGS TSLS LIML

Equipment (σe) 0.661 ∗∗∗ 0.493 ∗∗∗ 0.274 0.409 ∗∗∗ 0.400 ∗∗∗
(0.084) (0.153) (0.220) (0.069) (0.095)

Software (σs) 1.124 ∗∗∗ 1.697 ∗∗∗ 2.522 ∗∗∗ 1.526 ∗∗∗ 1.535 ∗∗∗
(0.119) (0.229) (0.350) (0.106) (0.134)

Table 5: Estimates of the Firm-Level Capital-Labor Substitution

Column 1 is OLS estimate. Columns 2 and 3 are IV regression using Bartik (1991)’s instrument
and Beaudry et al. (2012)’s instrument, respectively. Columns 4 and 5 are IV regression with
two-stage least square (TSLS) and limited-information maximum likelihood (LIML) with each
industry share separately as instument, respectively. Standard errors are clustered at the level
of 3-digit industry and region. *, **, and *** indicate significance at the 10, 5, and 1 percent
level, respectively.

Our novel finding is that the elasticity of substitution between labor and soft-

ware (σs) is estimated to be greater than one. It implies that software substitutes la-

bor, and software income share would increase within firms in response to software-

augmenting technological change. Notably, σs > 1 ensures that the mechanism in

Section 3 is consistent with empirical findings we documented in Section 2, and im-

plies that technological change embodied in software may be an important source of

the labor share decline.

Table 6: Robustness Checks for Firm-Level Capital-Labor Substitution

Benchmark Positive obs. Alt. order Tan/Intan Alt. wage

Equipment (σe) 0.493 ∗∗∗ 0.547 ∗ 0.491 ∗∗∗ 0.654 ∗∗∗ 0.521 ∗∗∗
(0.153) (0.317) (0.153) (0.162) (0.144)

Software (σs) 1.697 ∗∗∗ 1.471 ∗∗∗ 1.155 ∗∗∗ 2.815 ∗∗∗ 1.659 ∗∗∗
(0.229) (0.417) (0.197) (0.434) (0.217)

All columns are estimate from IV regression using Bartik (1991)’s instrument. The column
1 is benchmark estimate, and the column 2 is estimates using data with strictly positive Ks

i
only. The column 3 is estimation under alternative CES ordering of the production function
(31). The column 4 is estimation with total tangible and intangible capital . The column 5
uses the regional average of log hourly wage for the explanatory variable. Standard errors
are clustered by three digit industry and local area. *, **, and *** indicate significance at 10%,
5%, and 1%, respectively.

We next check whether the above-unity elasticity of substitution between labor

and software is robust. In the Economic Census, many firms report that they do not
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hold software assets (Si = 0), which might be a measurement error. We first restrict

the sample to firms with software assets greater than zero. Next, we check if the

results are sensitive to a specific functional form of the firm-level production function

(5). More specifically, we consider the alternative ordering of nested CES structure:

Yi =

[(
αL

i (ALLi)
σs−1

σs + αS
i (ASSi)

σs−1
σs

) σs(σe−1)
(σs−1)σe + αK

i (AKKi)
σe−1

σe

] σe
σe−1

, (31)

and estimate σe and σs under this alternative specification. Lastly, we estimate equa-

tion (29) and (30) with firm-level wage from the Economic Census (alternative wage 1)

and the regional average of the log hourly wage (alternative wage 2) as the explana-

tory variable. Results are in Table 6, which confirms that equipment complements

labor (σe < 1) and software substitutes labor (σs > 1).

4.3 Aggregate Elasticities

We now calculate the aggregate response of factor income shares to the changes in

factor prices or factor-biased technological change. Specifically, we apply the model

in Section 3 to obtain the aggregate elasticities σ̄e and σ̄s in Proposition 2. The ag-

gregation requires the estimation of ξ’s and ζ’s and the demand elasticity ε. We use

the Economic Census to measure the distributional moments, summarized in Table

7. The weights on the between-firm reallocation term (χ, ξq, ξw, and ξr) range from

around 0.17 to 0.19. Since the cost to revenue ratio is (ε − 1)/ε in our model, we use

the average operational cost to revenue ratio in the Economic Census to get ε. The

estimated ε is about 3.6 in our data (Table 7).

χ ζw ζr ξq ξw ξr ε

0.1337 -0.0028 0.0026 0.1705 0.1986 -0.4286 3.5711

Table 7: Distributional Moments and ε

The distributional moments are computed from ki, �i, si, κi, θi, and ωi which we obtain

from the Economic Census. Note that χ := ∑i(ki−k)2θi
k(1−k) , ξw := −∑i ωi(si−s)(�i−�)

s� , ξr :=

−∑i ωi(si−s)(κi−κ)
sκ , ξq := ∑i ωi(si−s)2

s(1−s) , ζw := ∑i(ki−k)(1−ki)θi si
∑i(ki−k)(1−ki)θi

, and ζr := ∑i(ki−k)kiθi si
∑i(ki−k)kiθi

.

Applying the distributional moments to equations (24) to (28) in Proposition 2, we

obtain the aggregate elasticities in Table 8. The aggregate elasticity of substitution

between labor and equipment lies below one (σ̄e < 1). Since our estimates are σe <
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σs < ε, the aggregate elasticity of substitution between labor and equipment has to be

greater than the firm-level elasticity. Moreover, given σs > 1 and ε > 1, the aggregate

elasticity might exceed one if the dispersion in the ratio of capital income to labor

income (ki) is large enough. However, the dispersion χ implied by the Economic

Census is such that the aggregate elasticity is still below one, consistent with Oberfield

and Raval (2021) and others.

Traditional Capital Software

σ̄w
e σ̄r

e σ̄
q
s σ̄w

s σ̄r
s

Aggregate Elasticity 0.9053 0.9039 2.0166 2.0691 0.8938

Table 8: Aggregate Elasticities of Substitution

The aggregate elasticities are computed using Proposition 2, where σe and σs are the IV esti-
mates in Table 5, and χ, ξ, and ζ’s are from Table 7.

The results are different for software. Given 1 < σs < ε, the aggregate elasticity of

substitution between labor and software in response to software price (σ̄q
s ) has to be

always greater than one. Suppose that the price of software dropped one percent ex-

ogenously. Since our benchmark σs is 1.57, each establishment will substitute toward

software so as to increase software income by 57 percent more than non-software in-

come. In addition, this substitution grows larger those firms using software more

intensively than others. This between-firm reallocation would increase the software

income share by another 38 percent, so the aggregate software income will be 95 per-

cent larger compared to the non-software factor income.

What is interesting is that ξr < 0, which follows from the positive covariance

between equipment share (κi) and software share (si). Suppose a capital-embodied

technological change that lowers r. Because σs > 1, within-firm adjustment implies

a reduction in software share. At the same time, firms with higher κi will become

more productive, and hence increase their share in the value-added (ωi). Because the

covariance between si and κi is positive, these firms generally have larger si’s, and

hence this reallocation will counteract the within-firm adjustment. The magnitude of

this reversal depends on the size of the covariance and the demand elasticity. In this

case, the reversal is strong enough that σ̄r
s is slightly less than 1.
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5 Implications on the Aggregate Labor Share

To put the estimated elasticities of substitution into context, we quantify the impact

of software-embodied technological change on the aggregate labor income share. Re-

searchers have used observed decline in the price of investment relative to the price of

consumption to measure the observed technological change specific to capital goods

(e.g., Cummins and Violante, 2002). Following the literature, we use changes in the

inverse of the price of software and equipment investment relative to consumption to

measure software or equipment-specific technological change.

One problem with using the Korean National Accounts is that its implied price

index for software investment is not likely to capture software-specific technological

progress well. Since 1994, a change in the price index of software investment in the

Korean National Accounts comes from the change in the producer price index, which

does not capture the quality improvements compared to the hedonic method. There-

fore, we adjust the price index following Parker and Grimm (2000), which the Bureau

of Economic Analysis does when constructing the price index of software.7

We then calculate how much of the labor share decline could be explained by the

observed technological change specific to software and/or equipment. From Proposi-

tion 2, it is straightforward to see that the impact of investment-specific technological

changes (d ln 1/q or d ln 1/r) on the aggregate labor share is given by

dLS/LS =− s(σ̄q
s − 1)d ln 1/q

− k((σ̄r
e − 1)− s(σ̄r

s − 1))d ln 1/r. (32)

Given the aggregate elasticities in Table 8, equation (32) implies that the software-

embodied technological change (d ln 1/q > 0) reduces the aggregate labor income

share. What is interesting is that the effect of d ln 1/r has two opposing forces. Facing

the equipment-specific technological change (d ln 1/r > 0), the first term (σ̄r
e − 1) will

raise the labor share since σ̄r
e < 1. However, since σ̄r

s is also less than one, the second

term −s(σ̄r
s − 1) will reduce the labor share. Again, σ̄r

s is less than one because the

reallocation is stronger than the within-firm adjustment, raising the software share

(ξr < 0).

7The Bureau of Economic Analysis (BEA) recognizes the bias between the hedonic and the matched
model method, and makes the bias adjustment of 3.15 percent per year to the producer price index from
the Bureau of Labor Statistics. See Parker and Grimm (2000) for details.
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To do the decomposition in equation (32), we compute LSt, kt, and st from the Na-

tional Accounts.8 To be specific, we impute the rate of return on capital as described

in Section 4.1 and then compute kt and st by multiplying the rate of return to the net

capital stock by asset type. Recall that the rate of return satisfies

Rj
t = (1 + rt)pj

t−1 − (1 − δ
j
t)pj

t,

where rt is net rate of return, pj
t is the price of capital type j, and δ

j
t is the depreciation

rate. Also the observed software- and equipment-specific technological changes are

ln 1/q = ln 1/Rs
t and ln 1/r = ln 1/Re

t , respectively. Note that trends in Rj
t should

closely follow pj
t, especially when r and δj’s are stable. In the data, the net rate of re-

turn rt shows a declining trend as well, and hence the gross rate of return Rj
t decreases

faster than pj
t.

Even when we assume that the micro elasticity is time-invariant, the aggregate

elasticities σ̄ may vary across time because of the distributional parameters. A prob-

lem is that information on the software usages is included in the Census only in 2015.

Therefore, we check the pattern of distributional parameters in the frm-level account-

ing data (KISdata), and then impute the changes in the distributional parameters ac-

cording to:

dt = dcensus
2015 − dKISdata

2015 + dKISdata
t ,

where dt is one of the distributional parameters (χ, ζw, ζr, ξq, ξw, and ξr). It turns

out that the consideration of time-varying pattern of distributional parameters does

not affect the decomposition result much because they do not have a clear time trend

(Details are in Appendix B).

Table 9 depicts how much the software-specific technological change affected the

aggregate labor income share between 1990 and 2019. Since 1990, the aggregate labor

share has declined by 4.9 percentage points. The observed software-embodied tech-

nological change accounts for a 2.5 p.p. reduction in the aggregate labor share, which

is 51.2 percent of the overall decline. Of this, 33.4 percent point is due to within-firm

substitution and the remaining 17.8 percent point is due to between-firm reallocation.

8Although the elasticity estimation uses manufacturing data, the decomposition is based on the aggre-
gate labor share. This is because the National Accounts data do not report kt, st, qt, and st by industry in
Korea. Using the US data, Aum and Shin (2020) showed that the correlation between software intensity
and the labor share decline is stronger in the services industry than in the manufacturing industry.
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At the same time, the equipment-embodied technological change accounts for a 1.1

p.p. increase in the labor share. In total, unlike in Oberfield and Raval (2021), over-

all capital-embodied technological change has reduced the labor share when software

and equipment are considered separately.

Labor Share
Software (Δ ln 1/q) Equipment

(Δ ln 1/r)Total Within Reallocation

Changes -0.049 -0.025 -0.016 -0.009 0.011
(% of total) (51.2) (33.4) (17.8) (-22.0)

Table 9: Effects of Capital-Embodied Technological Change on the Labor Share

We adjust for the proprietors’ labor income in the aggregate labor share following Gollin
(2002). The decomposition is for the periods between 1990 and 2019. Percent explained of the
overall labor share decline in parentheses.

In equation (32), software-embodied technology affects the labor share only

through capital-labor substitution. This is because we assume a constant demand

elasticity (ε) and hence technological changes do not affect the markup. Our empirical

finding in Table 3 in Section 2, however, indicates that software-embodied technology

can also affect the markup. Although not explicitly analyzed in the model, we took

a naive look at how the impact of software on markups will in turn affect the labor

share.

More specifically, for every year, we compute an implied increase in the log of

markups due to software by multiplying the estimated coefficient in Table 3 (β̂ = 0.34)

by the annual change in aggregate software capital to value-added in the data. That is,

the implied changes in the markup would be Δ ln μ ≈ β̂×Δst, which implies a further

decline in the aggregate labor share by LSt × Δ ln μ due to software. The results are

summarized in Table 10. Between 1990 and 2019, this would imply -1.3 p.p. further

decline in the labor share, explaining additional 25.7 percent of the overall decline in

the aggregate labor share.

The decomposition results imply that the labor share would have declined more

slowly if not for the software-embodied technological change. Figure 4 depicts how

the aggregate labor share would have evolved without software-specific technolog-

ical change. We confirm that the counterfactual labor share (LS × (1 + ∑[s(σ̄q
s −

1)d ln 1/q + d ln μ]), red line) declines more slowly than the actual labor share (blue

line), with an estimated trend (-0.17) about 60% of the trend in the data (-0.28).
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Labor Share Δ ln 1/q Δ ln μ Total

Changes -0.049 -0.025 -0.013 -0.038
(% of total) (51.2) (25.7) (76.9)

Table 10: The Implied Effects from the Changes in Markup

We adjust for the proprietors’ labor income in the aggregate labor share following Gollin
(2002). The decomposition is for the periods between 1990 and 2019. Percent explained of the
overall labor share decline in parentheses.
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Fig. 4: Comparison between the Actual and the Counterfactual Labor Share

The labor share without software is LS × (1 + ∑[s(σ̄q
s − 1)d ln 1/q + d ln μ]).

Alternative Demand Elasticities The aggregate elasticities (σ̄e and σ̄s) used for

the decomposition in equation (32) come from Table 8, which uses the demand elastic-

ity ε we estimated from Economic Census 2015. To see how different ways of estimat-

ing ε would affect the results, we redo the decomposition exercise with the demand

elasticity implied by the harmonic mean of firm-level markups (μ̄ := ε/(ε − 1)) es-

timated from firms’ financial information in the KISDATA database in Section 2 and

Appendix B. Specifically, we use the harmonic mean of firm-level markups in the

manufacturing sector, where the markups are estimated via three methods: account-

ing profit (μAP), user cost (μUC), and production function approach (μPF).

Figure 5 plots the counterfactual labor shares without software-embodied techno-

logical change using alternative markup estimates. The markup level estimated from

firm-level data is generally lower than what we obtain from the Economic Census.
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Fig. 5: Actual and Counterfactual Labor Share with Alternative Markups

The labor share without software is LS × (1 + ∑[s(σ̄q
s − 1)d ln 1/q + d ln μ]).

Therefore, the implied demand elasticity is larger, and reallocation becomes more im-

portant. As a result, we get much flatter counterfactual labor shares under alternative

markups. For example, when the markup estimated from the production function

approach is used to compute the demand elasticity, the declining trend in the coun-

terfactual labor share becomes much flatter (-0.07), about one quarter of the actual

trend (-0.28). In other words, the importance of software in the decline of the aggre-

gate labor share is understated in our benchmark exercise.

6 Conclusion

In this paper, we establish that the capital-labor substitution elasticity is different

across types of capital both qualitatively and quantitatively. In particular, we show

that the software-labor substitution elasticity is greater than one but the equipment-

labor substitution elasticity is less than one.

The difference is essential in understanding the aggregate labor income share de-

cline. We show that decline in the price of software (or software-embodied technolog-

ical change) connects the three leading explanations for the labor share decline. First,

the above-unitary elasticity of substitution between labor and software is consistent

29



with the argument that the observed technological change embodied in capital low-

ers the labor share (Karabarbounis and Neiman, 2013). However, it is only software

(or intangible) capital that has an elasticity greater than one, consistent with the fact

that labor share declines only when accounting for the intangible investment in value-

added (Koh et al., 2020). At the micro-level, firms with higher software intensity gen-

erally have low labor shares, and the aggregate elasticity implies that firms with low

labor shares also grow their size with software-embodied technological change, con-

sistent with the reallocation channel emphasized in the literature (Autor et al., 2020;

Kehrig and Vincent, 2021).

Quantitatively, the measured technological change embodied in software explains

about half of the labor share decline in Korea between 1990 and 2019 under the most

conservative specification. Among them, 33 p.p. is due to within-firm adjustment

and the remaining 18 p.p. is due to reallocation from low to high software intensity

firms. Depending on the specification, eliminating the software-embodied technolog-

ical change can wipe out up to 77 percent of the downward trend in the aggregate

labor share. Software, not equipment, is the key to understanding the decline of the

labor share.
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Appendix A Proofs

Proof of Proposition 1 From equation (9) and (10), we have the relative price between

wage and the price of traditional capital as:

w
r
=

αL
i

αK
i

(
AL

AK

) σe−1
σe
(

Ki

Li

) 1
σe

.

Taking logs, we have

(σe − 1) ln
w
r
= σe ln

αL
i

αK
i
+ (σe − 1) ln

AL

AK
+ ln

rKi

wLi
, (A.1)

Differentiating equation (A.1) with fixing AL/AK, and using the definition of ki, we

get equation (15), which is the first part of Proposition 1.

Similarly, from equation (6), (9), (10), and (13), we have φi = pi(Yi/Xi)
1/σs . And

divided it by (12), we have

φi

q
=

1
αS

i

(
1

AS

) σs−1
σs
(

Si

Xi

) 1
σs

.

Taking logs, we have

(σs − 1) ln
φi

q
= σs ln

1
αS

i
+ (σs − 1) ln

1
AS

+ ln
qSi

φiXi
(A.2)

Differentiating equation (A.2) with fixing AS, we get

σs − 1 =
d ln qSi

φiXi

d ln φi
q

. (A.3)

From the definition of φi (13),

d ln φi =
1

1 +
(

αK
i

αL
i

)σ

e

(
rAL
wAK

)1−σe
d ln w +

1

1 +
(

αL
i

αK
i

)σ

e

(
wAK
rAL

)1−σe
d ln r (A.4)

Since
(

rαL
i

wαK
i

)σ

e

(
AL
AK

)σe−1
w
r = wLi

rKi
from equation (9) and (10), by inserting it into equa-

tion (A.4) and using the definition of ki, we have

d ln φi = (1 − ki)d ln w + kid ln r.

Lstly, we have φiXi = wLi + rKi from equation (6), (9), (10), and (13). So equation

(A.3) becomes

σs − 1 =
d ln qSi

wLi+rKi

(1 − ki)d ln w
q + kid ln r

q
,

which is the second part of Proposition 1.
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Proof of Corollary 1 Totally differentiating equation (A.1) and setting d ln w =

d ln r = 0, it is straightforward to see the first part of Corollary 1. Also, totally

differntiating equation (A.3) and setting d ln q = 0, and following the same steps in

the proof of Proposition 2, the second part of Corollary 1 follows.

Proof of Proposition 2 Consider d ln w > 0, d ln r = 0, and d ln q = 0.

Traditional capital-labor substitution From the definition of the aggregate elas-

ticity (24),

σ̄w
e − 1 =

d ln rK
wL

d ln w
=

d ln k
1−k

d ln w
=

1
1 − k

d ln k
d ln w

=
1

k(1 − k)
dk

d ln w
(A.5)

From the definition of k := ∑ θiki,

dk = ∑
i

θidki + ∑
i

kidθi (A.6)

From the equation (15) in Proposition 1, we know that

dki = (σe − 1)ki(1 − ki)d ln w (A.7)

Also from the definition of θi,

θi =
wLi + rKi

wL + rK

=
wLi + rKi

wLi + rKi + qSi
× wLi + rKi + qSi

wL + rK + qS
× wL + rK + qS

wL + rK

=
1 − si

1 − s
ωi.

Since ωi =
piYi
pY = γε

i

(
pi
p

)1−ε
,

dθi = θid ln θi = θid ln(1 − si)− θid ln(1 − s) + θi(1 − ε)(d ln pi − d ln p) (A.8)

From equation (16) in Proposition 1, equation (A.8) is

dθi = −θisi(σs − 1)(1 − ki)d ln w − θid ln(1 − s) + θi(1 − ε)(d ln pi − d ln p) (A.9)

Following Oberfield and Raval (2021), we will use the fact that ∑i kdθi = 0 and

∑i(ki − k)θi = 0. Using these facts, equation (A.9), and d ln pi = (1 − si)(1 − ki)d ln w,

∑
i

kidθi = ∑
i
(ki − k)dθi
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= ∑
i
(ki − k)θi [(1 − σs)si(1 − ki)d ln w + (1 − ε)d ln pi]

= ∑
i
(ki − k)θi [(ε − σs)(1 − ki)si + (1 − ε)(1 − ki)] d ln w. (A.10)

Substituting (A.7) and (A.10) into (A.6),

dk = ∑
i

θi(1 − ki) [(σe − 1)ki + (ki − k)(ε − σs)si + (ki − k)(1 − ε)] d ln w (A.11)

From (A.5), (A.11), and ∑i(ki − k)θ = 0,

σ̄w
e − 1 =

∑i θi(1 − ki)ki

(1 − k)k
(σe − 1)

+
∑i θi(1 − ki)(ki − k)si

k(1 − k)
(σs − ε)

+
∑i θi(ki − k)2

k(1 − k)
(ε − 1)

= (1 − χ)(σe − 1) + ζwχ(σs − ε) + χ(ε − 1)

= (1 − χ)σe + χζwσs + χ(1 − ζw)ε − 1,

which is equation (24) in Proposition 2.

Software-labor substitution Similarly, from the definition of σ̄w
s ,

σ̄w
s − 1 =

d ln s
1−s

(1 − k)(1 − s)d ln w
=

1
s(1 − s)(1 − k)

ds
d ln w

=
1
s�

ds
d ln w

(A.12)

Since s = ∑i ωisi,

ds = ∑
i

ωidsi + ∑
i

sidωi. (A.13)

From the equation (16) in Proposition 1, we see that

dsi = (σs − 1)si�id ln w, (A.14)

where we use that �i = (1 − si)(1 − ki).

We already know that dωi = ωi(1 − ε) (d ln pi − d ln p) and d ln pi = �id ln w. So,

we have

dωi = ωi(1 − ε) (�id ln w − d ln p)

Since ∑i sdωi = 0,

∑
i

sidωi = ∑
i
(si − s)dωi
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= ∑
i
(si − s)ωi(1 − ε)�id ln w

= ∑
i
(si − s)ωi(1 − ε)(�i − �)d ln w (A.15)

Substituting equation (A.14) and (A.15) into equation (A.13),

ds = ∑
i

ωi [(σs − 1)si�i + (si − s)(�i − �)(1 − ε)] d ln w (A.16)

Also, note that

1 + ∑i(si − s)(�i − �)ωi

s�
=

∑i [(si − s)(�i − �) + s�]ωi

s�
=

∑i si�iωi

s�
. (A.17)

Substituting equation (A.16) and (A.17) into (A.12),

σ̄w
s − 1 = (σs − 1)(1 − ξw) + ξw(ε − 1), (A.18)

which is equation (27) in Propositoin 2.

Cases with d ln r > 0 are d ln q > 0 are analogous.

Appendix B Data

B.1 KISDATA database

The KISDATA is a database on financial information for firms listed on the Korea

Stock Exchange and firms unlisted but required to publish external auditing reports.

Criteria for external auditing requirement is as follows. Until 2008, firms whose asset

value exceeded 7 billion KRW had to be audited externally. Since 2009 (2014), (i) firms

with asset value greater than 10 billion (12 billion) KRW, (ii) asset value greater than

7 billion KRW and liability greater than 7 billion KRW, or (iii) asset value greater than

7 billion KRW and the number of employees more than 300 were subject to external

auditing. Among firms included in the KISDATA, we exclude financial firms and

quasi-governmental and non-profit firms from the sample. Our dataset covers the

years between 2000 and 2018.

B.1.1 Labor Share

Construction of the labor share requires data on labor compensation and value added.

We combine employee compensation and benefits in the income statement and the la-

bor cost in the manufacturing cost statement to obtain a firm’s total labor compensa-

tion. Note that the employee compensation and benefits in the income statement can
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be understood as labor income accruing to non-production workers, whereas the la-

bor cost in the manufacturing cost statment can be regarded as labor income accruing

to production workers.

To compute value added, we add up operational profit, depreciation and amorti-

zation, taxes and dues, and labor compensation. The labor share at the firm level is

then computed by the labor compensation divided by value added. In the regression

analysis, we keep the observations with the labor share between zero and one.

B.1.2 Software and Equipment capital

We use the variable “intangible asset - software” in firms’ balance sheet to measure

their software asset. according to Korean Generally Accepted Accounting Principles

(K-GAAP), a firm classifies its software purchases from outside as software assets (in

intangible assets). A firm may have software developed in-house as intangible asset,

but this component is not included in our analysis as it’s included in the research and

development and not separately reported. Also, our measure of equipment capital is

sum of machinery and transportation equipment, reported in the balance sheet data.

We divide software asset and equipment asset by value added to measure software

intensity and equipment intensity, respectively. For the regression analysis, we win-

sorize software and equipment intensity at 1-99 percentile by year.

B.1.3 Markup

Detailed procedure for the construction of markup mostly follows Baqaee and Farhi

(2019).

Accounting Profit For the accounting profit approach, we use operating income to

measure profits and use the expression

pro f it =
(

1 − 1
μAP

)
sales, (B.1)

to get μAP for each firm in each year.

User Cost The user cost approach computes income to the capital with multiple of

the user cost of capital and capital stock. For this approach, we assume that operating
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surplus is

OS = RK +

(
1 − 1

μOC

)
sales, (B.2)

where OS is the operating income (with depreciation), R is the user-cost of capital,

and K is the quantity of capital. We use the sum of sales net of cost of goods sold and

depreciation to get OS, and the sum of tangible and intangible assets to measure K.

The user cost of capital is given by

Ri,t = (1 + rt)− (1 − δi,t)Et pk
i,t+1/pk

i,t, (B.3)

where the r is the average real rate of the commercial paper, δi,t is the industry-level

depreciation rate implied in the National Account, and Et pk
i,t+1/pk

i,t is three-year mov-

ing average of the changes in the relative price of capital to consumption by industry.

Then we back out μUC from equation (B.2) and (B.3).

Production Function For the production function approach we estimate elastic-

ity of output with respect to variable inputs following Baqaee and Farhi (2019) and

De Loecker et al. (2020).

To estimate elasticity, we need outcome variable (log sales), free variable (log cost

of goods sold), state variable (log capital stock), and proxy variable (log investment).

We deflate sales and cost of goods sold with gross value added deflator by industry

and capital expenditure with gross fixed capital formation deflator by industry. To

compute capital stock, we apply the perpetual inventory method (PIM) with the initial

level of tangible and intangible capital and capital expenditure. We also control sales

share in one-digit and two-digit industries in the estimation. In the estimation, we

exclude samples with the cost of goods sold to sales ratio or selling, the general and

administrative expense to sales ratio in the top and bottom 2.5% by year. We also

exclude agricuture as well as finance and insurance industry.

The elasticity is estimated using Olley and Pakes (1996) with three-year rolling

windows by one-digit industry, and μPF is then

μPF =
∂ log F/∂ log X

X/Y
, (B.4)

where F is production function, X is variable input (cost of goods sold), and Y is sales

turnover.
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Lastly, when we do the regression analysis, we winsorize log of markups at 1%

and 99% by year.

B.1.4 TFP

We estimate firm-level TFPs from the estimation of production fuction we did for the

construction of markups. That is, we estimate the production function using Olley

and Pakes (1996)’s method with three-year rolling windows by one-digit industry,

and compute log of the total factor productivity accordingly. We also winsorize log of

the total factor productivity at 1% and 99% by year.

B.1.5 Distributional Parameters

To check time variations in the distributional parameters, we compute the distribu-

tional parameters (χ, ζr, ζw, ξr, ξw, and ξq) using the KISDATA dataset. Because the

firms listed on the Korea Stock Exchange have adopted International Financial Re-

porting Standards (IFRS) since 2011, there are some firms who did not report software

asset since 2011. In this case, we impute qSi,t with qSi,t−1. Computing the distribu-

tional parameters, we keep the observations with rKi ≥ 0, qSi ≥ 0, and wLi ≥ 0,

where wLi is the total labor compensation in firm i from the firm’s income statement

and manufacturing cost statement. We get rKi by the multiplication of the rate of re-

turn on equipment and the equipment capital stock, and qSi by the multiplication of

the rate of return on software and the software capital stock. Here, the rate of return

on capital by capital type is imputed from the aggregate National Account data. To

be specific, we impute the rate of return on capital assuming no arbitrage condition

given as following.

Rj
t = (1 + rt)pj

t−1 − (1 − δ
j
t)pj

t,

where rt is the net rate of return, pj
t is the price of capital good j relative to consump-

tion good, and δ
j
t is the depreciation rate of the capital good j. Then the net rate of

return can be imputed from

1 + rt =
(1/μ)− �t + ∑j(1 − δ

j
t)pj

tK
j
t/Yt

∑j pj
t−1Kt/Yt

,

where μ is the aggregate markup, �t is the aggregate labor share, and Yt is gross value

added.
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Then the distributional parameters are compauted by χ := ∑i(ki−k)2θi
k(1−k) , ξw :=

−∑i ωi(si−s)(�i−�)
s� , ξr := −∑i ωi(si−s)(κi−κ)

sκ , ξq := ∑i ωi(si−s)2

s(1−s) , ζw := ∑i(ki−k)(1−ki)θisi
∑i(ki−k)(1−ki)θi

, and

ζr := ∑i(ki−k)kiθisi
∑i(ki−k)kiθi

as described in Section 3.

Figure B.1 depicts the distributional parameters computed from the KISDATA

database. Two things are noteworthy. First, none of the distributional parameters

have a clear time trend although there are some fluctuations over time. Second, they

are not qualitatively different from the values computed from the Census data. Quan-

titatively, the parameter related to the dispersion of equipment (χ) is higher in the

KISDATA, and the parameter related to the dispersion of software (ξq) is higher in the

Census data.

Fig. B.1: Distributional Parameters computed from the KISDATA database

(a) χ (b) ξq (c) ξw

(d) ξr (e) ζw (f) ζr

The circle represents the distributional parameters computed from the Census data.

B.2 Census

Our primary data source for the estimation of the elasticity of substitution between la-

bor and capital is the manufacturing sector data of the Korea Economic Census 2015. It

surveys all establishments with more than one employee as of December 31, 2015. We

exclude branches, sole proprietorships, governmental and non-profit establishments
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as they do not report intangible assets. We use annual payroll for wLi, equipment

capital (machinery and transportation equipment) for Ki and software assets for Si.

We drop all the establishments that did not report whether they have intangibles. In

case an establishment explicitly reports that it does not hold intangibles, we assign

zero values to Si. To compute the factor income shares, we use the rate of return on

equipment and software (r and q) imputed from the National Accounts. Lastly, we

winsorize factor shares at 1 and 99 percentiles.

B.2.1 Distribution of factor income shares

Census data includes information on the location of establishments and the unit of a

region in our analysis is Si-Gun-Gu, an administrative division of South korea, com-

parable with commuting zones in the US in terms of the average population size.

Figure B.2 shows the regional distribution of software (si), equipment (ki), and labor

income shares (�i).

Fig. B.2: Factor income shares by region

(a) Software (si) (b) Equipment (ki) (c) Labor (�i)

The regions are classified according to the quantiles of the distribution of factor in-
come shares.

Note that the covariance between software shares (si) and equipment shares (ki) is

positive and the covariance between software shares (si) and labor income shares (�i)

is negative as indicated by the signs of ξr and ξw. These relationships are more clearly

seen in Figure B.3 that relates software share and equipment or labor income shares.
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Fig. B.3: Relationship between software income share and labor or equipment income share

(a) Software vs Equipment (b) Software vs Labor

B.2.2 Simulations on the changes in distributional parameters

To get an idea on how capital-embodied technological changes whould have affected

the distributional patterns of factor income shares, we simulate changes in factor in-

come shares responding to the observed decline in the price of equipment and soft-

ware with the model. More specifically, from proposition 1, 2, and definition 1:

dki = ki(1 − ki)(σe − 1)(d ln w − d ln r)

dsi = si(1 − si)(σs − 1)((1 − ki)d ln w + kid ln r − d ln q)

dk = k(1 − k) [(σ̄w
e − 1)d ln w − (σ̄r

e − 1)d ln r]

ds = s(1 − s)
[
(σ̄w

s − 1)(1 − k)d ln w + (σ̄r
s − 1)kd ln r − (σ̄

q
s − 1)d ln q

]
dωi = ωi(1 − ε)(�id ln w + κid ln r + sid ln q − d ln p)

d ln p = ∑
i

ωid ln pi = ∑
i

ωi(�id ln w + κid ln r + sid ln q)

dθi = θi

[
− 1

1 − si
dsi +

1
1 − s

ds +
1

ωi
dωi

]

Using these relations, we can obtain the distribution of factor income shares implied

by the capital embodied technological changes in the data (−d ln q and −d ln r).

B.3 Regional Employment Survey

We use wage differences across local areas as our main explanatory variable in the es-

timation of the elasticity of substitution, We obtain local wages in manufacturing sec-

43



tor from the Regional Employment Survey 2015. The Regional Employment Survey is

the household-level survey that reports salary, demographic information, educational

attainment, and experience. To control for the skill heterogeneity across regions, we

estimate a residual wage for each person controlling for education, experience, and

demographics. We then collapse this residual by each local area to get the regional

variation in the labor cost.

B.3.1 Bartik instrument

To alleviate a concern on unobserved non-neutral productivity correlated with local

wages, we use Bartik (1991)’s instrument measures. Given initial industrial compo-

sition, Bartik (1991)’s instrument measures the change in labor market demand due

to the nationwide expansion in industrial employment. Specifically, we compute the

instrument by

Zr = ∑
i∈Ns

ωr,i,0 log(Li,t/Li,0),

where Ns is the set of industries in services sector, ωr,i,0 is the industry i’s share of

employment in region r at time 0, and Li,t is the nationwide employment of industry

i. Because the instrument covers service industries only, we interpret this as a change

in the labor market supply of the manufacturing sector.

Goldsmith-Pinkham et al. (2020) documented that the bartik estimator (β̂bartik) can

be decomposed into the weighted sum of the just identified estimators with one in-

dustry’s regional share as an instrument (β̂bartik = ∑i α̂i β̂i), where the weights (αi’s)

are the Rotemberg weight. Table B.1 shows summary of the Rotemberg weights. It

shows that two industries with the largest weights account for over 90 percent of the

overall weights and 64 (=0.93/1.45) percent of the positive weight in the estimator.

These are research & development and business support services. ince workers in

those two industries are likely to be able to switch to manufacturing sector more eas-

ily than workers in other services industries, we view this as assuring result regarding

the assumption of the common labor supply pool.

Panel B shows that the national growth rates (gi) are quite related to the weights

while the the variation in the industry shares across locations (var(ωi)) are only

weakly correlated.
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Table B.1: Summary of the Rotemberg Weights

sum mean share

Panel A. Negative and positive weights
Negative -0.446 -0.041 0.236
Positive 1.446 0.063 0.764

α̂i gi F̂i var(ωi)

Panel B. Correlations
α̂i 1.000
gi 0.248 1.000
F̂i 0.589 0.114 1.000

var(ωi) -0.034 -0.104 0.098 1.000

α̂i gi σ̂e σ̂s ∑i
k=1 α̂k

Panel C. Top Rotemberg weight industries
Research & development 0.513 0.316 0.309 2.425 0.513
Business support services 0.418 0.182 0.128 1.431 0.932

Warehousing and transportation 0.112 0.165 -0.025 0.360 1.043
Retail trade (except motor) 0.060 -0.023 -0.644 1.878 1.104

The panel B reports correlations between the weights (α̂i), the nationwide growth of industry i
(gi), the first-stage F-statistic of the industry share (F̂i), and the variation in the industry shares
across locations (var(ωi)).

Fig. B.4: Heterogeneity of the elasticities
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(b) Software (σ̂s)

The figure plots the relationship between each instruments’ σ̂k, first-stage F-statistics, and the
Rotemberg weights. Each point is a separate instrument’s estimates. The estimated (σ̂k) for each
instrument is on the y-axis and the estimated first-stage F-statistic is on the x-axis. The size
of the points are scaled by the magnitude of the Rotemberg weights, with the circles denoting
positive weights and the diamonds denoting negative weights. The dashed line is at the value
of the Bartik estimator on the elasticity of substitution. The figure excludes instruments with
first-stage F-statistics below 5.
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