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Abstract

I present evidence from index options that the price of risk over the value of the
S&P 500 increases as the investment horizon becomes shorter. I show first how these risk
prices may be estimated from the data, by translating the risk-neutral probabilities im-
plied by options prices into physical probabilities that must provide unbiased forecasts
of the terminal outcome. The risk price can be interpreted as the marginal investor’s
effective risk aversion, and estimating this value over different option-expiration hori-
zons for the S&P, I find that risk aversion is reliably higher for near-term outcomes than
for longer-term outcomes: the market’s relative risk aversion over terminal index values
decreases from around 15 at a one-week horizon to around 3 at a 12-week horizon. It is
difficult to reconcile these findings with leading asset-pricing models, and I discuss nec-
essary conditions for any such rational model to produce such a pattern. Models with
dynamically inconsistent risk preferences, however, are capable of straightforwardly
producing the findings presented here, and I discuss possible specifications of such
models and their applicability to related results from previous literature.
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1. Introduction

How do people assess risky outcomes at different horizons? This question is central to understand-
ing intertemporal choice in the face of risk, and it has accordingly received much attention in the
recent finance literature. Several recent papers, beginning with Binsbergen, Brandt, and Koijen
(2012), have argued that the term structure of equity returns is downward-sloping, with claims to
near-term dividends (short-term dividend strips) exhibiting larger risk premia than longer-horizon
claims on average.1 Such a finding may seem intuitive in light of the observed risk premium on
value stocks, which tend to have shorter-duration cash flows than growth stocks (Campbell and
Vuolteenaho, 2004; Lettau and Wachter, 2007). But a downward-sloping equity term structure in
fact runs counter to the predictions of many leading equilibrium asset-pricing models, and a subset
of the recent literature has challenged the empirical finding on the grounds of measurement-error
and sample-selection issues.2

In this paper, I contribute to the evidence on risk pricing at different horizons by focusing
specifically on digital (or binary) options over the market index value at short to medium horizons.
I show how the market’s effective risk aversion over the terminal index value may be estimated at
varying horizons using these option prices, by translating the risk-neutral probabilities implied
by options prices into physical probabilities that by definition provide unbiased forecasts of the
terminal outcome. Then conducting such estimation using S&P 500 index options, I find evidence
consistent with a downward-sloping term structure of risk prices, as the market’s effective risk
aversion is reliably higher for near-term outcomes than for longer-term outcomes. In particular, a
statistic interpretable as relative risk aversion is estimated to be around 15 at a one-week horizon,
but it decreases essentially monotonically to around 3 at a 12-week horizon.

The evidence I present extends previous findings along two dimensions. First, and most
importantly, I show that the declining term structure of risk prices for binary options provides
additional information on the source of the declining risk premium for dividend strips found in
previous literature. The risk premium for a dividend strip at a given maturity depends on both
risk preferences (roughly, the “price” of risk) and the data-generating process for consumption
and dividends (roughly, the “quantity” of risk). For example, Hasler and Marfè (2016) show that a
rare-disasters model extended to allow for recoveries following a disaster is capable of producing a
downward-sloping term structure of risk premia on dividend strips.3 Meanwhile, by considering
binary options over the index value as in this paper, my finding of a downward-sloping term
structure of risk prices is more difficult to rationalize by appealing to features of the data-generating
process alone. Intuitively, considering binary options allows me to fix the riskiness of outcomes

1In addition to Binsbergen, Brandt, and Koijen (2012), see, among others, Binsbergen, Hueskes, Koijen, and Vrugt
(2013), Binsbergen and Koijen (2017), Gormsen (2018), and Weber (2018).

2See Boguth, Carlson, Fisher, and Simutin (2012), Bansal, Miller, and Yaron (2017), and Song (2018).
3The intuition can be expressed with a simple example following Binsbergen et al. (2013). Consider a disaster-and-

recovery process such that if a disaster strikes consumption and dividends in period t + 1, then those values are expected
to fully recover in t + 2. As of time t, the one-period dividend strip is fully exposed to the t + 1 disaster risk, whereas the
two-period strip is not, and it accordingly commands a lower premium.
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across horizons on at least one dimension (in my case, the percent deviation in the index across the
two possible index-value outcomes).

Second, the use of index options data leads me to consider risk pricing at the short end of the
term structure. Previous literature has tended to focus on either medium- to long-maturity pricing
(see Footnote 1) or very long-term pricing, as in the case of Giglio, Maggiori, and Stroebel (2015).4

In addition to providing new evidence for the shorter end of the term structure, these short-term
options have the further advantage that they allow for risk-price estimation using the returns on
buy-and-hold claims. This is in contrast to much of the literature examining longer maturities,
where holding-period returns are used given the short time span of available observations. As
discussed by Boguth, Carlson, Fisher, and Simutin (2012), this leads to possibly biased inference
in the presence of measurement error, which is mitigated by using buy-and-hold returns, as done
here. Further, I can account directly for the possibility of measurement error by instrumenting my
main estimation equation with lagged risk-neutral probabilities, which I show does not affect the
estimated results.5

Summarizing my estimation procedure in a bit more detail (but without the full formal appara-
tus built up in Section 2), the key steps are as follows:

1. Options allow for bets over the future asset price, and thus the prices of these bets can
be transformed into a probability distribution over the price at expiration using standard
techniques.

2. This probability distribution (referred to as the risk-neutral distribution) can be transformed
into a set of conditional probabilities over binary outcomes — in particular, the probability that
the index return over a fixed horizon T will be A conditional on it being either A or B — as in
Augenblick and Lazarus (2018).

3. These conditional risk-neutral probabilities (for now, π∗t at date t) are in general distorted
relative to the true physical probabilities (πt) over the binary outcome given the presence of
risk aversion. In particular, it can be shown that there is a one-to-one relationship between π∗t
and πt that depends only on the marginal investor’s effective risk aversion over the binary
(A vs. B) outcome.

4. The value πt is unobserved, but it must be an unbiased forecast of the terminal outcome by
definition. I can thus use the terminal outcomes themselves to estimate the degree of risk
aversion embedded in π∗t such that the implied πt value has zero average forecast error for
that terminal outcome (at all possible values of π∗t ).

5. Varying T− t (or fixing t = 0 and varying T) allows for such estimation at varying horizons,
holding fixed the binary return outcome.

4One exception is Dew-Becker, Giglio, Le, and Rodriguez (2017), who document a declining term structure of
variance-risk prices over the first few monthly maturity horizons.

5See Boguth, Carlson, Fisher, and Simutin (2011) for an argument in favor of similar (though differently specified)
instrumentation in a related context.
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The unbiased-forecast condition in step 4 can be estimated straightforwardly using the generalized
method of moments.

This estimation procedure is similar in spirit to that of Hansen and Jagannathan (1991), who
show how risk premia may be related to the variance of the SDF process. I am essentially using the
estimated option risk premia at different horizons to obtain an estimate of the slope of the SDF
across return states. Unlike in their setting, I obtain a point estimate rather than a bound, which is
an advantage of this option-pricing setting since options allow me to condition on the terminal
value itself. Bliss and Panigirtzoglou (2004) conduct similar estimation in an option-pricing setting
closer to mine, focusing on average risk-aversion estimates and using stronger parametric testing
assumptions, and see also Aı̈t-Sahalia and Lo (1998) and Rosenberg and Engle (2002) for estimation
using yet-stronger assumptions on the underlying data-generating processes.

The proposed estimation method also resembles what some previous literature — see Licht-
enstein, Fischhoff, and Phillips (1977) for an early reference — has referred to as “calibration,”
where individual forecast rationality is tested (in cases where probabilistic forecasts are directly
observable) by testing whether, for example, a given event happens 30 percent of the time on
average when a given forecaster gives that outcome a 30 percent ex-ante probability of occurring.
As Augenblick and Rabin (2018) note, this estimation is extremely inefficient given that it occurs
pointwise across the entire distribution of ex-ante probability forecasts. In my case, I effectively
integrate across the entire distribution of ex-ante forecasts to obtain a single relevant moment
condition at each horizon, which again yields an estimate of the SDF slope across return states at
different horizons (rather than a test of rationality per se).

The question then becomes how to interpret the finding that risk aversion increases as the
investment horizon becomes shorter. I first derive a necessary condition under which such a
finding would arise naturally in a fully rational framework: it must be the case that risk aversion
over the terminal return outcome decreases with marginal utility. Since most standard models
feature contemporaneous increases in marginal utility and risk aversion during bad times, it is
difficult (though not impossible) to reconcile my empirical findings with such models. By contrast,
models with dynamically inconsistent risk preferences are capable of straightforwardly producing
the findings I present. I argue that such models may be interpreted as reduced-form versions
of models in which loss-averse agents narrowly frame the outcomes of individual gambles (see
Barberis and Huang, 2008; Rabin and Weizsäcker, 2009), and that my empirical evidence points in
favor of narrower framing at shorter horizons.

The remainder of the paper is organized as follows. Section 2 introduces the theoretical
framework and derives moment conditions for estimating risk prices over index returns at varying
horizons. Section 3 then describes the data and presents my main empirical results, while Section 4
discusses their interpretation in the context of various theoretical frameworks. Section 5 concludes.
The Appendix contains additional technical material.
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2. Framework for Estimation

I first lay out the theoretical framework used to guide the estimation procedure. The setting,
presented in Section 2.1, is a slightly simplified version of the framework presented in Augenblick
and Lazarus (2018); I relegate additional technical detail to Appendix A.1. Section 2.2 then discusses
the estimation procedure.

2.1. Theoretical Setting

Consider a discrete-time economy with time t ∈ {0, 1, 2, . . .}. Denote the ex-dividend value of the
market index by Vt. I will be concerned with the realization of uncertainty over the value VT for
some option expiration date T (or, more generally, some set of option expiration dates {T}). Denote
the set of possible terminal index values (or some subset thereof) by VT ≡ {v1, v2, . . . , vJ},6 ordered
such that v1 < v2 < . . . < vJ , and consider two arbitrary adjacent members of this set, vj, vj+1.
Denoting the physical or objective probability measure by P,7 denote the time-t probability of the
terminal index value being equal to vj, conditional on being either vj or vj+1, by

πt,j ≡ Pt(VT = vj |VT ∈ {vj, vj+1}). (1)

Under the absence of arbitrage, there exists a strictly positive stochastic discount factor (SDF)
process {Mt} such that the time-t price of a claim to an arbitrary state-contingent payoff XT is
given by Et[(MT/Mt)XT], where E is the expectation under P. This implies the existence of a
risk-neutral measure P∗ such that the time-t price of the same payoff XT can equivalently be written
as E∗t [XT]/R f

t,T, where E∗ is the expectation under P∗ and R f
t,T is the (T − t)-period gross risk-free

rate at date t. Define the risk-neutral analogue to the conditional probability in (1) as

π∗t,j ≡ P∗t (VT = vj |VT ∈ {vj, vj+1}). (2)

This risk-neutral probability can be measured from the set of option prices on date t expiring on
date T with different strikes K, using standard results as first presented by Breeden and Litzenberger
(1978).8 It can be seen that

π∗t,j =
Et[MT/Mt |VT = vj]

Et[MT/Mt |VT ∈ {vj, vj+1}]
πt,j. (3)

6I treat the set of possible index values as countable to avoid additional technicalities and notational complication,
but the analysis could be extended without loss to accommodate continuous state spaces.

7More formally, I assume a discrete probability space (Ω,F , P) with filtration F = {Ft}t∈N.
8For concreteness, a European call option on the index with strike price K (where K ∈ K ⊆ R+) has payoff

XT,K = max{VT − K, 0}. As above, see Appendix A.1 for further details.
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An odds-ratio transformation of this equation yields

π∗t,j
1− π∗t,j

= φt,T,j
πt,j

1− πt,j
, (4)

where φt,T,j ≡
Et[MT/Mt |VT = vj]

Et[MT/Mt |VT = vj+1]
.

The values {φt,T,j} will be the objects of interest in the empirical exploration below. Intuitively,
φt,T,j represents the price of risk over the bad (low-index-value) state relative to the good state,
as encoded in the slope of the SDF across the two states. In the case in which a representative
agent faces the consumption process {Ct} and has time-separable consumption utility and rational
expectations, this value becomes φt,T,j = Et[U′(CT) | VT = vj]/Et[U′(CT) | VT = vj+1]. With the
additional restriction that the representative agent in fact has (indirect) utility over time-T wealth,
with wealth equal to the market index value, then Augenblick and Lazarus (2018, Proposition 5)
show that relative risk aversion γt,T,j ≡ −vjU′′(vj)/U′(vj) is given to a first order around vj by

γt,T,j =
φt,T,j − 1

(vj+1 − vj)/vj
. (5)

Relative risk aversion is proportional in this case to φt,T,j − 1, as is intuitive given that this gives the
percent decrease in marginal utility obtained by moving from the bad index outcome to the good
outcome. To obtain relative risk aversion, this change in marginal utility must be normalized by the
“consumption” increase in moving from the bad state to the good state, as in the denominator of (5).

I will in particular be interested in how the price of risk φt,T,j changes on average with the
horizon T− t. Augenblick and Lazarus (2018) make the assumption, referred to there as conditional
transition independence, that φt,T,j is constant over t for fixed j and T. I do not make such an
assumption, and in fact one interpretation of the results below is that they provide direct empirical
tests of that assumption. I do, however, make two simplifying assumptions as follows.

ASSUMPTION 1 (Scale Independence). For arbitrary index-value pairs (vj, vj+1) and (vk, vk+1) for
terminal date T, if vj+1/vj = vk/vk+1, then φt,T,j = φt,T,k. ‖

Given (5), this assumption can be interpreted as a constant-relative-risk-aversion assumption.9 I will
in fact assume that the set of possible terminal values VT is equally (proportionally) spaced so that
vj+1/vj = vk/vk+1 for all j, k, as can be enforced by construction in the empirical implementation
below. The value φt,T,j can accordingly be written as φt,T. The following assumption then allows
for additional simplification.

9The approximate constancy of the scale of the equity risk premium in the U.S. (see, for example, Caballero, Farhi,
and Gourinchas, 2017, and Martin, 2017) can be taken as indirect evidence in favor of such scale independence, and see
Campbell (2017) for further discussion.
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ASSUMPTION 2 (Horizon Dependence). The value φt,T depends only on the horizon T − t for all
dates and terminal dates, and accordingly write this vaue as φT−t. ‖

These two assumptions are made largely for the purposes of notational simplification and so that
I can pool estimates across state pairs and expiration dates below. (I could, for example, instead
simply define φT−t ≡ E[φt,T,j], where the average is taken over all dates and state pairs, and make
appropriate stationarity assumptions so that the GMM procedure below provides a meaningful
estimate of such an average.)

2.2. Estimation of Horizon-Dependent Risk Pricing

2.2.1. Moment Condition

As discussed after equation (2), option prices allow for essentially direct observation of risk-neutral
probabilities (up to issues of measurement error, to be discussed below). But physical probabilities
are unobservable, yielding a continuum of possible solutions to equation (4), the mapping between
physical and risk-neutral probabilities. A rewriting of that equation, however, makes clear how
φT−t may nonetheless be estimated consistently in the data. First, rearrange that equation (applying
Assumptions 1–2) as

πt,j =
π∗t,j

π∗t,j + φT−t(1− π∗t,j)
. (6)

Since πt,j = Et[1{VT = vj} |VT ∈ {vj, vj+1}] by definition, we have

Et

[
1{VT = vj} −

π∗t,j
π∗t,j + φT−t(1− π∗t,j)

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= 0. (7)

Note that the random variable 1{VT = vj} is observable as of date T, as it simply indexes
whether the terminal index value is equal to vj. Thus every value in (7) is in principle observable
aside from πT−t, so applying the law of iterated expectations to this equation yields a nonlinear
moment condition for φT−t that can be estimated using the generalized method of moments (GMM).

Economically, what this moment condition entails is estimation of the price-of-risk parameter
needed to reconcile the ex-ante market forecast of the terminal outcome (as in π∗t,j) with the average
outcomes themselves. One can see from (6) that in general, given the ordering vj < vj+1 so that
φT−t is likely greater than 1 in the presence of risk aversion,10 it is the case that π∗t,j > πt,j; given
my labeling, π∗t,j is the risk-neutral probability for the “bad” state, which in general will be higher
than the true physical probability of that state occurring given the insurance value embedded in a
contract that pays off in a bad state of the world. That insurance value is indexed exactly by the
value φT−t, and the moment condition implied by (7) simply uses the insight that one can infer that

10The “risk-aversion puzzle” documented by Jackwerth (2000) possibly confounds this general economic intuition,
though see Chabi-Yo, Garcia, and Renault (2008) and Linn, Shive, and Shumway (2018) for evidence that this finding
is not robust to proper conditioning on other date-t variables. Following these latter papers, it will be the case in my
reported results that I do not observe any such risk-aversion puzzle, as my point estimates all indicate that φT−t > 1.
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insurance value by setting φT−t such that the ex-post forecast errors between the implied πt,j and
the observed 1{VT = vj}must be mean-zero. Since these forecast errors are orthogonal to date-t
information by definition, there are no endogeneity-related concerns.11 The data then provides
quasi-experimental variation in the horizon T − t, as I can observe repeated iterations of (7) for
different forecast horizons with no ex-ante distinction between the data-generating processes on
these different dates, allowing for estimation of φT−t across different horizons.

2.2.2. Measurement Error and an Implementable Orthogonality Condition

One possible concern with such estimation is the likelihood of price measurement error affecting
the measured risk-neutral probabilities in (7) given, for example, market microstructure noise.
Unlike in the case of Augenblick and Lazarus (2018), the GMM framework used here allows for
me to account directly for this noise without needing to estimate its magnitude separately. First,
assume that the observed conditional risk-neutral belief π̂∗t,j is measured with additive error with
respect to the true value π∗t,j used in (7):

π̂∗t,j = π∗t,j + εt,j, (8)

where E[εt+k,j π∗t+k′,j |VT ∈ {vj, vj+1}] = 0 for all k, k′, and εt,j follows an MA(q) for some value q.
(This is a slight relaxation of the assumptions used for the noise process in Augenblick and Lazarus,
2018, where it is effectively assumed that εt,j follows an MA(0).) It is shown in Appendix A.2 that
the observed analogue of the second term in (7) is given by

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

=
π∗t,j

π∗t,j + φT−t(1− π∗t,j)
+ εt,j +O

((
εt,j + (φT−t − 1)

)2
)

︸ ︷︷ ︸
higher-order terms

(9)

as εt,j → 0 and φT−t → 1,12 where the latter limit φT−t = 1 corresponds to the case of risk-neutrality
as seen in (4).

Thus equation (7) can be re-expressed up to higher-order terms as

Et

[
1{VT = vj} −

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= −εt,j. (10)

The risk-neutral probabilities used on the left side of this equation are now the observable values
(inclusive of noise, unlike the ideal values used in (4)). Since εt,j is assumed to follow an MA(q), I
can then form a set of unconditional moments by instrumenting using lagged values of π̂∗t,j, for any
lags greater than q.

11If, however, the market systematically mis-forecasts future outcomes in one particular direction, then this will affect
the estimated φT−t values, as these departures from rationality are embedded in the SDF sequence by construction. I
discuss this possibility after presenting the empirical results below.

12More formally, one may write the remainder term as O((‖εt,j‖+ (φT−t − 1))2) as ‖εt,j‖ → 0 and φT−t → 1, where
‖εt,j‖ indexes the bounds on εt,j.
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That is, defining the N-dimensional instrument vector

Zt,j ≡


π̂∗t−q−1,j

...
π̂∗t−q,j


for some q > q, I can then obtain the time-unconditional orthogonality condition

E

[ (
1{VT = vj} −

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

)
Zt,j

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= 0,

or, using the definition of the conditional expectation,

E

[(
1{VT = vj} −

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

1
{

VT ∈ {vj, vj+1}
})

Zt,j

]
= 0. (11)

This unconditional moment restriction is now amenable to empirical estimation. Note from (10)
that the instrument Zt = 1 would in fact yield unbiased estimates of the parameter φT−t. But it is
advantageous to use lagged-value instruments given both (a) the efficiency gains from doing so
(Hayashi and Sims, 1983; Hansen, 1985), and (b) the fact that they allow for overidentification tests
for the joint hypothesis that (7) and (8) are correctly specified.

The moment condition (11) can then be estimated over many expiration dates T, horizons
T− t, and state pairs j. In particular, to account explicitly for the latter, denote a date-T-observable
M-dimensional data vector by Xt,T, and define the function h : RM ×R→ R(J−1)·N as

h(Xt,T, φT−t) =



(
1{VT = v1} −

π̂∗t,1
π̂∗t,1+φT−t(1−π̂∗t,1)

1 {VT ∈ {v1, v2}}
)−→

1

...

(
1{VT = vJ−1} −

π̂∗t,J−1
π̂∗t,J−1+φT−t(1−π̂∗t,J−1)

1 {VT ∈ {vJ−1, vJ}}
)−→

1


,

where
−→
1 is an N-vector of ones. Define the full instrument vector Zt = (Z′t,1, · · · , Z′t,J−1)

′. Then
the moment condition from which I can estimate φT−t for a given horizon T − t is

E
[

h(Xt,T, φT−t)
′ Zt

]
= 0. (12)

The expectation is taken over all pairs t = τ1, T = τ2 such that τ2 − τ1 = κ, in order to identify
φκ. One can then stack the moment condition in (12) for values of κ = 1, 2, . . ., to obtain horizon-
dependent risk-price estimates, as I do in the estimation below.
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3. Empirical Estimation and Main Results

3.1. Data Description

As in Augenblick and Lazarus (2018), I use S&P 500 index options data from the OptionMetrics
database, which lists end-of-day bid and ask prices for European options on the index value over the
sample January 1996–August 2015. This yields data for 4,949 trading dates and 685 expiration dates.
I drop any options with bid prices of zero (or less than zero), with Black–Scholes implied volatility
of greater than 100 percent, or with greater than 12 weeks to maturity (given the relative lack of
observations and statistical power beyond this maturity), and calculate each option’s end-of-day
price as the midpoint between its bid and ask prices.

For each observed expiration date T and associated initial option trading date 0, I define the
relevant (sub)set of possible terminal index values for the remainder of the empirical analysis as

VT = (V0R f
0,T) exp

({
[−0.10,−0.08), [−0.08,−0.06), . . . , [0.06, 0.08), [0.08, 0.10)

})
. (13)

In words, state v1 is said to be realized when the gross index-price appreciation, in excess of the
risk-free rate R f

0,T, is between exp(−0.1) and exp(−0.08), or equivalently when the log excess
return is between -10% and -8%, and analogously for v2, . . ., v10. Note that the states are equally
spaced, as required by Assumption 1. Further, I exclude all terminal states more than 10% out of
the money (where moneyness is relative to a zero excess return) in either direction, in order to
avoid excessive measurement error in the tails of the distribution, but this does not require any
assumption that the full set of possible terminal states is itself finite.13

I again follow the procedure in Augenblick and Lazarus (2018), due originally to Malz (2014)
and building from the results of Breeden and Litzenberger (1978) discussed above after equation (2),
to obtain observed risk-neutral probabilities π̂∗t,j (where the terminal date T is suppressed for
simplicity) from the relevant option-price cross-sections; see Appendix A.3 for detail. Note again
that these risk-neutral probabilities are conditional on state j or j + 1 being realized.14 I can also
observe the realization of 1{VT = vj} for all pairs T, j directly from the S&P 500 index price data for
days on which the option settles at the end of the trading day, and I manually collect the settlement
values for A.M.-settled options for this calculation from the Chicago Board Options Exchange
website.

I exclude any T, j pairs for which VT 6∈ {vj, vj+1}, since their contribution to the sample version
of the moment condition in (11) is identically zero. This leaves 549 observations (tuples (t, T, j))
at the one-day horizon, which declines monotonically to 222 observations at the 60-day horizon
(equivalently, the 12-week horizon), which motivates my focus on 1- to 12-week horizons as above.

13Such an assumption is made, for example, by Ross (2015); see Borovička, Hansen, and Scheinkman (2016) for a
critical discussion.

14I also keep only conditional risk-neutral beliefs π̂∗t,j for which the non-conditional terminal-state beliefs satisfy
π̂∗t (VT = vj) + π̂∗t (VT = vj) > 5%, in order to reduce measurement error.
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3.2. Estimation and Results

I conduct estimation using GMM for sample counterparts of the moment condition (12). I make
one further simplification relative to Assumptions 1–2 in this estimation: while I use daily data in
constructing my sample moments,15 I restrict φT−t to be fixed by weeks to expiration. Thus, for
T − t in days, I set φ1 = φ2 = . . . = φ5, and so on. In reporting results below, I in fact refer to φ1 as
the one-week-horizon estimated value, and so on through φ12 for 12 weeks.

I apply this restriction for two main reasons. First, it greatly reduces the computational burden
in estimation to decrease the number of estimated parameters by a factor of five (especially with
respect to the bootstrap procedure used for inference), without sacrificing the essential economic
insights of the estimation. Second, it allows me to obtain overidentifying restrictions even in
the case where I use just one instrument (one lagged observed risk-neutral probability) for each
moment equation, as is the case in my baseline estimation below.16

In my baseline estimation, I use the five-day-lagged observed risk-neutral probability π̂∗t−5,j

as an instrument in the moment equation for π̂∗t,j; following the discussion in Section 2.2.2, this is
equivalent to assuming an MA(4) measurement-noise process and setting q = q + 1 = 5, and I can
directly test this assumption by examining the J -statistic arising from GMM estimation. I have
experimented as well with a wide range of different lagged values as instruments (as well as the
case in which no instrument is used); in all these cases, the estimates exhibit essentially identical
patterns to those shown in the baseline case in this section, with risk prices declining significantly
by horizon, and those results are available upon request. Details of my estimation procedure, as
well as my method of inference for the purpose of constructing confidence intervals, can be found
in Appendix A.4.

Figure 1 shows the main estimation results for φκ by week, along with pointwise 95% confidence
intervals. I show the raw values φ̂κ, though the “price of risk” should in fact be thought of as φ̂κ − 1,
given that φκ = 1 corresponds to the case of risk neutrality and rational expectations, as can be seen
in (4). This case is shown with a dotted line in the figure.

We can see immediately a clear downward-sloping pattern of risk-price estimates as the horizon
increases, at least until about the six-week point, beyond which the values are insignificantly
different from 1. To give a sense of the economic magnitudes implied by these estimates, note
from equation (5) that we can interpret (φκ − 1)× 50 as the coefficient of relative risk aversion for
an agent with utility over the index level itself, where the multiple 50 arises because I am using
two-percentage-point bins as in (13) so that (vj+1 − vj)/vj = 0.02. This yields point estimates for
relative risk aversion of 14.7 at the one-week horizon (95 percent confidence interval [10.4, 18.9]),
9.5 at the two-week horizon (CI [6.4, 12.6]), down to 3.4 at the 12-week horizon (CI [0.1, 6.6]). The
J -statistic resulting from this estimation has a p-value of 0.30, indicating little evidence against the

15That is, I have 60 moment conditions of the form (12), one for each horizon T − t in days.
16In addition, as shown by Plagborg-Møller (2016, Chapter 3), given that we have a priori reasons to believe that the

prices of risk are smooth across horizons, there may be mean-squared-error benefits to imposing this smoothness, as I do
here in a particularly simple way by pooling estimates across days by week to expiration.
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Figure 1: Estimates of Risk Prices by Horizon
Estimation by Two-Step GMM with Five-Day-Lag Instrument
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Notes: Point estimates are constructed using two-step GMM, using the five-day-lagged observation as an instrument,
on the sample counterparts of the moment conditions in equation (12) in order to minimize forecast error. The price of
risk parameter is constrained to be equal for all days within a given weekly horizon to expiration. Error bars show 95%
confidence intervals, constructed using procedure in Appendix A.4. See that appendix for further details.

joint hypothesis that (7) and (8) are correctly specified, with the noise process in (8) following an
MA(q), 0 6 q 6 4, as assumed in my estimation.17

In order to more formally assess whether the downward slope by horizon in Figure 1 is in fact a
statistically robust finding across horizons, I estimate the following regression:

φ̂κ = α + β κ + εκ. (14)

That is, I run a regression of the estimated risk prices on a constant and a “horizon trend” κ,
testing whether the trend β is significantly different than zero. For inference I use the block
bootstrap discussed in Appendix A.4: I re-estimate φκ on 500 redrawn bootstrap samples, rerun
the regression (14) within each of these samples, and then calculate the distribution of the statistic
β̂∗ − β̂, where β̂∗ is the bootstrap estimate for β and β̂ is the estimate in the original sample.

17Further, none of the J -statistics across the robustness checks I have conducted (available upon request) reject that
joint hypothesis at any conventional significance level. For simplicity, these p-values are constructed using asymptotic
χ2 critical values as originally developed by Hansen (1982) and applied in Hansen and Singleton (1982), and which may
be problematic in time-series contexts; see, e.g., Hall and Horowitz (1996), Sun and Kim (2012), Lazarus, Lewis, and
Stock (2017). As documented in those papers, however, overrejection tends to be the issue when using χ2 critical values,
so the fact that I am not rejecting the null suggests that this concern is not binding in the current setting.
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Denoting by q∗(·) the quantile function of the bootstrap distribution of β̂∗ − β̂, I then calculate the
95% confidence interval as [β̂− q∗(0.975), β̂− q∗(0.025)].

Conducting the above procedure, I obtain

β̂ = −0.018,

95 percent CI [−0.041,−0.007].

That is, the risk prices are estimated to decrease by roughly 0.02 by week to expiration (or, in terms
of relative risk aversion, roughly 1 per week), and this is estimated as significantly different from
zero in a two-sided 95 percent test. I thus conclude that risk pricing is horizon-dependent, with
greater prices of risk at short horizons, and the remainder of the paper discusses how to interpret
this finding.

4. Interpretation of Empirical Results

4.1. Rationalizing the Data in a Standard Framework

I begin by asking what features a standard, rational-expectations asset-pricing framework would
require in order to generate the finding documented in Section 3. For this purpose, it is useful to
consider a simple example. Assume a two-period horizon, T = 2, and two possible terminal index
values V2, denoted L, H, where L < H, with equal ex-ante probabilities. The terminal index values
are not perfect proxies for the representative agent’s marginal utility and the SDF. In particular,
assume that there are two possible SDF realizations in each state, denoted as follows:

M2 =

{
aL with date-0 probability 0.5
bL with date-0 probability 0.5

}
if V2 = L,

M2 =

{
aH with date-0 probability 0.5
bH with date-0 probability 0.5

}
if V2 = H.

Normalize M0 = M1 = 1; this normalization is without loss of generality for determining condi-
tional risk-neutral probabilities, since these depend only on Et[M2 |V2 = L]/Et[M2 |V2 = H], as
can be seen in (4).

The information and probability structure is illustrated graphically in Figure 2. I assume that as
of date 1, there is no information revealed about whether the terminal index value will be L or H, so
that those probabilities stay at 0.5,18 but it is revealed what the SDF realization will be conditional
on each state being realized: the representative agent learns either that aj will be realized if V2 = j
is realized for j = L, H (i.e., aL in state L or aH in H), or that bj will be realized if j is realized.

Since state L is the bad wealth state, set aL > aH, bL > bH, and we can label bj as the bad

18This is an appropriate assumption given the finding in the previous section that risk aversion is higher on average
for each fixed value πt,j across the entire set of possible probabilities, though see the discussion below in Footnote 19.
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Figure 2: Resolution of Uncertainty in Example
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marginal-utility state in either case (corresponding to, e.g., high stochastic volatility, low long-run
growth, lower surplus consumption in a model with habit formation), so that bj > aj for j = L, H.

I can now ask under what conditions it would be the case that φ0 < E0[φ1], where, as originally
introduced in Section 2.1,

φt ≡
Et[M2 |VT = L]
Et[M2 |VT = H]

.

As can be seen from Figure 2, the condition φ0 < E0[φ1] can be stated as

φ0 =
aL + bL

aH + bH
<

1
2
aL

aH
+

1
2
bL

bH
= E0[φ1],

which, under the normalization bj > aj for j = L, H, yields, after simplification,

aL

aH
>

bL

bH
.

That is, denoting φ1 at the upper node for t = 1 by φa, and similarly for the lower node by φb, it
must be the case that φa > φb.

Economically, what this requires is that risk aversion over the terminal index value be higher
when the agent receives information that times are good in the sense that the part of marginal
utility unrelated to the index return is expected to be low. The long-horizon gamble on the good-
state outcome must be a good hedge (relative to the bad-state outcome) against bad intermediate
marginal-utility news in order to generate a negative risk premium for the holding-period return
on this gamble. (Note that this must be the case given that we observe increasing risk premia for
such a gamble, held to maturity, in the data as the horizon becomes shorter.) That is, when an agent
receives bad news about marginal utility, it must be the case that the relative price of the good-state
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Figure 3: Risk Prices by Horizon in the Long-Run Risks Model
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Notes: Risk prices are calculated as averages over 2,000,000 years of simulated monthly data, following the formula in
equation (4). The model and calibration are as given in Bansal and Yaron (2004), where I use their Case II calibration. I
solve the model numerically using the projection method of Pohl, Schmedders, and Wilms (2018).

gamble increases, which occurs when φt decreases.19 Preliminary exploration indicates that this
intuition can be shown to hold in more general cases, and this will be an interesting topic of future
work on this subject.

The above condition is in general not met in leading representative-agent asset-pricing models.
As an example, Figure 3 plots average risk prices by monthly (not weekly) horizon, as defined in
the previous section, in the simulated long-run risks model of Bansal and Yaron (2004). Using code
from Pohl, Schmedders, and Wilms (2018), I solve the model numerically using the calibration of
Bansal and Yaron (2004, Case II) with stochastic volatility.20 I then calculate average risk prices by
months to expiration over 2,000,000 years of simulated monthly data. The risk prices are increasing
very slightly by horizon, though not enough to be visible given the scale of the y-axis (set to be
equivalent to the scale of Figure 1 for comparison).

Intuitively, when times are bad in the model, in the sense that marginal utility is high — i.e.,
when either stochastic volatility is high or expected long-run consumption growth is low — risk
aversion over the terminal index value increases very slightly, violating the requirement derived

19This can also occur when the bad-state probability πt decreases relative to πt−1, which was assumed away in this
example, but again this requires bad news about marginal-utility growth to be concurrent with good news about the
return state.

20The solution uses projection methods and approximates expectations via quadrature in order to capture higher-
order effects. See Pohl, Schmedders, and Wilms (2018) for further details, and their code is available at https://
onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjofi.12615&attachmentId=2193187742.
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above for the declining term structure of risk prices. See Gormsen (2018) for further discussion, as
the requirement he derives to rationalize the cyclical variation in the equity term structure is quite
similar to the requirement derived here.

4.2. Dynamically Inconsistent Risk Preferences

Departing from the standard representative-agent frameworks above, I can now ask what set of
alternative assumptions could generate the patterns observed in the data. While there are likely to
be many such frameworks, perhaps the simplest way of explaining the declining term structure
of risk prices would be to take the declining relative-risk-aversion estimates at face value and
assume that agents have different risk preferences over outcomes at different horizons. This is in
fact exactly the tack taken by Eisenbach and Schmalz (2016) and Andries, Eisenbach, and Schmalz
(2018), who motivate their approach by appealing both to experimental evidence and the previous
asset-market evidence on downward-sloping risk premia.21

I briefly present a version of the model considered by Andries, Eisenbach, and Schmalz (2018),
who generalize Epstein–Zin (1989) preferences to include horizon-dependent risk aversion. Util-
ity Vt is given by

Vt =

(1− δ)C
1− 1

ψ

t + δEt

[
Ṽ1−γ1

t+1

] 1− 1
ψ

1−γ1


1

1− 1
ψ

, (15)

where continuation utility Ṽt+1 follows the recursion

Ṽt+1 =

(1− δ)C
1− 1

ψ

t+1 + δEt

[
Ṽ1−γ2

t+2

] 1− 1
ψ

1−γ2


1

1− 1
ψ

. (16)

The case γ1 = γ2 is the usual Epstein–Zin (1989) case, with no dynamic inconsistency. When
γ1 > γ2, however, risk aversion over near-term outcomes is greater than over distant-horizon
outcomes. (This can be generalized to incorporate many different values over different horizons.)
Andries, Eisenbach, and Schmalz (2018) show that regardless of the level of sophistication of the
marginal (or representative) investor with respect to her dynamically inconsistent risk preferences,
this leads to a declining term structure of equity risk premia.

The above specification is semi-reduced-form in the sense that it simply takes as given that
risk preferences differ by horizon. But one way of rationalizing this framework in the context of
pre-existing work on non-standard risk preferences may be to tie it to the literature on narrow
framing and the equity premium begun by Benartzi and Thaler (1995). They propose that equity
premia are higher than justified solely by the exposure of equity to consumption risk, because

21Eisenbach and Schmalz (2016) include a review of experimental evidence of preference reversals as the horizon
to uncertainty resolution decreases, as individuals seem to become more risk-averse or anxious about a lottery (or, in
other settings, they get stage-fright on the day of a performance and regret having volunteered to perform). See also
Loewenstein (1996) for an earlier review across multiple domains.
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people frame lotteries narrowly (so they experience gains and losses with respect to equity returns
themselves) and are loss-averse. See also Barberis and Huang (2008) for a more recent survey, as
well as Rabin and Weizsäcker (2009) for a decision-making formalization of the earlier evidence
and discussion of Tversky and Kahneman (1981).

One possible downside of the narrow-framing approach is that there are no clear guidelines
as to what choice problems are narrowly framed.22 For example, do individuals narrowly frame
every individual-stock-level investment decision, over all horizons? The empirical results in the
previous section suggest that this may not be the case: one interpretation of that evidence is
that near-term, salient outcomes are narrowly framed, which in combination with loss aversion
causes effective short-horizon risk aversion to increase, at least for the overall equity index.23 This
empirical approach can accordingly be thought of as a disciplining mechanism for the specification
of narrow framing, and perhaps leads toward models of dynamically inconsistent risk preferences
as discussed above.

4.3. Preferences over the Timing of Resolution of Uncertainty

The above evidence that near-term outcomes command higher risk premia may seem to point in
favor of a preference for late resolution of uncertainty, following the definition of Kreps and Porteus
(1978). This is not quite the case; the near-term outcomes are both revealed and paid in the near
term, whereas a test of preferences over the timing of the resolution of uncertainty would require a
comparison of outcomes paying out at the same horizon, but with the payout value revealed early
in some cases.24

There are nonetheless possible tests that do speak more directly to this preference. I have
not yet implemented these tests in the data, so I relegate the details to Appendix A.5, but the
intuition can be summarized briefly here. One can construct dynamic strategies that generate
early-resolution lotteries with late payoffs, simply by reinvesting the proceeds of an early-resolving
(and early-paying) option in a risk-free security that then pays off at the desired (late) horizon. If
the risk-free rate is uncorrelated with the index (and therefore with the payoff of the early-resolving
option), then this strategy is effectively as risky as a strategy without the risk-free reinvestment,
allowing the results above to speak to the preference over the resolution of uncertainty. But in
the case that the risk-free rate is correlated with the payoff of the early-resolving option — for
purposes of intuition, assume the correlation is positive — then this increases the riskiness of
the early-resolution/late-payoff strategy relative to the late-resolution/late-payoff strategy, if one

22This relates to the literature discussing “free parameters” in behavioral models; see, for example, Wachter (2002) for
a discussion.

23Note, however, that this is captured only at a high level and in reduced form in the specification of Andries,
Eisenbach, and Schmalz (2018) presented above, given that their preferences are not themselves narrowly framed, and
they are not loss-averse as they are continuously differentiable everywhere.

24Formally, Andries, Eisenbach, and Schmalz (2018) show that risk preferences can be dynamically inconsistent in the
manner above, with γ1 > γ2 in (15)-(16), in such a way as to nonetheless not yield any clear prediction on the preference
over the timing of resolution of uncertainty, as shown in their equation (5). Nonetheless, their Corollary 1 shows that this
horizon-dependent risk aversion unambiguously lowers the timing premium relative to the benchmark case in which
γ1 = γ2, even though the sign of the timing premium is ambiguous.
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maintains the same bins (which index the scale of the relative lottery payoffs) across option horizons
as in (13). It is thus as of yet unclear whether the options data suggests a preference for the timing
of uncertainty resolution in either direction.

5. Conclusion

This paper presents evidence in favor of a declining term structure of risk prices with respect to
gambles over small changes in the market index value over short to medium horizons; equivalently,
it appears as if the market is more risk-averse with respect to short-horizon uncertainty over the
index value than longer-horizon uncertainty. While I have discussed some classes of interpretations
of the data, arguing here in favor of models with dynamically inconsistent risk preferences, further
work remains to be done with respect to other classes of interpretations. It remains to be seen
whether, for example, certain heterogeneous-agent models may be capable of rationalizing these
findings.

The findings here may speak as well to the interpretation of the findings of Augenblick and
Lazarus (2018), who find evidence against the rational-expectations assumption in the data when
considering the volatility of the risk-neutral probability processes used here. The current paper
has said little about the rationality of forecasts: I use the definitional unbiasedness property of
physical probabilities to construct risk-price estimates, and those risk-price estimates can in theory
incorporate both the effects of risk aversion and any average forecast errors for the marginal
investor. But the fact that the risk-price estimates imply quite reasonable risk-aversion values (even
at short horizons) seems to indicate that such forecasts are closed to unbiased on average,25 though
this of course does not preclude the excess volatility in conditional forecasts found by Augenblick
and Lazarus (2018). Additional work remains to be done in understanding the two sets of results in
a unified framework.

25Further, these reasonable risk-aversion estimates stand in contrast to the equity premium puzzle observed when
considering the equity-index value itself, as documented by Mehra and Prescott (1985) and Hansen and Jagannathan
(1991). But as discussed by Aı̈t-Sahalia and Lo (2000) and Bliss and Panigirtzoglou (2004), risk-aversion estimates
obtained from option-price-based forecasts are in fact often much more reasonable than the values obtained in the
equity-premium-puzzle literature, so my results add further evidence in favor of this pattern, particularly in the middle
of the index-return distribution.
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Appendix: Additional Technical Material

A.1. Theoretical Framework: Technical Details

This appendix section presents the technical detail underlying the framework introduced in Sec-
tion 2.1, largely following the setup in Augenblick and Lazarus (2018), which includes additional
discussion.

I consider a discrete probability space (Ω,F , P) endowed with the filtration F = {Ft}t∈N. A
realization of the elementary state is denoted by ω ∈ Ω. I will be concerned with the ex-dividend
value of the market index, Vt : Ω → R+, on some option expiration date T (or set of dates {T});
the subscript t will refer generally to Ft-adapted processes. A European call option on the market
index with strike price K has payoff XT,K = max{VT − K, 0}, and denote its time-t price as qt,K.
Assume without loss of generality that these option prices are observable for some set of strike
prices K ⊆ R+ beginning at date 0.

These option prices will be of interest for inferring a distribution over the change in value of the
market index from 0 to T, or equivalently, fixing the first trading date 0 and F0, the value of the
market index as of T. For notation, say that index state vj ∈ VT ⊂ R+ is realized for the market index
as of date T if VT = vj, and I will consider an ordered subset VT ⊆ VT, where VT ≡ {v1, v2, . . . , vJ},
and v1 < v2 < . . . < vJ . The measure P : F → [0, 1] governs the objective or physical probabilities of
these index states. The time-t objective probability that the index realizes state vj at date T is

Pt(VT = vj) = ∑
ω : VT(ω)=vj

Pt(ω), (A.1)

where Pt(·) ≡ P(·|Ft) is the conditional probability.

The absence of arbitrage (assumed following the definition given by Campbell, 2017) implies
the existence of a strictly positive stochastic discount factor (SDF) or pricing kernel process {Mt} (i.e.,
Mt : Ω→ R++) such that the price St of a claim to an arbitrary state-contingent payoff XT is given
by

St(XT) = Et

[
MT

Mt
XT

]
, (A.2)

where Et[·] ≡ E[·|Ft], and we can initialize M0 = 1.

Define the risk-neutral measure P∗ with respect to the objective measure P according to the
Radon-Nikodym derivative

dP∗

dP

∣∣∣∣
Ft

=
MT/Mt

Et[MT/Mt]
. (A.3)

From equation (A.2), the (T − t)-period gross risk-free rate is R f
t,T ≡ 1/St(1T) = 1/Et[MT/Mt],

where 1T refers to one unit of the numeraire delivered at T. Using this along with the change of
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measure in (A.3), rewrite (A.2) as

St(XT) =
1

R f
t,T

E∗t [XT], (A.4)

as stated in the text, and where E∗t [·] is again the conditional expectation under P∗.

Now, using (A.1) and (A.3), the risk-neutral probability for index state vj is

P∗t (VT = vj) =
Et[MT/Mt |VT = vj]

Et[MT/Mt]
Pt(VT = vj). (A.5)

The risk-neutral pricing equation (A.4) can then be used to show that the date-t schedule of
option prices {qt,K}K reveals the set of risk-neutral probabilities {P∗t (VT = vj)}j, as stated in the
text. Assume for notational simplicity that the set of traded option strike pricesK coincides with VT,
and denote Kj = vj for all j. We can then back out the risk-neutral probabilities of interest from
option prices as follows:

P∗t (VT = vj) = R f
t,T

[qt,Kj+1 − qt,Kj

Kj+1 − Kj
−

qt,Kj − qt,Kj−1

Kj − Kj−1

]
. (A.6)

Augenblick and Lazarus (2018, Appendix A) present a brief derivation of this result, which follows
directly from a discrete-state application of the classic result of Breeden and Litzenberger (1978).

Then using the definitions of πt,j and π∗t,j in equations (1) and (2), respectively, equation (3) in
the text then follows immediately from (A.5).

A.2. Proof of Equation (9)

Under the assumption in equation (8), we have

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

−
π∗t,j

π∗t,j + φT−t(1− π∗t,j)

=
π∗t,j + εt,j

π∗t,j + εt,j + φT−t(1− π∗t,j − εt,j)
−

π∗t,j
π∗t,j + φT−t(1− π∗t,j)

=
εt,jφT−t(

π∗t,j + φT−t(1− π∗t,j)
) (

εt,j(φT−t − 1) + π∗t,j + φT−t(1− π∗t,j)
) .

A Taylor expansion of this expression in εt,j and φT−t around the point (‖εt,j‖, φT−t) = (0, 1), with
notation as discussed in Footnote 12, yields

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

−
π∗t,j

π∗t,j + φT−t(1− π∗t,j)

19



= εt,j +O
(
‖εt,j‖2)+ ((2π∗t,j − 1)εt,j +O

(
‖εt,j‖2)) (φT−t − 1) +O

(
(φT−t − 1)2)

= εt,j +O
(
(‖εt,j‖+ (φT−t − 1))2) ,

as stated.

A.3. Measurement of Risk-Neutral Distribution

I briefly describe the measurement procedure here, and again see Augenblick and Lazarus (2018) for
further detail and discussion. In addition to the option prices described in the text, OptionMetrics
reports a risk-free zero-coupon yield curve across multiple maturities, as well as the underlying
S&P 500 index price. I use the risk-free rate at the relevant horizon as an input in the measurement
of risk-neutral beliefs, and I use the index price to observe the ex-post index state for each option
expiration date T and assign probability 1 to that state on date T.26

I then measure the risk-neutral distribution for returns by applying the following steps to the
observed option-price cross-sections, following Malz (2014):

1. Transform the collections of call- and put-price cross-sections (for example, for call options on
date t for expiration date T, this set is {qt,K}K∈K) into Black–Scholes implied volatilities.

2. Fit a cubic spline to interpolate a smooth function between the points in the resulting implied-
volatility schedule for each trading date–expiration date pair (separately for the call- and
put-option values). The spline is clamped: its boundary conditions are that the slope of the spline
at the minimum and maximum values of the knot points {qt,K}K∈K is equal to 0; further, to
extrapolate outside of the range of observed knot points, set the implied volatilities for those
unobserved strikes equal to the implied volatility for the closest observed strike (i.e., maintain a
slope of 0 for the implied-volatility schedule outside the observed range).

3. Evaluate this spline (separately for calls and puts) at 1,901 strike prices, for S&P index values
ranging from 200 to 4,000 (so that the evaluation strike prices are K = 200, 202, . . . , 4000), to
obtain a set of implied-volatility values across this fine grid of possible strike prices.27

4. Average the separate call- and put-option implied-volatility values from the previous step at
each strike for each (t, T) pair, to obtain a single implied-volatility schedule across strikes for
each such (t, T) pair. (Given put-call parity, the implied-volatility values for calls and puts
should in theory be equal at a given strike; in practice, they tend to differ slightly given market

26The settlement value for many S&P 500 options in fact reflects the opening (rather than closing) price on the
expiration date; for example, the payoff for the traditional monthly S&P 500 option contract expiring on the third Friday
of each month depends on the opening S&P index value on that third Friday morning, while the payoff for the more
recently introduced end-of-month option contract depends on the closing S&P index value on the last business day of
the month. See http://www.cboe.com/SPX for further detail. For my dataset, 441 of the 685 option expiration dates
correspond to A.M.-settled options. To obtain the ex-post return state for A.M.-settled options, I hand-collect the option
settlement values for these expiration dates from the Chicago Board Options Exchange (CBOE) website, which posts
these values.

27This set of ∼1,900 strike prices is on average about 20 times larger than the set of strikes for which there are prices
in the data, as there is a mean of roughly 94 observed values in a typical set {qt,K}K∈K (and similarly for put options).
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microstructure issues, so using the mean of the two values is a simple way of averaging out
the effects of such idiosyncratic noise. This step is the only point of distinction between our
procedure and that of Malz, who assumes access to a single implied-volatility schedule and thus
does not consider call and put prices separately.)

5. Invert the single resulting smoothed 1,901-point implied-volatility schedule for each (t, T) pair
to transform these values back into call prices, and denote this fitted call-price schedule as
{q̂t,K}K∈{200,202,...,4000}.

6. Calculate the risk-neutral CDF for the date-T index value at strike price K using P∗t (VT < K) =
1 + R f

t,T(q̂t,K − q̂t,K−2)/2, following equation (A.6). (The index-value distance between the two
adjacent strikes is equal to 2 given that I evaluate the spline at intervals of two index points.)

7. For clarity, temporarily index the set of expiration dates by the subscript i, so that that set is
given by {Ti}i (rather than the generic {T}). Defining Vi,j,max and Vi,j,min to be the date-Ti index
values corresponding to the upper and lower bounds, respectively, of the bin defining index
state vj,28 I then calculate the risk-neutral probability that state vj will be realized at date Ti,
referred to with slight notational abuse as P∗t (vj), as

P∗t (sj) = P∗t (VTi < Vi,j,max)−P∗t (VTi < Vi,j,min),

where the CDF values are taken from the previous step using linear interpolation between
whichever two strike values K ∈ {200, 202, . . . , 4000} are nearest to Vi,j,max and Vi,j,min, respec-
tively.

Note that I transform the option prices into Black–Scholes implied volatilities simply for purposes
of fitting the cubic spline and then transform these implied volatilities back into call prices before
calculating risk-neutral beliefs, so this procedure does not require the Black–Scholes model to be
correct.29 The clamped cubic spline proposed by Malz (2014), and used in step 2 above, is chosen
to ensure that the call-price schedule obtained in step 5 is decreasing and convex with respect to
the strike price outside the range of observable strike prices, as required under the restriction of
no arbitrage. Violations of these restrictions inside the range of observable strikes, as observed
infrequently in the data, generate negative implied risk-neutral probabilities; in any case that
this occurs, I set the associated risk-neutral probability to 0 and renormalize the remainder of the
distribution.

A.4. Details on GMM Estimation and Inference Procedure

I construct risk-price point estimates by horizon, as reported in Figure 1, using two-step GMM.
I use the five-day-lagged observation as an instrument, and conduct estimation on the sample
counterparts of the moment conditions in equation (12). The price of risk parameter is constrained

28That is, formally, Vi,j,min = R f
0i ,Ti

VT0 exp(sj − 0.01) and Vi,j,max = R f
0i ,Ti

V0i exp(sj + 0.01).
29I conduct this transformation following Malz (2014), as well as much of the related literature.
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to be equal for all days within a given weekly horizon to expiration. The first-stage weight matrix
is Z′Z/T , where Z is the data matrix for the instruments and T is the number of observations. The
second-stage weight matrix is then clustered by blocks of 8 time-adjacent observations.

This weight-matrix clustering is designed to match the inference procedure for estimating equa-
tion (14), which is a block bootstrap with 8-observation (roughly 2-month) blocks. This bootstrap
proceeds by re-estimating φκ on 500 redrawn bootstrap samples, rerunning the regression (14)
within each of these samples, and then calculating the distribution of the statistic β̂∗ − β̂, where
β̂∗ is the bootstrap estimate for β and β̂ is the estimate in the original sample. Denoting by q∗(·)
the quantile function of the bootstrap distribution of β̂∗ − β̂, I then calculate the 95% confidence
interval as [β̂− q∗(0.975), β̂− q∗(0.025)]. This follows the standard procedure for handling possible
asymmetries in the finite-sample distribution of β̂− β; see, e.g., Hall (1988), Hansen (2017).

A.5. Tests for Preferences over the Timing of Resolution of Uncertainty

Consider a simple economy with two possible outcomes for the index value at each possible date,
again H and L. Consider an option with a date-T payoff of XH,T = 1{VT = H} and date-t price
qH,t, as well as the complementary low-state option with payoff XL,T = 1{VT = L} = 1− XH,T

and price qL,t. Assume for now that T = 1. One can construct an early-resolving but late-paying
gamble (where the payment horizon is T > 1) using the following date-0 strategy:

1. Purchase y/(qL,0 + qH,0) units of the low-state option (which costs yqL,0/(qL,0 + qH,0) = yπ∗0 ),
for a value y to be determined below.

2. Purchase a forward contract to invest the proceeds of the date-1 option payoff from the
previous step in the forward rate from t = 1 to T, denoted f0,1,T, conditional on the date-1
state being L. Set y = 1/ f0,1,T in the previous step.

It can be seen that this strategy pays off 1 at date T if state L is revealed to be realized at date 1,
and 0 otherwise. While the forward contract in step 2 is not directly observable in the data, its
(average) price can be inferred using ex-post realizations of the risk-free rate R f

1,T
in state L, using

an uncovered interest parity–like argument. This thus in theory allows for a test of preferences
over the timing of resolution of uncertainty.
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