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Abstract

The depreciation rate is often computed as the ratio of foreign and domestic pricing kernels.
Using bond prices alone to estimate these kernels leads to currency puzzles: the inability
of models to match violations of uncovered interest parity and the volatility of exchange
rates. That happens because of the FX bond disconnect, the inability of bonds to span
exchange rates. This view of the puzzles is distinct from market incompleteness. Incorpo-
rating exchange rates into estimation of yield curve models helps with resolving the puzzles.
That approach also allows one to relate news about the cross-country differences between
international yields to news about currency risk premiums.
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1 Introduction

The asset market view of exchange rates, whereby the depreciation rate is computed as the
ratio of foreign and domestic pricing kernels, has become a dominant paradigm in financial
economics following the influential work of Backus, Foresi, and Telmer (2001) (B/F/T
hereafter). Thus, empirical applications require estimates of the pricing kernels, and looking
to foreign and domestic bond prices as the relevant source of information appears to be a
natural step. Indeed, that was pursued by B/F /T, among many others.

A typical finding is that the variation in depreciation rates, inferred via the asset market
view, has little to do with that of the observed ones, referred to as the FX volatility anomaly
(Brandt and Santa-Clara, 2002), and that the inferred depreciation rates cannot replicate
the FX forward premium anomaly, that is, the well-documented violations of the uncovered
interest parity (UIP) hypothesis (B/F/T).

In this paper we argue that one must use information about depreciation rates jointly
with bond prices in order to understand the cross-country differences between bonds and
their connection to exchange rates. That is because, as we show, depreciation rates are
not spanned by bonds. As a result, one cannot use information in bonds alone to infer the
dynamics of depreciation rates. This focus is distinct from exploration of market incomplete-
ness as a potential source of FX anomalies (e.g., Lustig and Verdelhan, 2015). International
business cycle models could imply lack of FX spanning with bonds in economies with both
complete and incomplete financial markets, depending on the transmission of output shocks
and their interaction with relative prices of imports and exports.

The flip side of using bonds to infer pricing kernels is an asset-pricing exercise in valuation of
international bonds. Typically, the literature on this topic focuses on similarities between
the different countries by modeling global/US and local/foreign factors and quantifying
their contribution to the overall variation of the curves. The conclusion is that common
variation is the major driver of interest rates. The sole focus on commonalities is surprising
given the aforementioned prominent connection between bonds and exchange rates in the
currency literature.

Indeed, we show that the differences in domestic and foreign bonds must be related to
depreciation rates. Specifically, cross-country differences between yields reflect expected fu-
ture depreciation rates and the associated currency risk premiums. Further, cross-country
differences between bond risk premiums reflect currency risk premiums. We demonstrate
that in our sample of three countries (USA, Germany, and UK) the second and third princi-
pal components of the joint set of three yield curves are approximated by these differences.
This evidence suggests an important role for depreciation rates and the associated currency
risk premiums in understanding international yield curves.

We explore practical implications of these ideas via the joint modeling of bonds and cur-
rencies using the no-arbitrage affine framework as in B/F/T. This approach allows us to



estimate the pricing kernels expressed in USD using data on U.S. and foreign bond prices,
and on exchange rates (referred to as the WFX approach, estimation With FX rates). This
is in contrast to the predominant approach that estimates the pricing kernel denominated in
currency of a given country using data on bonds of the same country that are denominated
in the currency of that country (referred to as the NFX approach, No FX rates used in
estimation).

We show that the two approaches match yields equally well, consistent with exchange rates
that are unspanned by bonds. However, the exchange rate implied by the NFX approach
is grossly misspecified. Its behavior is in line with findings reported by previous studies. In
contrast, the WFX approach implies realistic exchange rate behavior. In particular, we can
match all the FX moments discussed by B/F/T.

The NFX approach does not allow one to explore how currency risk premiums connect
bond yields and bond risk premiums of different countries. We use the WFX model to
interpret the differences between the international yield curves. We decompose news about
currency risk premium into news about expected depreciation rate and cross-country bond
yield differential. The latter contributes very little at short horizon and the contribution
grows to about 50% at long horizons. In contrast, if one were to use the NFX model and
combine it with the UIP regression to get a sensible estimate of the currency risk premium,
the contribution of the yield differential would be about 80% regardless of horizon.

The main lesson from our empirical study is that augmenting the set of assets by exchange
rates makes a big difference in the implications for the analysis of international asset mar-
kets. In particular, this suggests that a rich collection of international bonds does not
complete the markets. Following the literature on the FX macro disconnect, we refer to
this finding as the F.X bond disconnect. Market incompleteness with respect to bonds should
be a starting point for any equilibrium model of exchange rates.

Our paper is related to several research themes. We do not provide a grand literature
review. Instead, in an attempt to offer clarity, we describe the related work when we cover
an appropriate subtopic.

2 Preliminaries

In this section we introduce definitions and notation used throughout the paper. We specifi-
cally highlight differences between two types of objects. First, we draw a distinction between
the true and estimated pricing kernels. The emphasis is needed because, depending on the
data used for estimation, one might not be able to estimate the true pricing kernel even
if its functional form is known. Second, we distinguish market completeness and hidden
factors. Informally, the two concepts sound similar, but they are not equivalent. This lack
of equivalence is important for our analysis because it allows us to avoid taking a stand on
whether markets are complete.



2.1 Bonds and currencies

Suppose M; ¢, is an i-period pricing kernel expressed in USD. Then the USD-denominated
value of any zero-coupon bond of maturity n is

P/ = E{(Mi 440 - Ctp4n)s

where C} 44 is the cash flow growth between time ¢ and ¢ + 7. If the bond is issued in USD,
then C} 4, = 1; we denote its price by Q} and its yield is y}* = —n"tlogQl = —n"lgl. If
the bond is issued in foreign currency, then Cy¢4; = Si1i/S: with S representing the value
of one unit of foreign currency in USD; we denote the foreign bond price by @? and its
yield is g} in this case.

2.2 Pricing kernels and currencies

Following B/F /T, we use affine no-arbitrage term structure models as a tool for investigating
the relationship between bonds and currencies. We emphasize the distinction between the
true, under the null of a model, pricing kernel M;;y; and its estimate My, ;(D). Our
notation My ;4;(D) highlights that the estimated kernel is a function of the data D that is
used in estimation. Specifically, we use various combinations of data on bonds @ = {Q}'},
@ = A{@?}, and the corresponding exchange rate S = {S;}. Thus, D is equal to a subset of

(@,Q,59).

A long-standing tradition in the reduced-form no-arbitrage literature is to specify dynamics
of the pricing kernel M;,; expressed in USD and that same kernel expressed in foreign

currency, ]\Z’t_ﬂ. The latter implies a value of a foreign-currency-denominated foreign-issued
bond

@? = Et(J\Z,Hn)-

Estimating a model of M; ;1 and ]\/Zt,tﬂ using data on ) and @, one obtains estimates of
the pricing kernels M ;11(Q), and My ;41(Q).

Next, researchers infer the depreciation rate via

Se1/St = My 41(Q)/Mi41(Q). (1)

There are variations in this approach where M; ;11 and J\/J\MH are estimated simultaneously
resulting in M ;41(Q, @) and J\/J\MH(Q, @) Examples include, but are not limited to, Ahn
(2004); Backus, Foresi, and Telmer (2001); Brennan and Xia (2006); Jotikasthira, Le, and
Lundblad (2015); Kaminska, Meldrum, and Smith (2013). Sarno, Schneider, and Wagner
(2012) are similar, but they also incorporate information about conditional expectations of
the depreciation rates into their estimation procedure.



Most papers report that the depreciation rates from (1) do not resemble the observed depre-
ciation rates. Most prominently, researchers document the forward premium and volatility
anomalies. These results might simply manifest a model misspecification. However, the
inherent empirical flexibility of affine models and sophistication of the authors involved
suggest to us that bonds, on their own do not posses the information needed to capture the
behavior of exchange rates.

2.3 Complete markets, hidden factors, and spanning

In this paper we argue that, in order to understand the described evidence, one needs to
incorporate exchange rate data into a model of yield curves. That is because exchange
rates are hidden in the yield curve. The differences between market completeness and
hidden factors plays an important role in this paper. Both concepts are often associated
with spanning. Thus, we define them here for clarity.

A market is complete with respect to a given set of assets if one can trade these assets to
achieve any possible payoff and, therefore, know its value. We focus on whether markets
are complete with respect to bonds alone, and we do not take a stand on the market
completeness with respect to a larger set of assets.

This discussion is pertinent for the justification of the relationship (1). It is valid under two
assumptions. First, markets are complete. Second, the estimated pricing kernel matches
the true pricing kernel up to estimation noise, that is, () and @ span the space of all assets.
Put differently, the markets are complete with respect to bonds.

A hidden factor arises in the context of multi-factor affine yield-curve models. The main
property of a hidden factor is that it does not affect the cross-section of bond yields, yet it
affects the joint dynamics of the factors that yields depend on. See Duffee (2011). A hidden
factor cannot be replicated by a linear combination of yields. If the depreciation rate is a
hidden factor then the markets are incomplete with respect to bonds.

The hidden-factor concept is different from market completeness. If the market is complete
with respect to bonds and currencies, and depreciation rates are not hidden in yields, then
the market is also complete with respect to the bonds only. However, if depreciation rates
are hidden then the market could still be complete, just with respect to a larger set of assets.
Further, markets may be incomplete regardless of the bonds’ relation to exchange rates.

A popular empirical approach for establishing market completeness is to implement span-
ning regressions. One can think of regressing returns (payoffs with prices equal to 1) of an
asset of interest on returns (payoffs) of the set of assets, with respect to which a market is
hypothesized to be complete. An R? < 1 implies that the market is unconditionally incom-
plete (there is no static trading strategy that replicated a given payoff). The term structure
literature implements regressions, refereed to as spanning also, of a candidate hidden factor
on yields. To be clear, these are not regressions of payoffs, but, as we show subsequently,
they have implications for payoffs.



3 The relation between exchange rates and bonds

The main purpose of this section is to provide motivating evidence about bonds’ inability
to span exchange rates. We do so both empirically and theoretically. First, we implement
two types of regressions, the ones associated with market completeness and with hidden
factors. Second, we offer a fully-worked out analytical example of a two-factor model with
unspanned exchange rates. The purpose of this illustration is to construct how the true
pricing kernel would look like in this setting, and how the estimated exchange rate would
differ from the actual one.

3.1 Data

We work with monthly data from the US, UK, and Germany/Eurozone from January 1983
to December 2015 making for T' = 396 observations per country. All data is aligned to the
end of the month. US government yields are downloaded from the Federal Reserve and are
constructed by Gurkaynak, Sack, and Wright (2007). All foreign government zero-coupon
yields with maturities 12,24, 36,48, and 60 months are downloaded from their respective
central banks (Federal Reserve, Bank of England, and Bundesbank). The corresponding
nominal exchange rates are from the Federal Reserve Bank of St. Louis. Prior to the
introduction of the Euro, we use the German Deutschemark and splice these series together
beginning in 1999.

Additionally, we use data on one-month yields to connect our approach to the evidence on
UIP regressions. US one-month yields are downloaded from CRSP. UK and German yields
are harder to obtain. We get two data sources for each (investing.com for both; Bank of
England for the UK; Federal Reserve Bank of St. Louis for Germany) and use only data
that match across the two sources. This approach produces a nearly full sample for the UK,
and some missing observations for Germany from September 2007 through October 2010.

3.2 Principal components

We summarize properties of yields via principal component (PC) analysis. We consider
three variations of the PC-construction. First, we extract six PCs from US bonds and the
bonds of the country corresponding to the depreciation rates. Second, we extract six PCs
from bonds of all three countries. Lastly, we extract nine PCs from bonds of all three
countries. Table 1 reports the results. Six PCs explain 99.98% of variation in the yields of
all three countries. Nine PCs across the three countries explain as much variation as six
PCs do for yields of two countries (99.9995%).



Next, we approximate PCs with simpler linear combinations of yields to facilitate interpre-
tation. Specifically, we introduce a vector

Yt US 1 month yield
Ay} US 1 month yield - Euro 1 month yield
Afy} US 1 month yield - UK 1 month yield
Jo = thO’l - US slope = US 60 month yield - US 1 month yield ()
Afyfo’l US slope - Euro slope
ALyS0! US slope - UK slope

Here we use A to denote the one-period time-series difference operator, and A. to denote
the cross-country difference operator. Figure 1 shows that the PCs and these factors are
similar.

3.3 Spanning regressions
Replication

One way to establish whether an asset (exchange rate) is spanned by other assets (bonds)
is to regress returns of the former on the returns of the latter. To realize a return on an
exchange rate, one must convert domestic currency into foreign currency, purchase a foreign
(riskless) bond, sell it at a later date and then convert the proceeds back to the domestic
currency. In order to avoid exposure to interest rate risk, this has to be a buy-and-hold
strategy: REN = Spq1/Six 1/Q!. A return on a domestic n-period bond is R} | = Q{:ll/Q?.
Thus, one can regress Rf:f{ on a set of bond returns R}, for a variety of horizons n.

One practical problem with these regressions is that we do not have data on bonds with ma-
turities that are one month apart to compute monthly returns. Thus, the regression could be
implemented at an annual frequency only. We regress Rff{Q on Ry 15, n =12,24,36,48,60.
The R?, regular and adjusted, from these regressions are reported in Table 2A, in the col-
umn labeled “$ returns.” The amount of variation in currency returns that can be hedged
with bonds is quite modest, 16% at most.

It is tempting to take returns on foreign bonds, ﬁ?_ﬂ = Q\?J:ll/@?, convert them to USD

returns, Sy4+1/S; X f?{ﬁrl, and add them on the right-hand side of the regression. But that
would correspond to using exchange rates to span themselves.

Thus, to check if the exchange rate is spanned by foreign bonds, one must take the perspec-
tive of a foreign-currency investor: Eff{ = S;/Si41 x 1/Q}, and regress these on foreign
bond returns Rﬁrl. Table 2A, column labeled “€ or £ returns” reports the R?, which are
of the same magnitude as the USD-denominated returns. This evidence establishes that
bonds are unable to span the space of currency payoffs.



That one can use only assets traded in a given country for replicating the corresponding
FX rate suggests why the documented lack of spanning is a natural result. In fact, it would
be unusual if one would be able to trade bonds of a given country in such a way that they
trace out its FX rate. This point does not have to be about bonds alone. While clearly
outside of the focus of this paper, we illustrate this by complementing the bond returns
with MSCI stock index returns of the corresponding countries in the last two columns of
Table 2A. The maximal R? moves to 28%, which is still very far from successful spanning.
The main asset classes are only weakly related to exchange rates.!

This result is also natural in the context of baseline international real business cycle models.
In the case of complete financial markets, e.g., Backus, Kehoe, and Kydland (1994), an
exchange rate can be replicated by the full set of Arrow-Debreu securities. So, unless the
theoretical setting is such that bonds are capable of completing the financial markets, one
would expect bonds to be unable to replicate exchange rates.

One strand of the literature argues for incomplete financial markets in order to be able to
understand empirical evidence on the lack of consumption risk sharing. In such a setting,
depending on dynamics of output shocks or how relative prices of imports and exports (terms
of trade) react to these shocks, one could obtain a nearly perfect risk sharing (Baxter and
Crucini, 1995, Cole and Obstfield, 1991), or lack of thereof (e.g., Corsetti, Dedola, and
Leduc, 2008). Our evidence points towards the latter.

Hidden factors in affine models

We implement an additional set of regressions to understand how to model bonds and cur-
rencies in an affine context. Consequently, we focus on establishing whether the depreciation
rate is a hidden factor in domestic and foreign yield curves, i.e., that it does not appear
as a factor in the cross-section (Duffee, 2011). As we demonstrate in the next subsection,
a variable that is hidden in the yield curve is not spanned dynamically by a portfolio of
bonds.

There is a well-established literature that primarily focuses on US bonds and seeks to
identify hidden variables. Joslin, Priebsch, and Singleton (2014) refer to them as unspanned
and use regressions of inflation or output growth on yields to motivate their use in a term
structure model. We follow these authors and implement a regression to motivate our
conjecture that depreciation rates are unspanned by yields. We regress the individual log
depreciation rate on the three versions of principal components (PC) constructed from yields
discussed in section 3.2. The timing is As; ~ f; at a monthly frequency.

1One can think of more creative equity portfolios that could have a stronger relation to exchange rates,
e.g., global firms, or commodity-intensive industries. Going down this path would lead to an investigation
of market completeness, which is not the point of our paper. Our objective here is to illustrate that it is
natural that some “typical” assets have low correlation with exchange rates.



Table 2B displays the regression results. The largest R? is 6.38%.2 Depreciation rates have
very little to do with bond yields. To be clear, we are not imposing this conclusion on our
main term structure model that we introduce later in the paper. This conclusion serves as
a motivation for considering different versions of that model. We will be formally testing,
in the context of our model, whether depreciation rates are unspanned.

4 Implications of unspanned exchange rates

This section discusses the relationship between two literatures, (i) exchange rate modeling
using pricing kernels, and (ii) international yield curve modeling. Most papers treat these
undertakings separately despite the common pricing kernel approach and affine modeling
tools. Historically, one group of researchers targeted exchange rate moments and did not
use yields in estimation. A subgroup of these researchers found that a fit to yields is bad.
Another group of researchers targeted yield moments and did not use exchange rates in
estimation. A subgroup of those researchers evaluated the implications for the moments of
exchange rates and found that their implied dynamics are very far from reality.

We emphasize commonality between bond and exchange rate modeling. We offer a way to
unify all the evidence by accounting for the fact that exchange rates are not spanned by
bonds. A simple implication of this observation is that one has to use exchange rates jointly
with bond prices to estimate models of pricing kernels. In the next section, we demonstrate
that this approach leads to a realistic model of both bonds and exchange rates.

4.1 The asset market view of exchange rates

Revisiting equation (1), we re-write it in logs and in two steps:

Aspp1 =My 1 — My = Mep41(Q, Q) — My +1(Q, Q).

The first equality reflects the common use of the asset market view in the literature. The
second equality emphasizes the role of data used to estimate the pricing kernels.

The relationship holds under two assumptions. First, the markets are complete, which
gives the first equality. This is well understood and if often assumed explicitly. The sec-
ond assumption is that the estimated pricing kernel matches the true pricing kernel up to
estimation noise, that is, () and @ span the space of all assets. We presented evidence in
Section 3.3 that this assumption is violated.

2As a reference, Joslin, Priebsch, and Singleton (2014), who argue that inflation and output growth are
unspanned by bonds, report R? values of 86% and 32%, respectively.



4.2 Cross-country differences between bond yields

The international bond literature focuses on the strong common factor structure across
US and foreign yields. It leads to a conclusion that global (a.k.a., U.S.) variables are
responsible for most of the yield variation. We argue that there are economically important
cross-country differences between yields and bond risk premiums. These differences are
driven by the properties of exchange rates.

The yields y;* and y;* share a simple relationship. Under conditional log-normality,

g8 = logkE, (62?=1mf+i71,t+i+ﬁst+i)
n 1 n n n
= @ tE (Z1 A8t+i> + ivart <Z1 A3t+i> + covy <Z1 Mtti—1,t+i, Zl A8t+i> .
1= = i iz

After multiplying both sides by —n~!, we get the interest rate differential (IRD):
Aoy =y — Uy = esy — srpf + vsy. (3)

Here es? = n™1E; (3.1, Asiii) is the average expected depreciation rate, and srp} =
—n"teovy (300 Muti1 444y 9 org Asi4i) is the (ex-ante) currency “risk premium.” We
use the quotation marks because srpy does not reflect the convexity term wvsy =
(2n)"tvary (30 Asiy;). The currency risk premium measures the additional compen-
sation that an investor in foreign bonds requires in order to be exposed to future shocks to

the exchange rate.

The combination of the last column of Table 1 and Figure 1 tells us that the short-term
IRDs, Ay}, serve as PC2 and PC3, approximately. Because of the connection of this spread
to expected depreciation rates via equation (3), it is immediately clear that exchange rates
play an important role in the behavior of international yield curves. While the US level
obviously plays the major role by explaining 93.5% of variation, PC2 and PC3 contribute
4.4% and 1.4%, respectively. These are non-trivial amounts as is well known from the
literature on US-only yield curve modeling.

Also, there is a simple currency-related connection between the excess returns on bonds
from different countries. The USD bond one-period excess returns, in logs, are:

raf =qn - +a = —(n— Dyiy +nyl —yt (4)

with a similar expression for the foreign currency, 72y, ;. Note that the reference rate for
foreign excess returns is the short rate of the respective country, f. Therefore, 77} 1 does
not depend on the currency of that country. In logs, this is equivalent to using the US short
rate y; as a reference irrespective of the country and then constructing currency-hedged
bond returns.



Combining equations (4) and (3) we get:

n _ n —~n n—1 n 1
Acra g =rafyy — 713 = (n—1)-srpl —n-srpy + srp; (5)

n—1 n 1
— (n—1)-vs| +n-vs —uvs

n 1
U1 + Uppq,

where, for a given horizon j, ug_H = Fi (Zgzl Ast+i> — F (Zgzl Ast+i> — is the sur-
prise in expectations of the depreciation rate. Therefore, ignoring convexity, differences in
expected log excess returns are driven by the differences in currency risk premiums across
different horizons.

Equations (3) and (5) demonstrate that researchers studying bond yields and bond risk
premiums are inherently studying the same object as researchers studying the dynamics of
currency risk premiums. The twist is that it would be natural to think that factors driving
one type of risk premium should show up as factors driving the other. However, that is not
the case because exchange rates are unspanned by bonds. There is at least one factor that
affects currency premiums but does not appear in bond premiums.

Therefore, the observed differences between bond yields or risk premiums, on their own, do
not allow identifying the currency risk premiums, srpy, even if the variance of the deprecia-
tion rate is constant. In the case of the yield differential, the premium is “contaminated” by
the expected depreciation rate. In the case of the bond premium differential, the premium
is affected by the different timing and horizons. One needs an explicit model of the depreci-
ation rate that accounts for the lack of spanning to disentangle the currency premium and
other components.

4.3 Illustration of unspanned exchange rates

The presented evidence implies that, depending on whether one uses bond data alone (@, @),
or combines bond data with exchange rates S for estimation, the pricing kernel may have
very different properties. That is the point of departure from the exploration of incomplete
markets in affine settings studied by B/F/T and Lustig and Verdelhan (2015). These
authors specify a model of the true domestic and foreign pricing kernels, M; ;1 and ]\/4\,5,t+1,
respectively. Then they discuss conditions under which the markets could be incomplete
and how many assets are required to span the markets. Despite similar-looking equations,
we do not assert dynamics of the full pricing kernel. Instead, we specify the dynamics of
that part of the kernel that matches the properties of a given set of assets: (Q, @) in the
NFX case; (Q, @, S) in the WFX case.?

3Sandulescu, Trojani, and Vedolin (2018) establish conditions under which the ratio of the two pricing
kernels recovers the exchange rate correctly even if markets are incomplete. The first condition is that
domestic and foreign markets are integrated, that is, the span of domestic asset returns coincides with the
span of foreign asset returns after conversion into the domestic currency. Our spanning regression is a
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Before proceeding with the estimation, we introduce a simple model of the true pricing
pricing kernel in order to demonstrate the effects of hidden depreciation rates in theory and
in practice, when these rates are not used for estimation. We emphasize four main points.

First, even if markets are complete with respect to exchange rates and bonds, and one knows
the true model of the pricing kernel, the estimated depreciation rate cannot be identified if
it is not observed. As a result, the estimated expected depreciation rate and its volatility are
biased. Second, because of that, one cannot realistically decompose yield or bond premium
spreads into the expected depreciation rate and currency risk premium. Third, the modeling
of bond yields is unaffected by unobserved exchange rates. Fourth, once the exchange rate is
introduced into the set of observations, one does not need market completeness to estimate
its dynamics accurately.

Setup

The model can be described as the international version of the Vasicek (1977) term structure
model. Consider a vector x; = (y},As;) ! that follows a VAR(1):

Ty = g+ Ppriq + Baey et ~N(0,1), (6)

where the vector p, has elements pi;;, matrix ®, has elements ¢, ;;, and matrix X, has
elements o ;.

We model the dynamics of the true log pricing kernel expressed in USD

M1 = _ytl - %)\tT)\t - )\tTEtJrlv (7)
with market prices of risk

A = BN+ Aey). (8)
For the purposes of this section only, we assume that the matrix A; has a special form:
A, = ( Azl Pzi2 > ‘
Az21 Gz22

In words, changes in interest rate and currency risk premiums due to variations in the

depreciation rate exactly offset changes in expectations of future short interest rates and
future depreciation rates, respectively.

particular case of that when there is only one foreign asset return, that is, the return on a one-period bond.
Because we reject spanning, we reject integration (with respect to bonds) as well. The second condition,
in a model-free setting, is that the estimated pricing kernels are the minimal entropy ones. We use affine
models to connect to research on international yield curves.
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Bond yields

The prices of zero-coupon USD-denominated bonds with maturity n are given by the stan-
dard pricing condition

Qf = E; (Mt,t+1Q?J:11) :
As a result, because A\; 12 = ¢ 12, US yields are linear functions of y} only
yP = an+ by (9)
See Duffee (2011).

Let e; denote a unit vector with a one in location j and zeros in all other entries. The
currency risk premium is

sTpy = —covy(mygy1, Asip1) = €3 Sghe = o2 + Ao 21y + G205y (10)

We can express the pricing kernel in foreign currency:

Miri1 = Megrt + ASir1 = Myl + €9 Tep
g9 logs =
= - iA:At — A e, (11)
where

U= a+ By, (12)

o = —e;(ﬂx — o) — ezTEa:Z;e?/Q = —flz,2 T Ao2 — (‘7325,21 + 0326,22)/2, (13)

B = 1—¢z21+ Az21, (14)

N o= uot (Xo + )\xa:t) , (15)

X = Ao— .3 e (16)

The foreign interest rate 7} in (12) does not depend on the depreciation rate because
Az22 = ¢z.22. The foreign-currency denominated U.S. pricing kernel 7441 in (11) is equal
to the true foreign pricing kernel if markets are complete but may not be otherwise.
The prices of zero-coupon foreign currency bonds with maturity n are given by
QY = E [Mt,tﬂQ?;f} :
As a result, because \; 22 = ¢, 22, foreign yields are linear functions of ytl only
G = a+ bl (17)

In particular, it implies that Ay and EyAcrzy,; do not depend on As;.
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Spanning

Equations (9) and (17) imply that the depreciation rate is hidden in the yield curves. We
can characterize the implication of these relationships for spanning of currency returns with
a portfolio of bonds that was described in section 3.3:

~1 . _ 1_ 1
RE:{ — €A3t+1+yt Spanned with R?f+1 — ean n—1+bny; bn—lyt+1;
Et}l}i — o Asiityl spanned with E?Jrl — n—n—14bnT} —bn-13{,1

The analytics simplify if we express the return on a portfolio of bonds with a vector of
weights wt in logs. The switch to logs can be justified via a log-linearization: log(w—'—e’“l) =
wio + w; 7411. We use additional notation: b (b) for a vector of loadings b,_1 (bn 1) for a
range of maturities n, and ryy1 (7411) for a vector of log returns log R}, ; (log }A%?H). Then,

COUt(AStH thbyl 1) 0,21
‘COT?"t(Tth-)iathrt+1)’ = 1/2 ’ 1/2 H-_l_ 1 = 2 L 2 1/2 <1,
vary *(Aspir)vary,* (wl byl ) (0221 + 05 .90)
Py ~ COUt(AStH w bgl 1) Oz,21
|corr (P13 w Figa)| = 172 : t/ - =57 2 < 1.
var, (Astﬂ)vart ( bytﬂ) (0291 +0590)

These correlations imply that R? < 1 for the spanning regressions.*

Thus, a conditional portfolio of bonds cannot span an exchange rate if it is hidden in the
yield curve. Nevertheless, if we assume existence of the currency market and the ability
to trade an infinite number of bonds, the markets would be complete. In that case 741
would be the true foreign pricing kernel.

Estimation, NFX approach

The NFX approach writes down separate pricing kernels for the foreign and domestic coun-
tries. It then ignores information in the depreciation rates to estimate the term structure
model. A natural question to ask is whether we can recover the true dynamics of As; by us-
ing bonds alone. In this thought experiment, we ignore estimation uncertainty by assuming
that we have an infinite amount of data on foreign and domestic bonds. The true dynamics
of As; are:

Aspp1 = feo + Gr21Yf + Gr20ASt + 0p 2161641 + O 2282141 (18)

Suppose that, in addition, depreciation rates do not predict interest rates (consistent with
the evidence to be discussed in a later section), that is, ¢, 12 = 0, and ¥, is lower triangular

41f the depreciation rate were not hidden, then the conditional correlations above would depend on the
portfolio weights. These weights then could be chosen to maximize the correlation with a possibility of
reaching the value of 1 (if markets are complete with respect to bonds and currencies).
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(recursive identification). Then equation (6) implies that the interest rate y; follows a
process

1 1
Yy = Mzl + Op11Yi_1 + Oz 1118,

which can be easily estimated. In addition to the parameters in this equation, the coefficients
an and by, in equation (9) are non-linear functions of Ao ; and A, 11. These parameters are
identified from US bond data and can be estimated using non-linear least squares.

The estimated USD pricing kernel is

mie1(Q, Q) = megs1(Q) = —y) — 0,11 (01 + A 1191 /2 = 0,11 (o + Ae iy )eri

where all of the parameters can be recovered from linear or non-linear least squares regres-
sions.

The foreign short rate 3} is a linear transformation of y} in equation (12). If we do not
use As; in estimation, we can still identify the parameters o and 5 in (12) from a linear
regression. The coefficients @,, and /l;n in equation (17) are non-linear functions of /):0,1
and A 11. These parameters are identified from foreign bonds and can be estimated by
non-linear least squares. Equation (16) implies that

Ao,1 = Aol — 02,110,225

Given that we can identify A\g; and 0,11 from US bonds, we can infer 0,90 from this
equation.

The estimated foreign currency pricing kernel is

Mi41(Q, Q) = =G — log 11 (Mo + Ae1)1?/2 — 0,11 (Mot + Ae119i )er41-

with all of the parameters identified from linear or non-linear regressions.

Thus, if a researcher were to use the complete markets logic to infer the depreciation rate,
they would obtain

Asi11(Q, Q) = My1(Q, Q) — My 11(Q, Q)
= fz2 — A2+ 0;%1%,22)\0,1 + 012;,21/2

—1 1
+ (2,21 — Az21 + 0, 110,22A511)Yp + 05221441

where have used the relationships in (13)-(16) to simplify these expressions. The implied
currency risk premium is

st (Q, Q) = —cov(mei41(Q, Q), Asi11(Q, Q) = 0,1102.22X01 + 0y 11022200 11, -

Comparing these expressions with the true depreciation rate in (18) and the true currency
risk premium in (10) we see that we get a bias in the expected depreciation rate, risk
premium (forward premium anomaly), and volatility (volatility anomaly).
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Relatedly, Ahn (2004) constructs the depreciation rate to be a hidden factor by allowing
As; to be affected by a shock that does not affect the USD pricing kernel my ;1. If we set
the risk premium parameters A2, Az 21, Az 12, Az,22 and persistence parameters ¢, 12, ¢z 22
to zero, we obtain that model. Then the NFX method recovers the USD pricing kernel, but
not the depreciation rate.

Estimation, WFX approach

The WFX approach uses observations on As; for estimation. As a result one can estimate
the full dynamics of z; in (6). The transition from my;41(Q,Q,S) to my14+1(Q,Q,S) by
changing denomination via ms¢11(Q, Q, S) =me11(Q, Q, S) + Asg11 does not require any
assumptions because it is a simple change in the denomination of the pricing kernel. Once
the parameters of As; are estimated, one can use « in (13) to back out the risk premium
parameter \g 2 and then estimate 3 in (14) to back out A;21.

Implications for international yield curves and currencies

If the depreciation rate is unspanned by bonds, then both estimation approaches would
produce identical domestic and foreign yields curves. The WFX approach would allow one
to use equations (3) and (5) to decompose the cross-country differences in yields into the
currency risk premium and expected currency components. Conversely, since the NFX ap-
proach cannot accurately recover the dynamics of the depreciation rate, it cannot separately
identify these components.

From the currency-modeling perspective, the WFX approach allows for identification of
realistic dynamics of the depreciation rate. It also allows researchers to connect currency
risk premiums to factors driving bond premiums. That is not feasible if one uses observations
on currencies alone.

5 The full model

In this section we specify our general multi-factor model. Here we take a view that we
do not know the true pricing kernel. Instead, we estimate the specified functional form
using different datasets (@, @ for the NFX approach, and @, @, S for the WFX approach).
Further, we do not make any assumptions about the spanning of exchange rates. We test
for that upon the model estimation. We model the dynamics of the state vector z; as a
Gaussian VAR given by (6). We use [i, to denote the unconditional mean of the state.
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It has been argued in the literature that one needs to incorporate time-varying volatility
to resolve the FX volatility anomaly in the context of the NFX approach (Anderson, Ham-
mond, and Ramezani, 2010; Brandt and Santa-Clara, 2002). Of course, FX volatility is
time-varying and adding that feature is an obvious extension if one is interested in FX
option valuation or other aspects of FX dynamics. We do not model stochastic volatility
to emphasize the point that there is no volatility anomaly even in a Gaussian model if the
WEFX approach is used.

Finally, B/F/T and many authors following them explore so-called square-root, or CIR,
state variables instead of the Gaussian ones used here. This distinction plays no role here.
We are simply looking for models that are capable of a realistic fit to the yield curve data.
Starting from Dai and Singleton (2000) and many papers following them, the literature has
concluded that Gaussian models are more flexible in capturing yield co-movement and risk
premiums. These models have been a de-facto standard for the last 15 years. A square-root
factor could be helpful in capturing time-varying volatility of interest rates, but, absent data
on interest rate derivatives, it is very hard to identify empirically (Bikbov and Chernov,
2011).

5.1 Bonds denominated in US dollars

We assume the dynamics of the state z; has the same functional form as the state in (6).
We postpone selection of a specific state until a later section. We model the dynamics of
the log pricing kernel expressed in USD

1
my1(D) = =80 — 6,2t — §>\2—>\t — N\ i1,

with market prices of risk having the same dependence on x; as in equation (8). D highlights
that we are not specifying the true pricing kernel M;; 1, but only its component that

correctly prices a set of assets to be specified later, either (@), @), or (@, @, S). Regardless
of the choice of assets, our model of the component of the USD pricing kernel that values
them correctly is the same.

The prices of zero-coupon USD-denominated bonds with maturity n are given by the stan-
dard pricing condition

Q = Ei (Mt,tﬂ(D)Q?J:f) :
As a result, US yields are linear functions of the factors
n

-
Yy = an+0by 11

Expressions for the bond loadings can be found in Appendix A.1.
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5.2 Bonds denominated in foreign currency
5.2.1 The NFX approach

In this case My41(D) = Mt,t+1(Q,@)~ Here the state vector z; is presumed to span all
bonds. We model the dynamics of the log pricing kernel denominated in foreign currency
as

Areni(QQ) = B0~ 8L — SN N = Newn (19)
with market prices of risk
N o= ¥l (Xo v Xxxt) .
We suppress country-specific notation for simplicity.
The prices of zero-coupon foreign currency bonds with maturity n are given by
Qf = E [M,Hl(Qy @)@?Qf} :

As a result, foreign yields are linear functions of the factors

g o= a + oY
where the bond loadings can be found in Appendix A.2.

This strategy is similar to the ones undertaken in the literature on international yield
curves. There is some variation: some authors distinguish between global and country-
specific factors; some authors estimate the kernel expressed in USD using USD bond data
only, M;+11(Q), as a first step, and then proceed with estimating M; ;1 (@, @) We use the
joint data and allow yields from each country to load on all the factors allowing the data to
speak to which bonds load on which factors. Assuming market completeness with respect
to bonds, one can infer the log depreciation rate as:

Asiyr = My 41(Q, Q) — myi41(Q, Q). (20)

5.2.2 The WFX approach

In this case My 41(D) = My 41(Q, @, S). Here the state vector x; is presumed to span all
bonds and exchange rates. The log depreciation rate As; is assumed to be a linear function
of the state vector:

Asy = 050+ 0, 421 (21)
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The prices of zero-coupon foreign currency bonds with maturity n are given by
Qr = E (Mt,m(Q, Q. S)%f@?ﬁ) : (22)
As a result, foreign yields are linear functions of the factors
aro= ay +o .

where the bond loadings can be found in Appendix A.3. Bauer and de los Rios (2014);
Graveline and Joslin (2011) model the FX rate directly as well, but do not explore the
implications of such an approach for the FX anomalies, or differences between the yield
curves.

Given the estimated model, we can express the pricing kernel in foreign currency:

Mei11(Q, Q, 8) = misy1(Q,Q, 8) + Aspy1. (23)

This equation is an accounting identity that does not require any assumptions in contrast
0 (20). Combining equations (21) and (23), we can write

. A I S N
Me1(Q,Q,8) = —7i — 5)\:)\16 — X e,
where A, has the same functional form as (15), and
No= Ao— 5.2 0e. (24)

Thus, in contrast to many theoretical models of exchange rates, M (Q, Q,S ) and M (Q, @ ,S)
are asymmetric. The asymmetry arises via the constant component of the risk premium —
an implication of the constant volatility model of depreciation rates. Changing that feature
would introduce further asymmetry via the time-variation in risk premium.

6 Results

6.1 Empirical approach

We extend the estimation procedure of Joslin, Singleton, and Zhu (2011) to international
yield curves and use Bayesian MCMC to implement it. The approach has two ingredients.
First, risk premiums A\; and \; are estimated by specifying risk-adjusted dynamics of the
state that is implied by the specification of the pricing kernels. The mapping into risk-
adjusted parameters and identifying restrictions are discussed in Appendix B.1. Second,
the state x; is observable and is a linear transformation of yields and, in our case, exchange
rates.
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The choice of state vector is motivated by the PC analysis in section 3.2. Specifically, in
the case of the NFX model, the state is x{v = f1, see equation (2). In the WFX model, we
complement the state vector by adding the two depreciation rates

-
acZV = (Asf, Asgg, foT)

Thus, our specification is closely related to that of Dumas and Solnik (1995) except for the
choice of variables: one-period interest rates and lagged stock returns are selected to be
their state variables.

Because all the state variables in x; are observable, the free parameters that govern the
dynamics of the state, pi,, @, ¥, , are identifiable directly from the VAR in equation (6).
These parameters therefore require no identifying restrictions. Restrictions are required
on the factor loadings and the risk-premium parameters Ag and \,. These restrictions are
necessary to exactly identify the model and are not over-identifying restrictions.

6.2 Basic properties of the estimated models
6.2.1 Estimates and fit

We report the estimated parameters in Appendix C. Table 3 displays pricing errors. The
overall message from this set of Tables is that both models fit the given collection of domestic
and foreign yields similarly in terms of small errors and values of estimated parameters that
are related to yields.

The differences in the approaches are manifested by two extra sets of risk premium param-
eters for the NFX model and by extra parameters corresponding to depreciation rates for
the WEFX model. The WFX model exhibits a slight deterioration in fitting yields at shorter
maturities suggesting some tension in fitting yields and depreciation rates with the same
set of state variables.

6.2.2 Exchange rates are unspanned by bonds

From the perspective of modeling the yield curve, the two depreciation rates are the new
factors in the WFX model as compared to the NFX model. Figure 2 demonstrates that they
are unspanned by showing how bonds of different countries load on the two depreciation
rates in the WFX model. While there are some departures from zero, none of them are
statistically significant. Given that the monthly standard deviation of each depreciation
rate is about 0.029 (10% per year), the largest monthly movement in a yield (UK at 5
months) is 0.2 basis points (0.7 x 1073 x 0.029 x 100?) for one standard deviation move in
a depreciation rate. This is not an economically significant amount either.
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In contrast to the literature on hidden/unspanned variables that focuses on their ability
to forecast bond excess returns, we make no such claims here. Inspection of the estimated
persistence matrix @, in Table Appendix C.3 suggests that depreciation rates have little to
do with forecasting of future yields.> Indeed, most of the elements in the first two columns
of @, are statistically close to zero.% There is one exception: the lagged GBP depreciation
rate predicts the EUR one, and vice versa. Depreciation rates do not help forecasting bond
risk premiums either as the relevant elements of the risk premium matrix A\, are close to
zero as well.

6.2.3 The role of other factors

We describe how the other factors impact yields by reporting the term structure of factor
loadings in Figure 3. We show these loadings for the WFX model, while the NFX model
(not reported) displays similar patterns. The figure should not be surprising. It shows that
the US short interest rate and slope act as level and slope factors for all countries. The
departures from the US factors, differences in short rates or differences in slopes, primarily
affect yields of the corresponding foreign country.

These bond loadings could tempt a researcher to label US variables as global and the other
variables as local, a language that is commonly used in the literature on international yield
curve models. One has to be careful with such an interpretation because the choice of US
factors as a de-facto reference is arbitrary. We could have considered an equivalent factor
rotation where the German short rate and slope are the reference factors and the rest are
defined relative to that.

Nevertheless, these loadings suggest a modular approach towards modeling multiple yield
curves: start with a benchmark and its yield-based factors, then add as many countries as
needed via factors that increment over the benchmark. One has to deal with parameter
proliferation when more than three countries are considered at once. There is no choice
but to impose overidentifying parameter restrictions; a problem we do not address in this
paper. See Graveline and Joslin (2011) for a recent effort along these lines.

6.2.4 Implications for exchange rates

From the perspective of modeling depreciation rates, yields are an important ingredient in
their dynamics. While risk-adjusted expected depreciation rates depend on their respective
interest rate differential (IRD) only, an implication of covered interest parity (CIP), the

5Because of this property some of our readers have proposed to refer to exchange rates as irrelevant rather
than hidden factors. We stick with the latter terminology because being hidden is the crucial feature one
should have in an affine model to replicate the lack of spanning of exchange rates by bonds. Being irrelevant
is an additional interesting property of exchange rates.

SThat is consistent with our assumption ¢z 12 = 0 in section 4.3.
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true expectations depend on other yield factors as well. At first glance, the model cannot
replicate the violations of uncovered interest parity (UIP) documented by Bilson (1981);
Fama (1984); Tryon (1979). For instance, the loading of the expected Euro depreciation
rate on the respective IRD is positive. However, the estimated model is consistent with a
multivariate regression with potentially correlated regressors, while the original UIP regres-
sions are simple linear regressions with one regressor. In the next section, we explore what
the WFX model implies for the specific univariate regressions studied in the literature.

While the WFX model matches the depreciation rate by construction, we need to infer them
in the case of the NFX model. As pointed out in equation (20), we can do so only under the
assumption of complete markets. Figure 4 displays the inferred and observed depreciation
rate. They are clearly different in terms of their scale and dynamic patterns. In the next
section we provide more details on these differences.

As noted in the context of equation (24), the modeled pricing kernels are asymmetric. The
estimated model verifies that indeed estimated parameter values are such that asymmetry
between M (Q, Q, S) and M(Q, Q, S) holds. Thus, if one were to build an equilibrium model
with an objective to capture the evidence, the marginal rates of substitution of domestic
and foreign economic agents might have to be asymmetric.

6.3 B/F/T

Results of B/F/T represent a challenge to affine no-arbitrage models. It appears to be
difficult to replicate a certain set of stylized facts about interest rates and exchange rates
simultaneously. They propose a model that succeeds in matching some of the properties
of FX and yet generates unrealistic yield curves. Indeed, B/F/T state: “The implied yield
curve ... is hump shaped with long yields reaching as high as 80 percent per annum.” We
revisit their analysis in the context of our models.

Table 4 replicates Table I of B/F/T in our sample and complements it by displaying model
implications for the same set of facts. Both models do well in replicating facts about interest
rates. This is not surprising given that B/F/T focused on short rates and they serve as
state variables in our model. There is some deterioration for Euro/Germany because of the
aforementioned missing observations on one-month yields.

The differences in FX implications are drastic. This is consistent with Figure 4, but offers
other angles. The inferred depreciation rate is 25 times more volatile in the NFX model
than in the data, and the mean is greater by two orders of magnitude. The NFX model is
nowhere close to the results of UIP regressions. One way to interpret the NFX results is
that markets are in fact incomplete with respect to bonds, so it is incorrect to use equation
(20) to infer FX rates.

The WFX model replicates all of these moments perfectly, by construction. Does it come
at the cost of a poor fit of the yield curve as in B/F/T? Table 3 foreshadows the answer.
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Table 5 reports the yield-curve summary statistics in the B/F /T style. There is not much
of a trade-off in fitting both yields and FX rates for the WFX model.

To clarify, while the B/F/T methodology is close to NFX, it is not identical. B/F/T
construct their model to match the UIP violations and volatility of the depreciation rate.
Thus, they use information about depreciation rates, but not about their joint dynamics
with yields. That is why they can match some basic facts about currencies, but the resulting
model cannot match yields. That is a manifestation of unspanned currencies. The only way
for B/F /T to succeed empirically is to incorporate this lack of spanning into their model of
exchange rates.

More generally, one might wonder if it is possible to use the presented evidence to construct
M and M such that they produce a realistic depreciation rate via (20). It is possible to do
so, in theory, by taking the estimated M (Q, @, S) and ]\//_T(Q, @, S). Section 4.3 offers a more
explicit version of that in equations (7) and (11). The issue is, as pointed out in section
4.3, that one cannot estimate these models without the joint data on yields and currencies.

6.4 International yields and risk premiums

In this section we highlight implications of our analysis for international yield curve mod-
eling. Our results suggest that if one were interested in fitting yields only, the NFX model
would be sufficient for that task. However, a modest departure from this objective would
render NFX incomplete.

Specifically, as equations (3) and (5) show, the cross-country differences between bond yields
or risk premiums are solely driven by properties of currencies. So, if a researcher wanted to
understand the sources of variation in the cross-country yield differentials, she would have to
attribute that to the currency risk premium, srpj’, versus the other components. However,
as we emphasize in section 4.2, neither the cross-country difference in bond yields nor risk
premiums produces a direct measure of the currency risk premium for a given horizon.

The WFX model would help with that because it implies a realistic measure of srp} by
directly capturing the joint behavior of depreciation rates and prices of risk. Would it still
be possible to decompose the yield differential, A.y;*, into the currency risk premium and
expected depreciation rate using the NFX model? As we have shown, the only way to use
the NFX model itself is to invoke equation (20) to infer an implicit depreciation rate and the
corresponding risk premiums. That approach leads to a grossly misspecified depreciation
rate.

An alternative approach would be to stick with the NFX model for its implications for
yields. Next, a researcher could use an established approach towards currency premium
measurement to produce an estimate of srpy’ and use that to decompose A, y;'. We illustrate
this strategy using the UIP regression to infer currency risk premiums.
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6.4.1 Decomposition of cross-country differences in yields

We start with equation (3) and, following Campbell (1991), define news, at horizon n, about
differences in yields, the expected depreciation rate, and currency risk premium

NZy,t = Acy? —Ei (Acyg) ’

g,t = esy — Ei1(es}),
ot = Srpy — Epq (srpy).
Then, equation (3) implies
Ngy,t = ;t - gr’p,t’ (25)
var(Np,,) = war(Ngy) +var(Ng., ;) — 2cov(Ngy, Ngp 1) (26)

Thus, one can quantify the role of each component in the variation of the interest rate
differential.

The same news components are affecting the decomposition of cross-country differences in
bond risk premiums in equation (5). The difference in premiums can be re-written in terms
of yields:

Ach? = _(n - 1)Acy;§1_1 + nAcyz?fl - Acyztlfl‘
Thus, news about the difference can be expressed in term of news about yields:

Nros = Aera} = By (Aeraf) = —(n = NG}

In the sequel, we use the different approaches to estimate srpy and the corresponding news
to construct the decomposition (26). Anticipating the results, note that var(Ng, ;) would
be much smaller than any of the components on the right hand side simply because interest
rates are, overall, much less variable than depreciation rates. So, for instance, reporting
var(Ng,) as a percentage of var(NR, ;) is not that informative.

Thus, we turn equation (25) around and work with:

n
Nsrp,t

= Ngy — Nay.- (27)
The corresponding equation for variances is:

var(ND

srp,t) - Uar(NsTft) + Uar(NZy,t) - QCOU(Ngt? Ngy,t)' (28)
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6.4.2 Decomposition results

We start with the WEFX model, as a realistic benchmark. Given that the model is essentially
a VAR, we compute all the relevant news in equation (27) directly from the model. The
first row of Figure 5 displays the results.

Conveniently, the covariance term is close to zero. That is not surprising given the overall
theme of a weak relationship between depreciation rates and interest rates. When n = 1
news about the cross-country yield differential has a very small contribution to the news
about the currency premium, which is intuitive. As horizon grows the share of news about
the cross-country yield differential starts growing and reaches about 50% at the 10-year
horizon.

Next, as discussed above, we combine the NFX model with the UIP regression. The latter is
used to establish a basic measure of currency risk premiums that is popular in the literature
without taking a stand on spanning of currencies with bonds. Jointly, they form a restricted
VAR. Thus, again, we can use standard techniques to construct news. The second row of
Figure 5 displays the results.

The difference between the two approaches is striking. First, the contribution of both es;
and A,y is greater than 100% at horizons below 6 months. That coincides with a positive
covariance between the two components of the currency risk premiums. Second, even at
longer horizons the pattern is qualitatively different from that of the WEFX model. While
the contribution of es; is declining with horizon in the latter, it always stays above that
of Acy;. In the NFX/UIP case the contribution of es; is always less, declining from about
80% at the 6-month horizon to 10% at the 10-year horizon. In contrast to the WFX model,
the news about the yield differential contribute about 80% regardless of horizon.

7 Conclusion

We relate differences in international yield curves to exchange rates. In order to account
for these risks, we combine estimation of yield curves with estimation of exchange rate
dynamics. This exercise is unnecessary if bonds span exchange rates. We find drastic
differences in results relative to a benchmark model estimated without exchange rates.
Both models fit yields accurately, but the benchmark model implies exchange rates that
are grossly incompatible with the observed data. Besides capturing realistic behavior of
exchange rates, our main model speaks to the sources of the differences between the US
and foreign yield curves, and their respective bond risk premiums.

Both differences are driven by currency risk premiums, and our model allows a researcher
to decompose news about differences in bonds into news about currency risk premiums and
expected depreciation rates. We show that a model that does not incorporate depreciation
rates into estimation attributes too big of a contribution of news about the cross-country
differences in yields to news about currency risk premiums.
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Figure 1
Principal components and yield factors
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Notes: Plots of the first siz principal components (blue) and the yield factors in the state vector xy.
All variables have been standardized to have mean zero and variance one in the plot to make them
comparable.
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Figure 2
Depreciation rate loadings for the WFX model
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Notes: We plot loadings on depreciation rates that are used by the WFX model to establish U.S. and
foreign bond yields for multiple horizons (0-60 month, x-axis). Different lines represent loadings for
bonds of different countries. None of the lines are signifciantly different from zero. We do not report
confidence intervals to avoid clutter.
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Figure 3

Yield factor loadings for the WFX model
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Notes: We plot yield factor loadings that are used by the WFX model to establish U.S. and foreign
bond yields for multiple horizons (0-60 month, z-axis). Different lines represent loadings for bonds
of different countries.
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Figure 4
NFX-implied and observed FX rates
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Notes: We plot the depreciation rates Asiy = T/T\Lt7t+1(Q,@) - mt,t_H(Q,@) implied by the NFX
model (blue, vertical axis left) against the observed depreciation rates (red, vertical axis right).
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Figure 5
News-based decomposition of currency risk premiums
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Notes: We plot percentage contribution to news about currency risk premiums, according to 1 =
var(Ngy)/var(Ng, ) +var(NR, ) /var(Ng, ) — 2cov(Ngy, NX, ) /var(Ng,, ) across the different
horizons n. The first row uses the WEX model to compute the decomposition. The second row uses
the NFX model combined with the UIP regression (to establish srp).
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Table 1: Principal components

PC’s 6 PCs 6 PCs 9 PCs
(US+<€) (US+ £) (all countries)

1 91.5142 96.1800 93.4792
2 99.3414 99.3000 97.9044
3 99.7994 99.8800 99.3445
4 99.9820 99.9800 99.8226
) 99.9924 99.9960 99.9304
6 99.9995 99.9995 99.9807
7 - - 99.9923
8 - - 99.9969
9 - - 99.9995

We report per cent of variation in international yield curves explained by principal components for various
scenarios of data used.
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Table 2: R? from spanning regressions, %

Panel A. Regression of currency returns on bond and equity returns

FX Type of R? Bond returns Bond and equity returns
$ returns € or £ returns $ returns € or £ returns

€ R? 15.65 12.80 28.04 23.08
R(Qldj 14.53 11.65 26.70 21.86

£ R? 9.59 14.42 26.15 14.42
Rgdj 8.39 13.28 24.77 13.05

Panel B. Regression of depreciation rate on principal components of yields

FX Type of R? 6 PCs 6 PCs 9 PCs
(US + country) (all countries) (all countries)

€ R? 2.90 5.01 6.38
R, 1.40 3.54 4.20

£ R? 0.98 2.78 2.92
R, -0.55 1.28 0.65

We report R?, regular and adjusted, expressed in percent for spanning regressions. In panel A we regress
annual currency returns of a given country (obtained by investing in a foreign one-period bond) on annual
bond returns of maturities n = 2, 3, 4, and 5 years expressed in the same units (USD or foreign). We
also combine bond returns with MSCI equity index returns in the last two columns. In panel B we regress
monthly depreciation rate of a given country vis-a-vis the USD on principal components constructed from
yields on US bonds, bonds of that country, and, in the last column, bonds of the third country as well.
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Table 3: Pricing errors across countries

NFX WFX

US Euro UK | US Euro UK

yf2 1011 0.09 0.10 | 0.12 0.09 0.10
y?* 1 0.08 0.07 0.08|0.09 0.07 0.09
y3% 1 0.05 0.05 0.06 | 0.06 0.05 0.06
y#® 1 0.02 0.02 0.03|003 0.02 0.03

Posterior mean estimates of the pricing errors in annualized percentage points, 100 X ,/diag (EyE’y X 12)

Jor the US, FEuro, and UK for both the NFX and WFX model.

maturity that are not part of the state x:.
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Table 4: Properties of Currency Prices and Interest Rates

Panel A: Summary statistics

mean NFX WFX st.dev. NFX WFX autocorr NFX WFX
ASt
Furo 0.909 478.258 0.909 9.99 250.73 9.99 0.150 0.346 0.150
UK -0.264 -703.672 -0.264 10.18 249.25 10.18 0.055 0.181 0.055
Short rates
US 3.725 3.725 3.725 0.79 0.79 0.79 0.985 0.985 0.985
Euro 3.673 3.475 3.459 0.69 0.69 0.70 0.988 0.992 0.992
UK 5.942 5.942 5.942 1.16 1.16 1.16 0.990 0.990 0.990
yi — Ui
Euro 0.364 0.251 0.266 0.56 0.55 0.55 0.974 0.974 0.974
UK -2.217 -2.217 -2.217 0.61 0.61 0.61 0.969 0.969 0.969

Panel B: UIP regressions

Asi1 = a+by! —Uf) + e

a NFX  WFX b NFX  WFX

Euro 0.0014 04123  0.0009 -1.2169 -103.9271  -0.9458
(0.0017)  (0.0017) (0.0501) (1.1654) (27.1927) (1.1422)

UK -0.0016  -0.6529  -0.0016 -0.8387  -33.9749  -0.8387

(0.0019)  (0.0533) (0.0019) (1.1580) (25.6371) (1.1580)

We replicate Table I of B/F/T. We report the sample mean, sample standard deviation, and sample
autocorrelation.
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Table 5: Sample moments of data versus model-implied yields

mean st.dev. autocorr

| data NFX WFX | data NFX WFX | data NFX WFX
US| | |
yt | 3.725 3.725 3.725]0.791 0.791 0.791 | 0.985 0.985 0.985
yi? | 4354 4.160 4.159 | 0.877 0.848 0.820 | 0.991 0.989 0.989
y?t | 4.652 4.542 4.534 | 0.885 0.867 0.839 | 0.990 0.989 0.989
yP0 | 4.907 4.852 4.842 | 0.874 0.865 0.846 | 0.989 0.989 0.989
yi® | 5.130 5.109 5.103 | 0.856 0.853 0.844 | 0.989 0.989 0.989
vy | 5.326 5.326 5.326 | 0.837 0.837 0.837 | 0.988 0.988 0.988
Euro
yl | 3.673 3.476 3.459 | 0.690 0.693 0.698 | 0.992 0.992 0.992
y? | 3.817 3.772 3.787 | 0.736  0.716 0.720 | 0.991 0.992 0.992
U2 | 4.022 4.030 4.047 | 0.734 0.727 0.727 | 0.990 0.992 0.992
U0 | 4.228 4.243  4.253 | 0.727 0.725 0.724 | 0.990 0.991 0.991
Ui | 4413 4.422 4425 | 0.716 0.716 0.715 | 0.989 0.990 0.990
g0 | 4573 4.573  4.573 | 0.702 0.702 0.702 | 0.989 0.989 0.989
UK
ul | 5942 5942 5942 | 1.163 1.163 1.163 | 0.990 0.990 0.990
y? | 5.785 5.841 5.887 | 1.070 1.087 1.065 | 0.990 0.991 0.991
y#* | 5.895 5913 5.934 | 1.028 1.032 1.014 | 0.990 0.991 0.991
7% | 6.010 6.022 6.022 | 0.992 0.994 0.984 | 0.990 0.990 0.990
u® | 6.116 6.123 6.118 | 0.964 0.966 0.961 | 0.990 0.990 0.990
790 | 6.208 6.208 6.208 | 0.942 0.942 0.942 | 0.989 0.989 0.989

Reduced-form moments vs model-implied moments from the main model.
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Appendix A Bond prices

Appendix A.1 U.S. bonds

The price of a one month bond is

QF = Bilexp (i) = exp (@ +b )
where a1 = —d;,0 and Elyz = —0iz. The U.S. short rate is
iy = 5i,0+5¢T,z$t

The price of an n-period U.S. bond is

n n— 1 - 7
Qt = FE; [eXp (mt,t+1) Qt+11] = FE; [exp (—51',0 — 6;;1& — 5)\?%: — )\tTé‘tJ,-l +an-1+ b2717m$t+1>:|

1 _
exp (anfl — 610 = 6w — 5N At) By [exp (=Ad vt + 51,0 [o + ®oi + Sasinn] )|

_ _ 1- _
= €xp ((_lnfl - 51’,0 - 6met + br—Lr—l,m [,uz + (I)zxt} - )\;I—E;,rbnfl,z + 552—1,m2z225n71,z>

= exp (c—zn + li);xxt)

where the loadings are

An = Gn-1—0i0+bp_1. (e — Au) + %ELLIEQ@;%—M
bre = (P — )\¢)T bn1.2—0ix
We can write this in terms of the U.S. risk neutral parameters
an = Gn—1—0i0+ Elfl,zu;i + %5171,15%211_%—1,1
Z_Jn,z = @;’Tl_?nsz — iz
U.S. yields are y: = an + blxxt with a, = —n"'a, and bn,e = fn_lgmz.

Appendix A.2 Foreign bonds in the NFX model

The price of a one month bond is

~1 . ~N ~N,T
Qi = Eilexp(Meit1)] = exp|ar + b1
AN —~ ~N ~ . .
where a; = —d;0 and by, = —0;. The foreign short rate is
B o= di0 + 5;5!12

Using the same calculations as above, the price of an n-period foreign bond in the NFX model is

~N, T

An ot Anf < o~ lA . N =
QY = E: [exp (Mt,t41) Qt+11] = E {exp (*51‘,0 — 0 pms — 5>\:/\t XN ety +an 1+ bn—l,xxt+1):|
~ ~ ~ ~N,T ~ ~N 1=N,T ~N
= oxp (aﬁfl =010 = 050t + b1,z (e + Pae] = N Ty by o+ 5bni10 e Ty bH,m)
~ ~N,T
= exp (&2] +b . xt)
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where the loadings are

~ ~ -~ =N, T ~ 1=N,T ~N
(_l,,]:/ C_L'rjz\]fl - 6i,0 + bnfl,z (/1/1 - Au) + §bn71,zzwzzbn71,z

AR GO W A A

s

We can write this in terms of the foreign risk neutral parameters

~N ~N ~ =N, T e 1=N,T ~N
[£29 = Qp_1 — 67570 + bn—l,:clu/ﬂc + ibn—l,xzmxzbn—l,x
~N ~ =N ~
bn,z = (P::’Tbnfl,z - (Si,z
. . ~ _ AN | TN, T 1 AN —12N N _1zN
Foreign yields are y; = a,, + b, ¢+ with a,, = —n""a, and b, , = —n""b, ,.
Appendix A.3 Foreign bonds in the WFX model
The price of a one month bond is
~1 ~W W, T
Qi = Eilexp(meit1+Asip1)] = explar +bi

=W ) T 15T T W T ) .
where a; = 50 — 01,0 + 050 (e — M) + 5052205, 050 and by, = (P2 —Ap) dsz — dix. Using the
same calculations as above, the price of an n-period foreign bond in the WFX model is

Qf = E [GXP (mt,e41 + Asey1) @z"ﬁl]

~W T =W T
= exp|an_1+0s0—0i0— 02Tt + (bpo12+0s2 | [pe+ Poxi

W 1 [=W T =W
€xXp <_)\;I—ZI (bn—l,z + 65,1) + 5 (bn—l,z + 65,1) EzEI (bn—l,z + 65,1))
P W, T
= exp (dzv + by xt>

where the loadings are

o~ ~ =W T 1 /=W T ~W
a’TVlV = a’TVlv—l - 67;70 + (bn—lﬂf + 6511) (I’LT - AI»L) + 5 <bn—1,m + 65,9:) EIL‘EI (bn—l,:c + 55,1)
W T ~W
b"l;% = ((DI - A¢) bnfl,x + 55,1 - 5i,z
We can write this in terms of the U.S. risk neutral parameters
~ ~ =W T 1 [=w T ~W
a”l"/LV = a/')"/L‘/—l - 6i,0 + <bn—1,z + 65,1) M: + 5 (bn—l,z + 68,1) EZEI (bn—l,z + 65@)
W T W
bn,x = (I):c’ bn—l,x + 68,1 - 52‘,z
~ =W
Foreign yields are 3, = Gy +/b\,‘ff;;xt with @ = —nfldzv and /b\,‘évz = —nilbn,z.
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Appendix B Estimation

Appendix B.1 Parameterization and identification

In the main text, we report estimates of the market price of risk parameters Ao and A, that enter the
stochastic discount factor. These parameters are defined in terms of the observable state vector xz: as
defined in the text. In practice, these parameters Ao and \; require identifying restrictions that are not easy
to impose directly. The term structure literature solves the problem of imposing the necessary identifying
restrictions by parameterizing the model in terms of the identifiable risk neutral parameters under a latent
factor rotation. Under the latent factor rotation, the restrictions are easy to impose. We follow this literature
and explain how to impose these restrictions in this appendix.

First, we note that the risk neutral parameters u; and @} of the observable state vector x; are related to
the market prices of risk as

fe = Mz —Xo

where p, and ®, are the drift and autocovariance of x; under the “real-world” probabilities.

In this appendix, we use a ‘tilde’ to denote any parameters 6 or state variables Z; under the latent factor
rotation. In our implementation, we make one minor change relative to the term structure literature. We
define Z; such that the first two elements are the observed depreciation rates while the remaining yield
factors are latent, i.e. we have
~ ( ASt )
Tt = ~
gt

where g are latent yield factors. Therefore, when we rotate from &+ to x;, the first two elements of the state
remain the same.

With this definition of Z; in hand, the observed factors x: are related to the latent factors Z; through the
linear transformation

zy = To+T'12:

where the vector I'g and matrix 'y are described below in Appendix B.3.

The risk neutral dynamics under the latent factor rotation are

Asy = b504 04400
iy = Si,O + Sszfﬁt
Ty = jn+ BrEy 1+ Saer

Under this rotation, the identifying restrictions require imposing the following restrictions

bs.0 0
bow = € i=1,2
Si,x = (67;75)
L
I s\ _ ( Bs
o= ()= (%)
(i* — ~: (p:g —_ (P; q):g
@ i, B 0o



In addition, the matrix &DZ is restricted to be a matrix of eigenvalues. In general, the eigenvalues may be
distinct and real, complex, or repeated. We follow the standard approach in the term structure literature
and assume that this matrix is diagonal with distinct, real eigenvalues ordered from largest to smallest.

For the loadings on the U.S. short rate &,z, the first 2 elements associated with depreciation rate are
estimable while the remaining loadings are restricted to be a vector of ones ¢.

Appendix B.2 Observables

We stack the U.S. and foreign nominal yields of different maturities into vectors y: = (ytl, . ,yf’o) and
o= (ﬂg,...,@?o) as well as their bond loadings, e.g. A = (al,...,aGO)T,B = (bl,z,...,bg(m)T and

-~

~ ~ \T B >~ >~ T
A:(al,...,aao) ,Bz(blﬁm,...,beom) .

The system of observation equations used in the model are

ASt = 55,0 + 6s,z$t
Yt = A +4 BZBt
ij\t = A\+ éxt

where, in our application, the vector 7; includes both Euro and U.K. yields. We define the overall vector of
observables as

Ast
Y; = Yt
Y
Next, we define two selection matrices W1 and W5 that select out of Y; linear combinations of depreciation
rates and yields. Together, the matrices (WlT SWy )T must be full rank. These linear combinations are
Y;(l) — Wlx/t
Y = wmy,

The vector Yt(l) is a linear combination of observables that we assume to be measured without error. The
vector Yt(2) is observed with error.

Appendix B.3 Rotating the state vector to observables

In our implementation, we choose Wi so that the state vector is z; = Ytl = W1Y; with z; defined as in the
text

In order for z; to have exactly this definition, we follow the term structure literature and assume that this
linear combination of the observables Y; is observed without measurement error.
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The matrix Wa is a selection matrix full of zeros and ones that selects unique linear combinations out of
Y: that are not used in . Specifically, W2 is defined such that the second set of linear combinations
Yt(2) = W>Y; includes the 12, 24, 36, and 48 month U.S. yields as well as the 12, 24, 36, and 48 month
foreign yields (both Euro and U.K.).

To implement this rotation in practice, we note that the observables Y; are related to the latent state vector
Tt as

Ast SSLO S;l:,r
v, = Yt = A |+| B |& = C+Dx
Ui A B

where the vector ¢ and matrix D are appropriately defined. In this case, the bond loadings fl, g, B, B are
calculated under the latent factor rotation. Next, we pre-multiply Y; above by Wi and substitute in for the
observed state variables

W1Y: = WAC + WiDiy
= WiC +WiDTi " (2 — To)
8 (C‘ - f)l“fll“o) + WADTT .

In order for z: = W1Y%, it implies that the rotation matrices I'o and I'1 must satisfy the restrictions

o = WiC
r Wi D

Given these matrices, we can map between the parameters of the observable rotation of the state vector x¢
and the latent factor rotation #; through the transformations

o, = oyt

pe = (I —®3)To+Tijiy

Appendix B.4 Prior distributions

e Let S, =¥,%, with dimension dy, x dy,. Note that Yt(z) has dimension dy, x 1. We assume S, has
a diffuse inverse Wishart distribution Sy ~ Inv-W (Qy, gy) with degrees of freedom v, = 0 and scale
matrix Qy =0.

e The matrix 3, is lower triangular. We place inverse Gamma o? ~ IG (i, Bi) on each of the diagonal
elements where i = s, g. The subscript s stands for depreciation rate while the subscript g stands for
yield factor. We set oy = 3.3 and B = 0.0015. We set o, = 3.05 and 8, = 8¢~ 5.

e We place a prior on the free parameters of the unconditional means (ﬁz, ﬁ;) directly instead of the
drifts (piz, fis). First, we calculate the unconditional sample mean of the factors ji,,. Our prior for each
element of fi; is a normal distribution centered at the sample mean. Then, we choose the variance of
this distribution to be large enough to cover the support of the data. Our priors are

— depreciation rates: fis ~ N (ﬁg, 0.0003)

— U.S. level: fi; ~ N (ﬁi,0.00000S)

— Foreign Level differentials: fa.; ~ N (ﬁAci, 0.000003)
— U.S. slope: fisi ~ N (fist,0.000003)

Foreign slope differential: fia, o ~ N (ﬁAcsl, 0.000003)
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Identifying restrictions on f% only allow for only 2 free parameters, which are the parameters as-
sociated with the depreciation rates (i.e. the first two factors in Z;). Our prior for this variable is
the same as the unconditional depreciation rate under the real world probability but multiplied by a
factor of 100.

— depreciation rates: ﬁs ~ N (ﬁs, 0.03)

e We parameterize the matrix @}, as

Our priors on the sub-matrices are as follows:

— 'i(’; is a diagonal matrix of real, ordered eigenvalues. Let a1 = —1 and b = 1. We parameterize
them as @} 1, = a1 + (b — a1)Us and @} ;; = aj-1 + (b — a;—1)U; for j = 2,...,d,. This

transformation ensures that they are increasing and contained in the interval [—1,1]. We then
place priors on @} ;; via U; ~ Beta (12,12).

— We place the same prior on ®* and @:g as under the risk neutral dynamics but where the
covariance matrix is multiplied by a factor of 100.

e We separate Si’{ into two sub-vectors Si,s and Si,g. We place a prior on the free parameters of the
factor loadings d;,s. Our identifying restriction is that ;4 = ¢. Th~e parameters of §; s are estimable
and we assume that each entry is independent and distributed as d;,4 ~ N (0,0.01).

Appendix B.5 Log-likelihood function

The log-likelihood function is

T T
L = logpYi,...,Yr|0) = Zlogp(:ct|mt,1,0)+Zlogp(Yt(2)|xt;9)
t=1

t=1

where zo are assumed to be known. The density p (x¢|x+—1;0) is determined by the VAR dynamics of the
factors z; while the second term comes from the linear combination of yields observed with error

Yt(Z) = P4 Dpg + Syne, n: ~ N (0,1),
where C® = WyC and D® = W,D and
C = C-Cry'mo,
D = DIy

This likelihood function assumes that there are no missing values in either Yt(l) or Y,;(2>. In practice, this is
not the case. We impute these missing values during the MCMC algorithm using the Kalman filter.

Appendix B.6 Estimation

Let 0 denote all the parameters of the model and define fi.r = (f1,..., fr) and Yi.r = (Y1,...,Yr). In
practice, some data points are missing which implies that some of the factors f; are missing. We use Y1
and Y{7r to denote the observed and missing data, respectively. The joint posterior distribution over the
parameters and missing data is given by

p(evylrznTD/ll?T) X P(Y1?T|9)P(9)y

where p (Y°7|0) is the likelihood and p () is the prior distribution. We use Markov-chain Monte Carlo to
draw from the posterior.
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Appendix B.6.1 MCMC algorithm

We provide a brief description of the MCMC algorithm. Let S, = ¥£,%; and S, = X, denote the
covariance matrices. We use a Gibbs sampler that iterates between drawing from each of the full conditional
distributions.

Place the model in linear, Gaussian state space form as described in Appendix B.6.2. Draw the
missing data and unconditional means (Y177, fiz, fi3) from their full conditional distribution using the
Kalman filter and simulation smoothing algorithm. Given the full data ¥,>™ = (V;°,Y;"), we can
recalculate the factors z; = W1Y,>™.

Let Z+ = ¢ — fiz denote the demeaned factors. We draw the free elements of ®, from their full
conditional distribution using standard results for Bayesian multiple regression. We write the VAR
as a regression model

Ty = Xz + Yzey

where ¢, = vec (®,) and the regressors X; contain lagged values of Z;—1. Draws from this model are
standard.

Draw the free elements of S, from their full conditional using a random-walk Metropolis algorithm. In
this step, we avoid conditioning on the parameters Sy, @, by analytically integrating these parameters
out of the likelihood.

Draw the eigenvalues A} from their full conditional using random-walk Metropolis. To avoid condi-
tioning on Sy, P, we draw from the marginal distribution that analytically integrates these values
out of the likelihood.

Draw the elements of 55,1 from their full conditional using random-walk Metropolis. To avoid con-
ditioning on Sy, ®,, we draw from the marginal distribution that analytically integrates these values
out of the likelihood.

The full conditional posterior of S, is an inverse Wishart distribution S, ~ Inv-Wish (#,Q) where
7 =v+Tand Q = Q"‘Z;‘F:N?tﬁ?-

Appendix B.6.2 State space form

In our data set, some of the yields contain missing values. We impute them using the Kalman filter. Given
that z; = Yt(l), we can write the model in VAR form as

}/t(l) _ Ha + CD:E 0 Y;(,l)l + Ex 0 &t
Yt(2) - A(2)+B(2)ux B®@®, 0 Y;(E)l B®@y, 2, Nt

Next we translate this system back into Y; using the fact that

to get

—1 —1
o Wi Ha Wi d, 0 Wi
v () G e )+ () (6%, o) (i )

+ Wl -t Z:c O Et
Wo B®@x, %, 0t

This structure implies that Y; is a reduced-rank VAR of the form

Yi = puy +®yYi1+Zveye ev,t ~ N(0,I)
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where

(w7 iz o - (WY @0 Wi
= ws A® 4 B@ R W 17 B®o, 0 Wa

S = W1 -1 pI 0 . B o
Y=\ e B?y%, %, YO
We place this model in the following linear, Gaussian state space form
}/t = Zozt—f—d—&-ut utNN(O,H), (B].)
Q41 = TOét +c+ R’Ut Ve ~~ N (0, Q) . (BZ)

where the initial condition is a; ~ N (al‘o, P1|0).

Let o = (ﬁ;u ﬂ;‘,z 6570)T denote the vector of unrestricted unconditional means that enter fi, and i) plus

the intercept dz,0. The vector of intercepts py can be written as a linear function of the unconditional means
py = Spo+Suifl

We draw unconditional means jointly with the missing data by including them in the state vector. We define
the system matrices from (B.1)-(B.2) as

d=0 Z=(10) H=0 Q=%y%y

. Y; . Dy  Sun . Su0 . I
() = (V) = (%) =
_ ( S‘L,lmp, > PlO — ( EYE;+S_F,1V#S;1 S[,L,lvu )

My ! ViSpa V,

where the prior on the unconditional means is i ~ N (7, V,,). We use the Kalman filter and simulation
smoothing algorithm to draw the missing values and the unconditional means jointly.

aijo

Appendix C Estimated parameters in the affine models
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Table Appendix C.1: Parameter estimates, state dynamics; NFX model.

7y | |

L1t Tt T3t T4t T5t X6t

| iz x 1200 | P,

z | 3.814 0.976  -0.005 0.045  0.075 -0.051  0.064
(1.000) | (1.000) (0.563) (0.865) (0.959) (0.796) (0.870)
zor | 0389 | -0.025 1.052 -0.029 0.024  0.137  -0.062
(0.761) | (0.986) (1.000) (0.829) (0.771) (0.998) (0.927)
xy | -2.262 | -0.021 -0.029 1.037  0.054 -0.022  0.110
(0.999) | (0.923) (0.805) (1.000) (0.910) (0.638) (0.978)
2y | 1.603 0.008 -0.052 0.009 0.955 -0.117  0.015
(1.000) | (0.750) (0.971) (0.609) (1.000) (0.991) (0.635)
x5 | 0477 | 0.020 -0.118 0.062 0.060 0.694  0.099
(0.980) | (0.918) (1.000) (0.952) (0.937) (1.000) (0.972)
zer | 1.403 0.002  0.081 -0.146 -0.093 0.089  0.752
(1.000) | (0.550) (0.997) (1.000) (0.994) (0.951) (1.000)

‘ 0ix ‘ Y., X V12 x 100

T1t 0 0.161 0 0 0 0 0
(—) (1.000)  (—) (—) (—) (—) (—)

Toy 0 0.098 0.076 0 0 0 0
(—) (1.000) (1.000)  (—) (—) (—) (—)

T3t 1 0.029 0.083 0.125 0 0 0
(—) (1.000) (1.000) (1.000) (—) (—) (—)

Tat 0 -0.034 -0.064 -0.015  0.100 0 0
(—) (1.000) (1.000) (0.999) (1.000) (—) (—)

5t 0 -0.057  -0.098  0.009 0.066 0.070 0
(—) (1.000) (1.000) (0.958) (1.000) (1.000) (—)

Tet 0 -0.029  -0.067 -0.084  0.045 0.012 0.068

(—) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Posterior mean and probability that absolute value of the parameter is greater than zero (in parenthesis)
of fie,®e, S from the NFX model. The state variables are: x1y = yi, Tor = yi — ﬂf’l, T3 = yi — ﬂf’l,

~E, ~E, ~L, ~L,
w1 =y —yb, wse = (y° —yb) — (yt 7 1), zor = (y° —yt) — (yt 7 1)~
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Table Appendix C.2: Paramter estimates, risk premiums; NFX model.

33?[ ‘ ‘ L1t L2t T3t Lag L5t L6t
| Ao x 1200 | Az
zy | 0154 | -0.038  -0.005 0.032 -0.046 -0.012  0.040
(0.990) | (0.997) (0.559) (0.787) (0.861) (0.573) (0.764)
x| -0.279 | -0.018  0.055 -0.026 0.052  0.053  -0.063
(1.000) | (0.935) (0.982) (0.808) (0.945) (0.870) (0.931)
xs | 0.037 | -0.023 -0.026 0.039 0.043 -0.017  0.016
(0.681) | (0.941) (0.779) (0.838) (0.860) (0.610) (0.614)
zy | -0.057 | 0.024 -0.053 0.024 0.059 -0.158  0.043
(0.855) | (0.978) (0.973) (0.777) (0.961) (1.000) (0.834)
x5 | 0.083 0.017 -0.114  0.063  0.058 -0.250  0.097
(0.902) | (0.889) (1.000) (0.955) (0.929) (1.000) (0.968)
zer | 0.089 0.003  0.081 -0.144 -0.088  0.087 -0.165
(0.924) | (0.593) (0.998) (1.000) (0.992) (0.946) (1.000)
| X§ x 1200 | \E
zy | -0.203 | -0.029  0.012  0.041  0.005  0.005  0.049
(0.993) | (0.978) (0.638) (0.844) (0.553) (0.534) (0.807)
x| -0.288 | -0.022  0.064 -0.027 0.035  0.109  -0.058
(1.000) | (0.972) (0.993) (0.816) (0.858) (0.991) (0.915)
xg | 0.017 | -0.023 -0.018 0.042 0.043 -0.002  0.063
(0.568) | (0.940) (0.710) (0.855) (0.858) (0.518) (0.875)
zg | 0.060 0.017  -0.057 0.016  0.016 -0.152  0.036
(0.866) | (0.921) (0.982) (0.696) (0.677) (1.000) (0.792)
x5 | 0.054 0.019 -0.117 0.063  0.059 -0.278  0.097
(0.804) | (0.907) (1.000) (0.953) (0.934) (1.000) (0.969)
zer | 0.087 0.003  0.080 -0.145 -0.088 0.085 -0.201
(0.926) | (0.585) (0.997) (1.000) (0.992) (0.943) (1.000)
| A& x 1200 | AE
x| 0130 | -0.044  0.013  0.033  -0.087  0.022  0.028
(0.942) | (0.999) (0.646) (0.793) (0.977) (0.638) (0.690)
xy | -0.434 | -0.016 0.062 -0.025 0.058  0.038  -0.060
(1.000) | (0.914) (0.990) (0.799) (0.962) (0.792) (0.921)
xy | -0.091 | -0.025 -0.015 0.038  0.033  0.004 -0.010
(0.865) | (0.952) (0.667) (0.835) (0.790) (0.526) (0.570)
xg | -0.061 | 0.029 -0.057 0.028 0.089 -0.173  0.060
(0.850) | (0.992) (0.982) (0.810) (0.996) (1.000) (0.907)
x5 | 0.112 0.017 -0.113  0.064  0.057 -0.233  0.097
(0.955) | (0.877) (1.000) (0.956) (0.924) (1.000) (0.968)
zer | 0.088 0.004 0.081 -0.143 -0.084 0.082 -0.141
(0.918) | (0.620) (0.997) (1.000) (0.989) (0.936) (0.997)

Posterior mean and probability that absolute value of the parameter is greater than zero (in paren-
. . . 1 1 sen 1 £l _ 60 1
thesis). The state variables are: x1t = Yi, Tot = Yi — U 5 T3t = Yi — Uy ', Tat = Yo — Yi,

~€,60 ~€1 N ~L60 ~L1
wse = (y° —yi) — (yt -7 ) zor = (Y —yt) — (yt -7 )



Table Appendix C.3: Parameter estimates; WFX model.

afV | | Asf Asf Ty o 3 T4y 5t 61
| iz x 1200 | P,
Asf 0.974 0.019 0.204 -0.696 0.725 -3.710  -0.230 0.274  -2.029
(0.639) | (0.636)  (1.000)  (0.783)  (0.664) (0.972) (0.543) (0.544) (0.775)
Ast | -0.019 0.061 0010  -0.869  0.510  -0.678 2.211  -4.172  1.589
(0.504) | (0.856)  (0.575)  (0.826)  (0.614) (0.636) (0.841) (0.919) (0.714)
T1t 3.802 -4.61e-04  4.57e-04 0.976 1.39e-04  0.038 0.068  -0.036  0.054
(1.000) | (0.688)  (0.691)  (1.000)  (0.503) (0.825) (0.949) (0.724) (0.833)
Tot 0.395 | -6.73¢-05 6.86e-05  -0.026  1.055  -0.033  0.022  0.142  -0.067
(0.769) | (0.536)  (0.540)  (0.988)  (1.000) (0.852) (0.753) (0.999) (0.940)
T3t -2.248 -0.001 5.70e-04  -0.022 -0.026 1.030 0.0562  -0.018  0.103
(1.000) | (0.869)  (0.738)  (0.923)  (0.782) (1.000) (0.900) (0.617) (0.969)
Tat 1.603 | -3.99e-04 2.8le-04  0.009  -0.056  0.010 0.958 -0.123  0.017
(1.000) | (0.700)  (0.652)  (0.766)  (0.981) (0.614) (1.000) (0.996) (0.652)
Tst 0.465 -6.38e-04  2.26e-04 0.021 -0.120 0.060 0.059 0.694 0.098
(0.980) | (0.755)  (0.598)  (0.924)  (1.000) (0.946) (0.928) (1.000) (0.970)
Tet 1.393 | -2.49¢-04 3.85¢-04  0.002  0.077  -0.145 -0.088 0.081  0.754
(1.000) | (0.619)  (0.685)  (0.562)  (0.996) (1.000) (0.994) (0.938) (1.000)
| Ao x 1200 | Ax
As® -1.469 0.019 0.204 -0.696 -0.275 -3.710  -0.230  0.274  -2.029
(0.647) | (0.636)  (1.000)  (0.783)  (0.568) (0.972) (0.543) (0.544) (0.775)
Ast | -1.803 0.061 0010  -0.869 0510  -1.678 2211  -4.172  1.589
(0.678) | (0.856)  (0.575)  (0.826)  (0.614) (0.795) (0.841) (0.919) (0.714)
T1t 0.093 2.19e-04 -1.84e-04  -0.029 -0.006 0.040 -0.019 -0.044  0.050
(0.931) | (0.573)  (0.559)  (0.982)  (0.572) (0.835) (0.680) (0.766) (0.811)
Tot 0.024 | -3.83e-04 -2.85¢-04 -0.025  0.044  -0.031  0.009  0.050 -0.051
(0.673) | (0.619)  (0.593)  (0.984)  (0.950) (0.836) (0.607) (0.860) (0.880)
T3t -0.041 -3.20e-04  7.00e-04  -0.020 -0.037 0.027 0.065  -0.023 -0.013
(0.736) | (0.581)  (0.679)  (0.910)  (0.865) (0.746) (0.946) (0.649) (0.600)
Tyt 0.004 -0.001 9.26e-04 0.015 -0.048 0.008 0.024  -0.114  0.022
(0.524) | (0.825)  (0.796)  (0.895)  (0.965) (0.592) (0.761) (0.991) (0.693)
5t -0.020 | -3.21e-04 5.8le-04  0.019  -0.106  0.058 0072 -0.234  0.080
(0.621) | (0.590)  (0.665)  (0.909)  (1.000) (0.937) (0.964) (1.000) (0.935)
Tet 0.063 -9.88e-04  2.56e-04 7.70e-04  0.090 -0.142  -0.103  0.089  -0.150
(0.852) | (0.744)  (0.575)  (0.523)  (0.999) (1.000) (0.998) (0.952) (0.998)
‘ i ‘ >, x V12 x 100
AsE 0 9.728 0 0 0 0 0 0 0
() (1.000) (—) () (—) (—) () (—) ()
Asf 0 5.311 8.714 0 0 0 0 0 0
(—) (1.000)  (1.000) =) (—) (—) =) =) (—)
T1t 1 -0.006 -0.018 0.157 0 0 0 0 0
(—) (0.769)  (0.989)  (1.000)  (—) (—) (—) (—) (—)
Tot 0 -0.005  -0.015  0.096  0.076 0 0 0 0
(—) (0.788)  (0.991)  (1.000) ~ (1.000)  (—) (—) (=) (—)
T3t 0 -0.006 0.002 0.030 0.083 0.125 0 0 0
(—) (0.779)  (0.616)  (1.000)  (1.000) (1.000) (—)  (—) (=)
Tt 0 -0.006  2.59¢-04  -0.041  -0.060 -0.015  0.096 0 0
(—) (0.842)  (0.513)  (1.000)  (1.000) (0.999) (1.000)  (—) ()
Tst 0 -0.009 0.007 -0.062 -0.095 0.008 0.063 0.070 0
(—) (0.888)  (0.824)  (1.000)  (1.000) (0.964) (1.000) (1.000)  (—)
6t 0 -0.006 -0.006 -0.036 -0.063 -0.084  0.041 0.011 0.068
() (0.786)  (0.816)  (1.000)  (1.000)  (1.000) (1.000) (0.999) (1.000)

Posterior mean and probability that absolute value of the parameter is greater than zero (in parenthesis)

of the WEFX model. The state variables are: x1; = ytl, Top = ytl - ﬂf’l, T3¢ = ytl

w5 = (y* —yt) — (ﬂf’ﬁo - @f’l), zer = (v — i) — (

~£,60  ~£,1

Y

5

~£,1 .60 1
Y, Tat = Y — Yt
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