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Abstract

This paper investigates the uncertainty dynamics surrounding extreme weather events through
the lens of financial markets. Our framework identifies market responses to the uncertainty
regarding both potential hurricane landfall and subsequent economic impact. Stock options
on firms with establishments exposed to the landfall region exhibit large increases in implied
volatility of up to 30 percent, reflecting impact uncertainty. Impact uncertainty persists for
several months after landfall. Using hurricane forecasts, we show both landfall uncertainty and
potential impact uncertainty are reflected in option prices before landfall. Our findings have
important implications for assessing the economic costs of extreme weather events.
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1 Introduction

Extreme weather can be devastating and was responsible for over $300 billion in damages in the
United States in 2017 alone.! Despite significant research on extreme weather effects on real eco-
nomic activity and household, firm, and financial institution decision making,? little is known about
the uncertainty surrounding extreme weather both in terms of the magnitude of this uncertainty and
its dynamics. Given that uncertainty can affect real economic activity and decision making (see, for
example, Bernanke (1983); Bloom, Bond, and van Reenen (2007); Bloom (2009)), a comprehensive
assessment of the economic effects and costs of extreme weather events requires understanding the
uncertainty dynamics surrounding them.

This paper examines extreme weather uncertainty resulting from hurricanes through the lens of
financial markets. The frequency and scale of financial data and the financial incentives underlying
investor behavior make asset prices an ideal instrument to assess the dynamics and magnitude of
extreme weather uncertainty. We use implied volatility from stock options to proxy for uncertainty
as it captures investor expectations of volatility (see, for example, Bloom (2009) and Kelly, Pastor,
and Veronesi (2016)). We distinguish between two components of extreme weather uncertainty:
(a) the “landfall uncertainty” regarding where, when, and whether a hurricane will make landfall,
and (b) the “impact uncertainty” about a hurricane’s effect conditional on it making landfall.?

We combine firm establishment data at the county level with hurricane forecast and landfall data
in order to identify firms that operate within regions (potentially) exposed to a particular hurricane.
We use these granular data to conduct an in-depth analysis on extreme weather uncertainty using
a difference-in-differences approach.

Our first hypothesis is that while a hurricane is out in the ocean and making its way towards the
coast, the associated landfall and potential impact uncertainty will be reflected in the stock options

of exposed firms. Using NOAA forecasts issued in the days leading up to a hurricane’s landfall or

!This National Oceanic and Atmospheric Administration (NOAA) damage estimate can be found here:
https://www.climate.gov/news-features/blogs/beyond-data/2017-us-billion-dollar- weather-and-climate-disasters- historic-year.

2See, for example, Belasen and Polachek (2008); Imberman, Kugler, and Sacerdote (2012); Barrot and Sauvagnat
(2016); Bernile, Bhagwat, and Rau (2017); Dessaint and Matray (2017); Brown, Gustafson, and Ivanov (2017); Hong,
Li, and Xu (2019).

3We focus on hurricanes because they develop and resolve over fairly short but well-defined time frames, which
allows for an isolated estimation of the effects, and NOAA publishes a range of relevant data on hurricanes. However,
our framework can also be applied to other extreme weather events like snow storms and severe floods that are also
subject to landfall and impact uncertainty.


https://www.climate.gov/news-features/blogs/beyond-data/2017-us-billion-dollar-weather-and-climate-disasters-historic-year

dissipation (in the case of a hurricane that “missed”), we find implied volatilities increase even at
low landfall probabilities of 10 percent and below. Implied volatility increases up to 21 percent,
implying substantial uncertainty about the hurricane.* This result also implies that investors pay
attention to hurricane forecasts. Such attention to climatic events is by no means a given. Other
papers in the climate finance literature assessing informational efficiency have found that investors
are inattentive to climatic events as they unfold (see, for example, Hong, Li, and Xu (2019) and
Murfin and Spiegel (2019)). Furthermore, investor attention to extreme weather risk is important
for correctly pricing assets with exposure to extreme weather and climate change and reduces the
risks of sudden large price corrections that could disrupt financial stability (see, for example, Carney
(2015)).

Our second hypothesis is that immediately after a hurricane has made landfall, implied volatil-
ities of options of firms in the landfall region are elevated due to impact uncertainty, and that this
impact uncertainty gradually resolves following landfall. Our results strongly support this second
hypothesis. Indicative of substantial impact uncertainty, we find that immediately after hurricane
landfall the implied volatility of options of firms with establishments in the landfall region are up
to 30 percent higher than before the hurricane’s inception. Implied volatilities remain elevated for
several months after hurricane landfall indicating that the resolution of the impact uncertainty is
slow.

The economic magnitude of these uncertainty estimates is large. The increase in implied volatil-
ities in the aftermath of a hurricane translate into additional hedging costs of up to $91 billion
summed over our sample period from 1996 to 2017. This magnitude is substantial considering that

5 Our estimates

the total damages estimated by NOAA over the same period were $583 billion.
show that uncertainty can lead to substantial costs associated with hurricanes, and such costs are
not included in conventional damage estimates.

We build on these baseline results with several key extensions and robustness checks. Our

findings are robust across industries and also hold within industries. We show that the stocks of

the the worst performing firms exposed to hurricane landfall regions dramatically underperform the

“We note here that unlike at the aggregate market level, stock returns and volatility at the firm level generally
exhibit positive contemporaneous correlation as shown in Duffee (1995); Albuquerque (2012); Grullon, Lyandres, and
Zhdanov (2012). As such, the negative return-volatility relationship documented for market index volatility is not
driving our results, which concern firm-level volatility.

5The dollar values are in 2017 inflation adjusted US dollars.



worst performing firms in the control set. The cumulative abnormal return difference is as much
as 26 percent. This underperformance takes several months after landfall to manifest and supports
the notion that investors price in significant uncertainty because it takes time to determine the full
effects of a hurricane and resolve which firms were most adversely affected. We further show that our
baseline results are robust to the exclusion of the most damaging hurricanes (Katrina, Sandy, and
Harvey).® Having excluded financial firms in our baseline results, we find that single stock options of
property and casualty insurance firms reflect substantial impact uncertainty immediately following a
hurricane landfall, exhibiting implied volatility increases of as much as 70 percent. While our results
show that investors are attentive to short-term forecasts and price in landfall and potential impact
uncertainty, we find no evidence that they react to NOAA’s medium-term seasonal forecasts. The
reason is likely that these seasonal forecasts are much less accurate than the forecasts for individual
hurricanes.

This paper makes several key contributions. First, we present a novel framework of landfall and
impact uncertainty to formalize uncertainty before and after extreme weather events. Second, our
estimates imply that extreme weather uncertainty imposes significant financial costs that should
be taken into account when assessing the aggregate impact of extreme weather events. Not only do
hurricanes impose large costs due to damage to property and infrastructure, but if investors have
to hedge themselves against the uncertainty surrounding a hurricane, then this is an additional
cost that has to been taken into account. Third, given that research has shown that other types
of uncertainty can affect household and firm decision making—for example political uncertainty
around elections has been shown to reduce firm investments (see Julio and Yook (2012) and Jens
(2017))—the large economic magnitudes of our extreme weather uncertainty estimates together
with the slow resolution of impact uncertainty suggest that extreme weather uncertainty could be
an important factor for such real outcomes. Fourth, we show that in the case of hurricanes, unlike
other climatic events, investors are attentive to forecasts as a hurricane unfolds.

The remainder of this paper is structured as follows. We begin with a discussion of related
literature in Section 2. We describe our empirical strategy and data in Sections and 3 and 4,

respectively. Section 5 presents our main results, followed by extensions and robustness tests in

SWe show additional robustness checks, for example, to alternative firm exposure measures and clustering of
standard errors, in the Online Appendix.



Section 6. We conclude in Section 7.

2 Related literature

In showing that extreme weather events cause substantial uncertainty that is costly to investors,
our work is relevant to the literature examining extreme weather events and its effects. This
growing body of work has shown, for example, how extreme weather affects labor markets, schooling,
household finance, and income (see Belasen and Polachek (2008), Imberman, Kugler, and Sacerdote
(2012), Gallagher and Hartley (2017), and Deryugina, Kawano, and Levitt (2018)). Barrot and
Sauvagnat (2016) find that shocks of extreme weather events propagate in customer-supplier firm
networks. Bernile, Bhagwat, and Rau (2017) analyze the relationship between risk taking behavior
and the early-life disaster experiences of CEOs. Dessaint and Matray (2017) show that managers
overreact to hurricane risks after experiencing a hurricane. Brown, Gustafson, and Ivanov (2017)
report that firms experience decreased cash flows after extreme snowfall events and that they
respond by increasing their use of credit lines. Looking at storm-level total damages, Martinez
(2018) finds that damages increase with forecast error of landfall location 12 hours before landfall.
Roth Tran and Wilson (2019) find that natural disasters have a wide range of impacts on local
economic activity, including on employment, population, and home prices. Addoum, Ng, and
Ortiz-Bobea (2019) examine high temperatures and find little evidence that US firms’ sales are
affected.

Further, this paper introduces a novel topic to an emerging literature on climate finance that
includes early empirical work on how Florida temperature fluctuations affect orange juice futures
prices (see Roll (1984) and Boudoukh, Richardson, Shen, and Whitelaw (2007)) and how the use
of a time series forecasting approach is useful for pricing weather derivatives (see Campbell and
Diebold (2005)). Our research contributes to two branches of the climate finance literature.

First, by examining hurricane effects, this paper builds on recent papers in the finance literature
focused on climatic events and investor attention. Hong, Li, and Xu (2019) show that drought
indices are predictive of food company stock returns, indicating that investors are inattentive to
droughts’ impacts on food companies. Choi, Gao, and Jiang (2018) find evidence of a positive

relationship between investors’ beliefs about climate change and warmer-than-usual temperatures.



Alok, Kumar, and Wermers (2019) show that fund managers that are hit by a natural disasters
misestimate the risk of such disasters subsequently. Drawing mixed conclusions, several papers
(see Bernstein, Gustafson, and Lewis (2018); Giglio, Maggiori, Rao, Stroebel, and Weber (2018);
Murfin and Spiegel (2019)) use NOAA sea level rise predictions to examine whether residential real
estate prices reflect sea level rise risks.

Second, our analysis complements climate finance papers that develop hedging strategies. While
Baker, Hollifield, and Osambela (2018) and Roth Tran (2019) present theoretical models in which
green or emission-oriented investors can hedge risks by investing in polluters, Andersson, Bolton,
and Samama (2016) show empirically that investors can hedge against potential future prices on
carbon emissions by investing in a decarbonized index. Engle, Giglio, Kelly, Lee, and Stroebel
(2019) develop a climate change news index and assess strategies that can hedge an investor against
such news. In contrast to these papers, we focus on market dynamics that reflect investor behavior
around specific disaster events that occur at a local level.

Finally, by analyzing extreme weather uncertainty, our paper adds a novel type of uncertainty
to the uncertainty literature. Several papers have shown that policy uncertainty dampens firm
investment (see, for example, Bloom, Bond, and van Reenen (2007); Bloom (2009); Kim and
Kung (2017); Fried, Novan, and Peterman (2019)). Other researchers have examined political
uncertainty as proxied by elections and how they affect firm investments and financial markets
(see, for example, Julio and Yook (2012); Kelly, Pastor, and Veronesi (2016); Jens (2017)). Our
paper complements this body of work by showing that extreme weather uncertainty is an important
source of uncertainty that affects prices in financial markets. Our analysis introduces a new layer
of complexity as we separately examine the effects of the uncertainty not only about the impact of
a hurricane that occurs but also about when, whether, and where the hurricane will make landfall.
This contrasts with the case of elections, where there is uncertainty about outcomes, but generally
not about when and whether the elections themselves will occur because they are scheduled in
advance.”

Our paper differs from the research on macroeconomic uncertainty and economic growth (see,

"Empirical work on political uncertainty focuses on scheduled elections in order to isolate political uncertainty
from economic uncertainty. Unscheduled elections and regime changes can be precipitated by economic conditions.
In contrast, hurricanes are exogenous to economic uncertainty (economic conditions do not make hurricanes more
likely), so we do not face this identification issue.



for example, Jurado, Ludvigson, and Ng (2015); Baker, Bloom, and Davis (2016); Baker, Bloom,
and Terry (2018); Dew-Becker, Giglio, and Kelly (2018)) in that our firm-level analysis is more
granular than examinations of the macroeconomy as a whole. This distinction matters because

extreme weather events are generally local phenomena.

3 Empirical design

3.1 Landfall and impact uncertainty framework

Our framework distinguishes between two types of uncertainty that surround a hurricane: impact
uncertainty and landfall uncertainty. Intuitively, one can think of impact uncertainty as uncertainty
about the intensive margin of an extreme weather event and landfall uncertainty as uncertainty
regarding the extensive margin. While this paper focuses on hurricanes, our framework is general
enough that it can be applied to other types of extreme weather events.

Impact uncertainty is the uncertainty about how a hurricane will impact firms with exposure
to the landfall area. More formally, if hurricane h is expected to make landfall at time ¢ + 1 and

an all-equity firm ¢’s stock return at ¢ + 1 is given by

Tit+1 = €41 + 0i htt19iht+1, (1)

where € ~ N(0,02) represents a random shock to the firm’s return at time ¢ + 1. The random
variable g; pt+1 ~ N(ftg, O‘Z) is independent of ¢; ;41 and captures the impact of the hurricane on
the value of firm ¢, conditional on hurricane landfall in the firm’s geographic region. The random
variable 0; j, ;11 indicates whether firm 4 is hit by hurricane h. 6; ;41 has a Bernoulli distribution
which can equivalently be thought of as a binomial distribution with one draw, 6; 4 ;11 ~ B(1, ¢),
where Pr(0; pt41 =1) =1— Pr(6; p4+1 =0) = ¢ and 0 < ¢ < 1. The product of the two random
variables, 05, 1+16i.ht+1, is the component of the return attributable to the hurricane.

Conditional on hurricane landfall at time ¢ + 1, 03 represents the impact uncertainty.® In our
framework, hurricane landfall introduces uncertainty for the local economy and firms. Predicting

at the time of landfall which firms will be most affected could be challenging for several reasons.

8This definition of uncertainty as the variance of an unpredictable disturbance is in line with Pastor and Veronesi
(2012 and 2013) and Jurado, Ludvigson, and Ng (2015).



First, hurricane landfall in a particular location is a rare event, making it difficult to predict the
exact economic effect based on past experience. For example, Houston, TX, had not experienced
a hurricane for more than two decades before Hurricane Harvey hit in 2017. Second, a hurricane’s
impact on individual firms operating within a disaster region is largely extent unpredictable. Know-
ing ex-ante exactly which areas will actually flood in a particular storm, the extent and duration of
power outages, whether a levy will break, or how long infrastructure repairs will take, is challenging
if not impossible.

Prior to (potential) landfall, there is additional uncertainty about whether and where a hurricane
will make landfall. We call this landfall uncertainty. More generally, this uncertainty is about the
incidence or occurence of an event.

At time t, we can decompose the uncertainty generated for the firm from the hurricane into
erpected impact uncertainty and landfall uncertainty as follows.

The expected return conditional on whether or not landfall occurs is Ey[r; ;410 = 1] = pg and

Ey[rit4+1]0 = 0] = 0. The conditional variance of firm ¢’s return is,
Var(rig1]0 = 0) = o®, (2)
Varyriz110 =1) = o + 03. (3)

It follows that the expected conditional variance® and the variance of the conditional expectation

arelo

EVary(rii+1]0)] = o2+ ¢U§7 (4)

Var(Erie+110)) = ¢(1 — ¢) 5. (5)

Applying the law of total variance, we can derive Vary(r;41) using (4) and (5),

Vary(rigs1) = E[Varyrii100)] + Var(Eiri110]),

=0+ ¢op + (1 — P (6)

Landfall uncertainty is captured in the total variance by the third term in equation (6), ¢(1 —

YEVar(ri1]0)] = (1 — ¢)o” + ¢(0? + 03) = 0° + ¢o;
YE[E[ri1116]] = dpg,
Var(Bi[rie110]) = E[(Ee[rie+1160] — dpg)®] = dlpg — dg)” + (1 = )(0 = dpg)* = ¢(1 — ¢)psj.



?) ug. For a given u4 # 0, landfall uncertainty is highest when the probability of landfall, ¢ = 0.5.
When gy, = 0, meaning that a hurricane is expected to have no impact, there is no contribution
from landfall uncertainty to total variance at time ¢. In this case, Var(r;++1) varies with ¢ purely
due to the expected impact uncertainty, qﬁag.

Figure 1 depicts how the total variance prior to landfall (Var:(r;41)) varies with the probability
of hurricane landfall (¢) when o = 0.4 and o4 = 0.05. The four dashed lines have 1, absolute values
of 0.1, 0.07, 0.05, and 0. The solid line shows the level of variance following hurricane landfall,
Vary(riz10 =1) = o2+ ag.

Depending on the parameter values of 1, and 0’;, as ¢ varies from 0 to 1, the relative contribution
to total variance from landfall uncertainty and expected impact uncertainty will vary prior to
landfall. All else equal, as ji, increases, the contribution of landfall uncertainty to total variance
increases. In Figure 1, landfall uncertainty at a given ¢ is the vertical distance between a curve
and the red dot-dash straight line depicting Var(ris+1) when pg = 0. Vary(ris41) will in fact
be greater than Vary(r;s41|6 = 1) when |ug| > ﬁag. In the figure, this is the case where the
dashed lines are above the solid black line. When ¢ > 0 and at least one of p4 or o4 is non-zero,

Vary(ri+1) is greater than Vary(r; 410 = 0) = o2

3.2 Firm exposure to hurricanes

We separately determine firm exposure to a hurricane forecast and a hurricane that has made land-
fall. In both cases, we first determine which counties are in the forecast path or the landfall region
of a hurricane, and then measure a firm’s exposure to these counties based on firm establishment
locations.

For the forecasts, we use hurricane wind speed probabilities to develop firm- and day-specific
exposures to hurricanes before landfall. NOAA issues hurricane forecasts that show which counties
have a probability of at least P to experience hurricane force winds for a given hurricane. This set
of counties is denoted Fp¢, where ¢ is a trading day. NOAA updates these forecasts multiple times
a day, so for each trading day, we use the last forecast made before market close. Importantly,
counties in a forecast hurricane path include both counties later hit by hurricanes and those spared
by evolving hurricane paths. More detail on the hurricane forecast data is presented in Section 4.1.

We compute firm ’s exposure to the forecast path of hurricane h as the share of its estab-



lishments located in the set of counties in the forecast path Fpr,_r, where T), — I' is a trading
day which is I' days before hurricane landfall or dissipation. This forecast exposure, a continuous

variable ranging from 0 to 1, is given by

ForecastExposure; pr, -1 = Z(FirmCountyExposurei,Th_pyc X ICEFP,Th—I‘)' (7)

Cc

We take a similar approach for our post-landfall analyses by determining the set Lg 7, of
counties exposed to hurricane impacts due to landfall. Using the landfall data described in section
4.2, we determine a county c¢ to be in the landfall region of a hurricane, if the counties centroid is
within a given radius R of the eye of the storm at landfall. We then calculate the share of firm i’s
establishments in the landfall region counties. Formally, on landfall day T}, firm ¢’s exposure to

the landfall region of hurricane h is given by

Landfall RegionExposure; rT, = Z(FirmCountyExposureLTh’c X ICGLR,Th)‘ (8)

[

A firm’s exposure to a hurricane landfall region is again a continuous variable ranging from 0 to 1.
Similarly to the analyses prior to landfall that are performed on a series of probability thresholds,
we perform the landfall analyses for several radii around the eye of the storm. As the diameter

grows, the average intensity of impact on firms decreases but the number of hit firms increases.

3.3 Baseline estimation strategy

To estimate the uncertainty dynamics surrounding hurricanes, we employ a differences-in-differences
framework. Each hurricane or forecast yields a separate treatment, and the treatment effects
are jointly estimated across all hurricanes. The treatment intensity varies, because treatment is
defined continuously as exposure to the forecast path or landfall region, shown in equations 7 and
8, respectively. Firms with zero exposure to particular events serve as the controls. We follow
the recommendation of Bertrand, Duflo, and Mullainathan (2004) by collapsing the time series
information into a pre- and post-treatment period for each difference-in-difference, that is each
hurricane. For both the pre-and post-landfall analyses described below, the pre-treatment period is

Ty, the day before hurricane inception. For pre-landfall analyses, the post-treatment period comes

10



I" days before landfall, while it comes 7 days after landfall for the post-landfall analysis.
We examine how hurricane forecasts affect implied volatilities of firms located in the path of a

hurricane by estimating the following panel regression model

IV r _
log (IZVT}’F> = Ar.prForecastExposure; pr, -1 + T + Yrnd + € h1- 9)
i}

The dependent variable is the change in implied volatility I'V;; of firm 7 from the last trading day
before hurricane h inception, 7}, to I' calendar days before hurricane landfall or dissipation on T} R
ForecastExposure; p, —r is our continuous treatment variable defined in equation (7). We include
hurricane fixed effects (73,), which is equivalent to a time fixed effects because each hurricane has a
separate time period. We include industry fixed effects (17,4) based on firm two-digit SIC numbers.
We exclude from the control group for a hurricane any firm that has been hit for another hurricane
within 180 calendar days.'? Given the geographic nature of our treatment, we cluster standard
errors by the county to which the firm has the largest exposure (see, for example, Dessaint and
Matray (2017) and Abadie, Athey, Imbens, and Wooldridge (2017)).3

We estimate the regression separately for each combination of T € {1,2,3,4,5} and probability
threshold P € {1, 10,20, 30,40, 50}. Only hurricanes for which the day Tj, — I is a trading day are
included in a regression for a given I'. This means that the set of hurricanes included in the regres-
sion sample depends on I' and P. We exclude firms that do not have implied volatility measures
for at least half of the trading days from inception to 7}, — I' days before landfall/dissipation. The
time series starts in 2007, because we have hurricane wind speed forecast data from 2007 onwards,
and ends in 2017.

In terms of interpreting results, a positive and significant Ag pr is consistent with firms in the
forecast path of a hurricane facing substantial landfall and expected impact uncertainty. The change
in a firms’ implied volatilities should depend on the probability that a hurricane will make landfall
in counties in which the firm operates. Figure 1 shows that depending on the parametrization

(depending on the expected impact (j4), impact uncertainty (o4), and probability of landfall (¢)),

1The inception day of a hurricane is defined as the first day on which the hurricane is predicted to make landfall
with at least a 1 percent probability. For hurricanes before 2007, we do not have hurricane forecast data available
and choose as inception day the first day that the hurricane appeared as a tropical depression.

12For this purpose, we consider a firm as being hit if at least 10 percent of its establishments are located in the
landfall region. Varying this threshold leads to qualitatively similar results.

13In the Online Appendix, we show that the results are robust when using alternatively clustered standard errors.
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the total variance (uncertainty) can be higher before landfall, (when ¢ is less than 1) than at landfall
(when ¢ equals 1). Whether total uncertainty is higher before landfall than right after landfall is
ultimately an empirical question.

While the higher implied volatilities for firms in the forecasted path of a hurricane can result
from expected impact uncertainty as well as landfall uncertainty (as shown in equation (6)), after
landfall-when the landfall uncertainty has been resolved—options should only price impact uncer-
tainty. We isolate and estimate impact uncertainty by looking at the implied volatilities shortly
after landfall, when investors know where the hurricane has hit, but do not know what the eventual
impact on exposed firms will be.

We estimate impact uncertainty using the following panel regression model,

1V;
log (IZVTW> = Ar,rrLandfall Region Exposure; g1, + Th + Vind + €ihrs (10)
0Ty

where 7 is the number of trading days since hurricane h made landfall on day T}, and T}’ designates
the last trading day before hurricane inception. LandfallRegionExposure; r 1, is the measure
defined in equation (8) of firm i’s exposure to counties within the landfall region, which can vary
from 0 to 1. A positive and significant Az g, reflects impact uncertainty in the aftermath of a

hurricane.

4 Data and summary statistics

Our analysis combines data from a range of sources. We combine NOAA data on wind speed
forecasts and realized storm tracks from NOAA with firm establishment data from the National
Establishment Time-Series (NETS) database to determine firm-by-storm specific treatment levels.
We use CRSP-Compustat and OptionMetrics data for our stock and option outcome variables. We
describe each of these data sources below. Additional information on the hurricane data can be

found in the Online Appendix.
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4.1 Hurricane forecasts

We use NOAA’s National Hurricane Center (NHC) wind speed probability forecasts to measure
uncertainty prior to hurricane landfall. The underlying text files of the hurricane forecast charts
published by the NHC in real-time and used by news outlets in the run-up to hurricanes, are stored
in NOAA’s hurricane archives.!* Figure 2 shows an example of the forecast chart of cumulative
probability bands for hurricane force winds, as presented by the NHC, over a five day period in the
case of Hurricane Sandy in 2012.

We use these text files from the NOAA website that contain probabilities of particular locations,
for example Norfolk, VA, experiencing winds in excess of 34, 50, and 64 knots for a particular
hurricane. These forecast data are updated every 6 hours and available from 2007 to 2017. Our
analysis is based on the 64 knots forecasts because a tropical storm is considered a hurricane, when
the storm causes wind speeds of at least 64 knots. The wind speed probabilities are presented up to
five days out from the time of each forecast. We translate the reported location-specific wind speed
forecasts to county specific forecasts in two steps. First, we determine which selected locations
have reported probabilities of hurricane force winds above a given probability threshold, such as a
10 percent, and match these locations to counties. Second, we add counties that are within a 75
mile radius of the counties from the first step. Figure 3 illustrates a sample of processed wind speed
data at different probability thresholds for Hurricane Sandy over a four day period. Panel A of
Table 1 lists the hurricanes included in our forecast sample. More information on how we process

the hurricane forecast data can be found in the Online Appendix.

4.2 Hurricane landfall regions

We use hurricane track data collated from forecast advisory files from the NOAA hurricane archives
to develop firm-specific exposure to hurricane landfall regions. These data show the intensity and
location of the hurricane’s eye at various points of time. To account for the fact that hurricanes can
impact counties that are not located in immediate proximity to the eye of the storm, we consider

all counties to be in the hurricane landfall region if they are located within a given radius of the

“The NOAA hurricane archives can be found here https://www.nhc.noaa.gov/archive.
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hurricane’s eye within 24 hours before and after the hurricane making landfall.!>:'¢ We use county
centroids to generate the sets of counties that lie within 50, 100, 150, 200 miles of the eye of each
hurricane. Figure 4 shows which counties fall into each set for hurricanes Katrina (2005), Sandy
(2012), Matthew (2016), and Harvey (2017). Having this time window around the landfall time
ensures that we capture counties that lie more inland and counties that were close to the eye of the
hurricane before the actual landfall for hurricanes that move along the coast. Panel B of Table 1
lists the hurricanes included in our landfall region sample. Additional details are discussed in the
Online Appendix.

Importantly, these data are published by NOAA in real-time. Therefore, investors had access
to these data on the landfall region of a hurricane as soon as the hurricane made landfall. Some
other papers use damaged counties to discern which firms were affected by natural disasters (for
example, Barrot and Sauvagnat (2016) and Dessaint and Matray (2017).) In our context, doing
so could bias estimates because investors do not know at the time of the landfall which counties

experienced damage from a hurricane. Damage data become available with a substantial lag.

4.3 Firm data

We use NETS firm establishment location data to precisely estimate firm exposure to specific
hurricanes. These data has been used in several other studies. For example, Neumark, Wall,
and Zhang (2011) investigate the job creation of small businesses based on NETS. Addoum, Ng,
and Ortiz-Bobea (2019) use NETS to analyze the effect of temperature fluctuations on firms’
sales. The NETS data contain establishment information at the county level and are updated
annually.!” For each hurricane season, we use firm geographic footprints from the previous year to
avoid the possibility that we will miss establishments closed due to hurricanes. Because our NETS
data extend only through 2014, we use the 2014 geographic footprint for hurricanes in 2015-2017.
Plotting 2010 and 2014 deciles of county establishment numbers, Figure 5 shows that economic

activity as measured by firm establishments is high in areas prone to hurricanes along the Atlantic

15We also consider other time windows, for example, 12, 36, and 48 hours, and the results are qualitatively similar.

16Two hurricanes in the sample, Charley 2004 and Katrina 2005, make two landfalls. We use as the landfall date
the landfall when the hurricane was of the higher storm strength on the Saffir-Simpson scale.

'"Our baseline results rely on the establishment location data. NETS also contains establishment level sales data,
but these data are often imputed. An analysis using sales data yield qualitatively similar results shown in Section
6.1.
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and the Gulf Coast.

We use firm name and headquarter address to link the firms in NETS to those in OptionMetrics
and CRSP-Compustat. Our linked sample starts in 1996, the first year in our OptionMetrics data.
Because financial firms’ geographical exposure to natural disasters may not be reflected by their
establishment locations and financial firms are often excluded in asset pricing studies, our baseline
results exclude all financial firms by dropping firms with SIC numbers from 6000 to 6799 from our
analysis. We provide a separate analysis on insurance firms in Section 6.3.

We obtain daily data on stocks from CRSP-Compustat and single-name stock options from
OptionMetrics. Consistent with previous studies (see, among others, Carr and Wu (2009); Kelly,
Pastor, and Veronesi (2016); Martin and Wagner (2018)), we use data from traded options with non-
missing pricing information that are slightly out-of-the-money. These options are more liquid and
have a relatively small difference due to any potential early-exercise premium between American
options and European options.

We apply standard filters to the options data consistent with the existing literature. In our
sample, we include single-stock options which meet the following criteria: (i) standard settlement,
(ii) a positive open interest, (iii) a positive bid price and bid-ask spread (valid prices), (iv) the
implied volatility estimate is not missing, (v) greater than 7 days and at most 200 calendar days
to expiry, and (vi) an option delta, §, that satisfies 0.2 < [4| < 0.5.

The estimate for the average implied volatility of firm 7 at date ¢ is, IV;; = % Z;V: WAZRERS
where M is the nearest-to-maturity expiration at time ¢ with options which satisfy the above criteria
and N is the number of valid options for firm i with that expiry.'®

We report summary statistics on our sample of firms in Table 2. We have 1,645 unique firms
in our sample. On average, a firm has 107 establishments in a given year. When only considering
the subsample of firms that had 25 percent of their establishment in a hurricane landfall region at
least once during our sample period, that is they were “hit” at least once, then the average number
of establishments is 116. Interestingly, these hit firms are also comparable to the non-hit firms in
terms of market capitalization. In fact, the average market capitalization of hit firms is 5.3 billion

US$ compared to 4.5 billion US$ of the total sample. The slightly higher market capitalization

18Tn additional analysis examining “seasonal effects,” to capture uncertainty effects in options spanning the full
hurricane season, we use options available in late May whose calendar days-to-expiry range from 120 to 180.
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might be caused by the higher economic activity in coastal regions. The summary statistics on

option measures are nearly identical between the total sample and the subsample of “hit” firms.

5 Baseline Results

5.1 Uncertainty before landfall

We first test whether option prices react to hurricane forecasts before storm landfall (or dissipation)
and price in landfall and expected impact uncertainty. In Table 3, we report results of estimating
equation (9) for each combination of days before landfall (I') and hurricane-force wind probability
threshold (P) for which we have sufficient observations.!® Each column presents results from a
separate regression performed for the specified I' (1-5 days before landfall) and P (1 to 50 percent).
Because the location-specific NOAA wind speed probabilities rarely get high when a hurricane is
far from the coast, the maximum P for which we estimate equation (9) declines as we increase the
number of days prior to landfall or dissipation. Also, because for a given hurricane I' might be
a non-trading day, the sample of hurricanes differs across the columns of Table 3. For example,
not all of the 12 hurricanes for 1% probability and 5 days before landfall are included in the the
regression for 1% probability and 4 days before landfall. The total sample of hurricanes used in the
analysis is listed in Panel A of Table 1. The table reports for each regression the total number of
firm observations with an establishment share in the forecast path of greater than 0% and at least
20%. The higher the probabilities, the smaller the number of firms with a certain exposure to the
forecast path because the region covered by the forecast path becomes smaller as the probability
increases.

The results in Table 3 show that substantial uncertainty arises from the forecast path of a
hurricane. The estimates of A pr are always positive, regardless of whether time and industry fixed
effects are included separately (Panel A) or interacted with each other (Panel B). In Panel A, the
Ap,pr estimates are generally significant with the exception of the estimates at the 1% probability
threshold more than one day prior to landfall which is insignificant in two specifications. For a

given I', the magnitude of Ar pr generally increases with higher landfall probabilities, reaching up

9We require a I' — P sample to include at least three hurricanes and 30 firm-storm observations with
ForecastExposure; pr, —r greater than or equal to 20 percent.
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21. This implies that a firm with 100 percent (50 percent) of its establishments being located in
the path of the hurricane sees an increase in the implied volatility of 21 percent (10.5 percent). The
results in Panel B are based on interacting time and industry fixed effects with each other and show
somewhat lower coefficient but qualitatively similar estimates. The coefficients are always positive,
increasing in the probability thresholds, and mostly significant. A more detailed discussion on the
economic magnitude of these changes in implied volatility can be found in Section 5.3.

These results show that option markets price in substantial uncertainty before hurricane landfall,
in line with the framework presented in Section 3.1 that shows landfall uncertainty and expected
impact uncertainty should be priced in before hurricane landfall. The empirical estimates confirm
that uncertainty generally increases with probability of landfall as predicted in Figure 1. These
estimates of uncertainty before landfall are implicitly also a test of investor attention to hurricane
forecasts. If investors did not pay attention to NOAA’s hurricane forecasts, then we would not
observe an option price reaction. The emerging climate finance literature investigates investor
attention to other climatic events. For example, Hong, Li, and Xu (2019) show that investors are
inattentive to droughts. Also, there exists mixed evidence whether or not residential real estate
owners pay attention to sea-level rise forecasts (see, for example, Bernstein, Gustafson, and Lewis
(2018); Giglio, Maggiori, Rao, Stroebel, and Weber (2018); Murfin and Spiegel (2019)). Therefore,
the strong evidence of investors paying attention to hurricane forecasts shown in this paper is not
necessarily expected. Arguably, these climatic events are different from one another in terms of, for
example, intensity and duration, and it might be these differences that capture investors’ attention

in distinct ways.

5.2 Uncertainty after landfall

We now turn to our estimates of uncertainty post landfall. After the hurricane has made landfall,
landfall uncertainty is resolved and only impact uncertainty remains. In Table 4, we present results
from the estimation of equation (10) for 5 trading days (1 week) after landfall in Panel A and for
30 trading days (1.5 months) after landfall in Panel B. We show results from regressions for which
the landfall region is based on different radii around the eye of the storm, ranging from 50 to 200
miles. The specifications include separate industry and time fixed effects (as shown in equation

(10)) as well as results based on interacted industry and time fixed effects. The table reports for
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each regression the total number of firm observations with an establishment share in the landfall
region of greater than 0%, at least 20%, and at least 50%. As the radius around the eye of the
hurricane increases, that is the landfall region becomes larger, the number of firms with a certain
exposure to the landfall region also increases. Panel B of Table 1 lists the hurricanes included the
sample.

All of our A\f r, estimates in Table 4 are positive regardless of radii or fixed effect choices
and significant for all but one specification. The magnitude of the effect we estimate reaches up
to 30 for the 50 mile radius and 30 trading days post landfall. This implies that relative to its
pre-inception IV level, a firm with a 100 percent (50 percent) exposure to the landfall region will
see its implied volatility increase by 30 percent (15 percent). These are substantial magnitudes of
impact uncertainty. Section 5.3 describes the economic context of these magnitudes in detail.

When analyzing the within industry effect by including industry fixed effects interacted with
time fixed effects, the magnitude of the estimates are slightly lower but the estimates remain
significant for all but one specification. A more detailed industry analysis is presented in Section 6.1.
The magnitude of the effect decreases with larger radii, which implies that firms with establishments
located further away from the epicenter of the storm face less impact uncertainty. Also, while the
statistical significance is stronger 5 trading days post landfall, the coefficient estimates are often
higher 30 trading days after landfall. This result points to a slightly delayed reaction of investors
to the hurricane landfall, with the caveat that the differences between the 5 and 30 trading days
estimates are mostly insignificant (not shown).

In Figure 6, we build on the Table 4 results by showing how affected firms’ implied volatilities
evolve over the 90 trading days (4.5 months) after landfall. Each point in the figure shows the
coefficient estimate from a separate regression estimating equation (10) for a combination of 7 and
R. In Panel A, which uses a 50 mile radius (R) around the eye of the hurricane to determine a
firm’s landfall region exposure, our estimate of Az, g » increases up to 30 trading days post landfall at
which point it reaches about 30. Thereafter the implied volatility effect gradually decrease until it
becomes insignificant around 80 trading days (4 months) after landfall. When in Panel B we apply
a 200 mile radius to determine the hurricane landfall region, we similarly observe that the increase
in implied volatility rises for sometime before peaking and falling back to baseline. However, the

peak happens earlier at 20 trading days after landfall, falls back sooner (becoming insignificant 60

18



trading days or 3 months after landfall), and has a smaller magnitude peaking around 10.

One potential concern with our specification is that our results could be driven by small firms.
However, Table 2 reports that the subsample of firms that were hit by hurricanes at least once
during our sample period, where we define a hit as having at least 25 percent of establishments
in a landfall region, has on average a slightly higher market capitalization than the total sample.
Firms with coastal exposure can differ from other firms based on unobserved characteristics, and it
is possible that firms that would be more vulnerable to hurricanes because of their particular line
of business avoid being exposed to the Atlantic or Gulf Coast. However, such sorting would bias

us against finding evidence of landfall and impact uncertainty.

5.3 Economic significance

We have shown that the implied volatilities of firms in the forecast path or landfall region of a
hurricane increase substantially, indicating high uncertainty. What are the economic implications
of these implied volatility changes?

Investors often use options to hedge exposure to risks of stock price changes. When the implied
volatility of an option increases, the option premium (the price of the option) increases as well,
and hedging becomes more expensive. We use our previous results to compute how much hedging
costs in the aftermath of a hurricane increase for investors of firms with exposure to the landfall
region. After hurricane landfall the total additional cost of hedging the impact uncertainty over our
sample period would have been as high as 50 to 91 billion U.S. dollars in 2017 inflation-adjusted
terms.2’ This magnitude is considerable, representing up to 16 percent of the $583 billion (also
inflation-adjusted to 2017) in total hurricane damages estimated by NOAA for the same time period
(see Table 1.)2! Our estimates show that uncertainty itself can lead to substantial costs associated
with hurricanes. Conventional damage estimates that exclude these types of costs may significantly

understate the true damages of extreme weather events.

29These values are based on a landfall region radius of 200 miles around the eye of the storm. We compute the
average percentage point increase in implied volatilities of the firms with exposure to the landfall region (0.55 and
1.04 percentage points for 5 and 30 trading days post landfall, respectively.) To obtain the increase in the option
premium, we multiply this average increase in implied volatilities by the average vega (0.034) of the same firms,
where the vega is a measure of how option prices respond to changes in implied volatilities. Finally, we multiply the
increase in the option premium by the total number of shares outstanding (2,237.6 billion) of the exposed firms to
obtain the increase in total hedging costs in dollars. The values are inflation-adjusted to 2017 dollars.

21Further, we likely underestimate the total hedging costs caused by a hurricane as we drop some firms from our
sample due to insufficient data, as described in Section 4.
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While the changes in implied volatilities and consequently option premia directly affect investors,
the large extreme weather uncertainty estimates that we document can also have other wide-ranging
consequences. Other types of uncertainty have been shown to affect decision making of economic
agents. For example, uncertainty around political elections and events causes firms to reduce
investments as shown in Julio and Yook (2012), Jens (2017), and Kim and Kung (2017). The large
and persistent estimates of extreme weather uncertainty can have similar effects, particularly as
the magnitudes of our estimates are larger than the increase in implied volatilities around major
political events (see Kelly, Pastor, and Veronesi (2016)). While an examination of how extreme
weather uncertainty affects decisions of economic agents is beyond the scope of this paper, it is
straightforward to develop scenarios in which extreme weather uncertainty has real consequences.
For example, firms whose suppliers or customers are located in hurricane landfall regions could
be affected by uncertainty about their supply chain. Similarly, firms may delay or backtrack on
decisions on where to expand if there is significant uncertainty regarding a hurricane that has made

or will make landfall in regions of interest.

6 Extensions and robustness

Having examined how markets price in impact and landfall uncertainty both before and after

hurricane landfall, we now turn our attention to robustness and extension analyses.

6.1 Robustness

This section contains robustness tests for the main results. Additional robustness tests can be found
in the Online Appendix. First, One question is whether the uncertainty caused by hurricanes affects
varies across industries. To get at this question, we test whether our baseline post-landfall results

are driven by a particular industry.?? Building on equation (10), an industry-specific interaction

22We choose the post-landfall analysis for this purpose, because the larger number of hit firms provides a more
representative sample of firms for each industry.
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term is added as follows
IV 1 4r 4
log (I;/Tﬁ) =Ar,Rr,rLandfall Region Exposure; g,
i Ty

+ wr,rrLandfall Region Exposure; r1, X licindustry, + Th + Yind + €inr

(11)

where liecrndustry, indicates whether firm 4 is in Industry,, the industry being examined. We
estimate this equation separately for the construction, manufacturing, mining, retail, services,
transportation, and wholesale industries based on firm two-digit SIC numbers.?? If our baseline
effects were driven primarily by one industry, then we would expect Ar g, to be statistically
indistinguishable from zero in the regression for that industry.

In Table 5, we present our results for the 200 miles radius to ensure that we have a considerable
number of firms with a large exposure to hurricane landfall regions in each industry. However, the
results are qualitatively similar when using smaller radii. The parameter 7 is set to five trading days.
The estimates of Af, g, are positive and significant in every industry specification, suggesting that
our baseline results are not driven primarily by one sector. Also, the magnitude of the estimate is
similar to the magnitude of the coefficients for the 200 mile radius around the eye of the hurricane
shown in Table 4. The estimate of wg -, the coefficient on the interaction term, is insignificant
for most specifications, suggesting limited industry-specific heterogeneity. The only industry for
which the estimates of wg, are significant is construction. The negative sum Az g + wg, for
the construction industry suggests that investors believe that hurricanes reduce uncertainty for
construction firms. This result could be prompted by the expected boost from rebuilding activity.

A second robustness test estimates the regression in equation (10) but excludes hurricane Kat-
rina (2005), Sandy (2012), and Harvey (2017) from the analysis. These three hurricanes were the
most devastating hurricanes in our sample in terms of total damage as shown in Table 1. We want
to test if our results are solely driven by these hurricanes. The results are presented in Table 6.
The magnitude and significance of the coefficient estimates are similar to the estimates shown in
Table 4. A higher exposure to the landfall region increases the implied volatilities of the firms, and

this effect is weaker the larger the radius around the eye of the hurricane used to define the landfall

23We exclude the agriculture and non-classified categories because of the small number of firms.
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region.

Additional robustness tests are presented in the Online Appendix. Our baseline measure of
geographic location of a firm are the location of establishments. Alternatively, we can also use
establishment level sales data from NETS. These data allow us to measure the exposure of a firm
to a hurricane by the share of sales that were generated in counties affected by the hurricane. The
baseline results on uncertainty before and after landfall are robust to measuring geographic footprint
based on sales. Further, we show that our baseline results are robust to alternative standard error

clustering choices.

6.2 Long-run impact on firm value

The large uncertainty estimates surrounding a hurricane imply that firms in the landfall region face
uncertain outcomes. The resolution of this uncertainty should be reflected in the firms’ stock prices
in the months following a hurricane landfall. In particular, the higher expected volatility of the hit
firms’ returns should lead to a large cross-sectional dispersion of cumulative abnormal returns in
the long-run.

We first estimate daily abnormal returns relative to the Fama-French five-factor model (see
Fama and French (1993)). For each firm and each hurricane in our sample, the following model is

estimated:

Tid = @ + B1iTm.d + B2iTsmb,d + B3,iThmi,d + BaiTrmw,d + B5,iTcma,d + €i.d, (12)

where 7, 4 is the daily market return on day d minus the risk-free rate, rsmp.as "hmids Trmw,ds
and 7¢peq are the daily returns of the small-minus-big, high-minus-low, robust-minus-weak, and
conservative-minus-aggressive portfolios, respectively. We estimate this model using 250 trading
days (roughly one calendar year) before the inception day of the hurricane. We then use the
coefficient estimates from this first stage regression to compute abnormal returns for each firm and

hurricane as follows:

ria = Tid — (& + BriTmd + B2iTsmbd + B3.iThmid + BaiTrmw,d + B5iTema,d)- (13)
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We next aggregate the abnormal simple returns to a cumulative abnormal return, denoted r%‘fp},{:Th -
for each firm and hurricane over the time period 7}’ to T}, + 7, where again T}’ is the inception day,
T}, is the day of the landfall, and 7 is the number of trading days. The time period starts in 1996
and ends in 2017 to correspond to the option sample used previously. To ensure that stocks with
stale prices are excluded from our analysis, a stock is required to have return data for at least half
of all trading days for a given period. Further, we exclude stocks with share prices below $5 from
our analysis (see Amihud (2002)).

We take the cumulative abnormal return from inception to a 120 trading days (6 months) after
landfall for all the firms and a given hurricane and subtract the mean cumulative abnormal return
to account for correlated shocks across firms that are independent of the hurricane. We choose a
horizon of 120 trading days as that corresponds to half a calendar year. The hurricane season lasts
half a calendar year, and thus, we avoid overlaps with the following year’s hurricane season as a
hurricane season last six months (from June to November). One group contains the cumulative
abnormal returns of the hit firms, that is the firms with at least 25% of their establishments in
the hurricane landfall region. The other group contains the cumulative abnormal returns of the
control firms, that is the firms with less than 25% of their establishments in the hurricane landfall
region. Then, we compute the differences in the mean and nine percentiles between the cumulative
abnormal return distributions of the hit and the control firms.

The results are reported in Table 7 along with the corresponding t-stats.?* For the landfall
region based on the 50 mile radius around the eye of the hurricane, the bottom two percentiles
of the treated firms underperform the control firms by 21 to 26 percent. However, it is also
notable that significant differences are only found for the bottom percentiles. The top percentiles
show differences between the treated and control firms that while mostly negative are generally
insignificant. This result holds also for wider radii. In the aftermath of a hurricane, there are some
firms with exposure to the landfall region that severely underperform, but other firms appear to be
unaffected in the long-run. Interestingly, the differences in mean effects are insignificant regardless
of the radii.

These results are in line with the substantial estimates of impact uncertainty that are presented

in the previous section. Investors appear to be uncertain about the impact of a hurricane on the

24For the differences between the percentiles, the standard errors are cluster bootstrapped.
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firms in the landfall region and this manifests itself in the large increases in implied volatilities. In
the long-run, the implied volatilities come back down as the effect on the firms becomes clearer,
and some firms will be severely negatively affected.

Figure 7 shows the difference in cumulative abnormal returns between firms hit by a hurricane
and control firms also for the 10 and 60 trading days (2 weeks and 3 months) post landfall horizon.
These plots show that the lower percentiles of the hit firms underperform more in the long-run,
that is after 60 or 120 trading days, then in the short-run, that is after 10 trading days. These
plots are in line with investors needing time to assess the impact on the firms in the landfall region.
The Online Appendix contains two tables that are structured as Table 7 but present the estimates

for 5 and 60 trading days post landfall instead of a 120 trading days.

6.3 Insurance firms

The analysis and discussion so far has been focused on the universe of firms excluding financial
firms as common in the asset pricing literature. One contribution of this paper is to show that the
uncertainty around extreme weather events affects a wide range of firms and not only insurance
firms which are often thought of in the context of natural disasters. However, we also want to
investigate if extreme weather uncertainty is reflected in the asset prices of insurance firms. The
challenge that we face is that the number of publicly traded insurance firms with liquid options is
relatively limited and we only have data on the exposure of an insurance firm at the state level,
not at the county level.?®

We use data on insurance statutory financials from S&P Global Market Intelligence, which
provides us with the share of total premiums written by state for property and casualty insurance
firms in the US. We estimate the regression in equation (10) for these property and casualty
insurance firms, with Landfall RegionExposure; r T, being replaced by a variable that measures
the share of total premiums, lagged by one year, written in states that experienced landfall by
hurricane h. The results are reported in Table 8. Panel A (B) considers a state to have experienced

hurricane landfall if at least 10% (25%) of the counties were within a given radius of the hurricane’s

eye.

25For insurance firms, the establishment level data from NETS is likely not a precise measure of their exposure to
a certain region because an insurance firm that, for example, insures a homeowner in Louisiana does not need an
establishment close by.
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The coefficient estimates are positive for all specifications implying that the impact uncertainty
for property and casualty insurance firms is substantial in the aftermath of a hurricane. The
magnitude of the coefficient estimates are economically significant, with the implied volatility being
up to 70 percent (35 percent) higher for insurance firms with a 100 percent (50 percent) exposure
to the landfall region of the hurricane. The magnitude of the coefficient tends to decrease for
larger radii’s around the eye of the hurricane. The statistical significance is weaker than for the
non-financial firms in Table 4 as the number of insurance firms in our sample is relatively small,

but most of the specifications yield a significant coefficient estimate.

6.4 Hurricane season effects

Hurricanes off the US Atlantic and Gulf coasts occur during the hurricane season which starts
in June and ends in November. Because the timing of the hurricane season does not vary from
year-to-year, it is challenging to disentangle hurricane season effects from other season effects that
are unrelated to hurricanes but also affect firms with establishments in coastal locations. To obtain
an additional source of variation, we rely on hurricane season outlooks issued by NOAA.

In addition to forecasts for individual hurricanes, NOAA also releases hurricane season outlooks
in May of each year. Dating back to 2001, each seasonal outlook reports the probability that the
season will be above-normal, near-normal, or below-normal.?6 Panel A of Figure 8 shows that there
is significant variation in the probabilities reported in these pre-season outlooks.

We test if options with long expiry, 120 to 210 calendar days to expiry, of firms that have estab-
lishments located in counties historically affected by hurricanes exhibit higher implied volatilities
after NOAA issues a forecast of a hurricane season with above average activity. Options with long
expiry are chosen because they cover the majority of the hurricane season. We use two methods to
determine counties that could be hit by a hurricane during the hurricane season. The first method
simply uses coastal counties from the Atlantic and Gulf coasts as counties that could reasonably
be exposed to a hurricane in any given hurricane season. The second method relies on historical
landfall regions over the preceding 30 years and computes the annual probability with which a

county ¢ ends up in the landfall region of a hurricane. In the Online Appendix we provide more

26Sce National Weather Service “NOAA 2012 Atlantic Hurricane Season Outlook” https://www.cpc.ncep.noaa.
gov/products/outlooks/hurricane2012/May /hurricane.shtml
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detail on the counties included in each method.
For the first approach, the regression specification is then given by
I‘/;f Ts+5
log # =Ag1Coastal Exposure; 1, + Ag2Coastal Exposure; 1, x AboveAvgSeasonForecastr,
istfl
+ 71, + Yrna + 6.1,

(14)

where Ts_1 is the last trading day before NOAA’s hurricane season outlook is announced in May,
and Ty, 5 occurs 5 trading days later.?” Following the methodology in equations (7) and (8), the
variable C'oastal Exposure; s is a variable that ranges from 0 to 1 and measures the share of es-
tablishments of firm ¢ located in counties along the Atlantic and Gulf coast. We can replace this
variable with Historical Hurricane Exposure; s, which measures the share of a firm’s establish-
ments located in counties with an elevated probability of being hit during a hurricane season.
AboveAvgSeasonForecasts reflects the probability for an above average hurricane season that
NOAA issues. A positive estimate of g2 would be consistent with investor attention to medium-
term seasonal forecasts and imply heightened uncertainty if the probability of an above average
season is high.?®

Table 9 presents the estimates of equation (14). In Panel A the independent variable is
Coastal Exposure; s, and in Panel B it is replaced with Historical Hurricane Exposure; . In both
panels, none of the estimates of A\go are statistically significant, and all of the point estimates have
a negative sign. Thus, we find no support for the hypothesis that implied volatility increases for
exposed firms when NOAA’s hurricane season outlook reports a high probability of an above normal
season. The coefficient estimate of Ag; is positive and significant for some specifications. A pos-
sible explanation is that the saliency of the upcoming hurricane season leads to a general increase
in uncertainty in May for firms with establishments located along the Atlantic and Gulf coasts.
However, the significance of the Ag; estimate is weak and not robust to alternative specifications.

The results in Section 5.1 have shown that investors pay close attention to NOAA’s forecast of

hurricane paths. What is the reason behind investors not paying attention to seasonal forecasts?

2"Varying the window length leads to qualitatively similar results.

28The expected sign of As,1 is unclear. Firms with exposure to coastal counties are at risk of being hit by a
hurricane during the hurricane season, but firms with exposure to coastal counties are likely also subject to other
unobservable risks that are unrelated to hurricanes.
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The reason is potentially that these seasonal forecasts are not as accurate. The scatter plots in
Panel B of Figure 8 show only a weak positive relationship between these seasonal outlooks and the
number of hurricanes making landfall in a given year (Panel A) or the total damages resulting from
those hurricanes (Panel B). There is an emerging debate in the climate finance literature about
investor attention to climatic events. In the case of hurricanes, investors behave fairly rational.
They pay attention to the short-term hurricane forecasts that contain valuable information but

appear to ignore medium-term forecasts that are less accurate.

7 Conclusion

Little is known about extreme weather uncertainty. This paper studies extreme weather uncertainty
through prices in option and stock markets by analyzing the uncertainty surrounding hurricanes.
Our framework distinguishes between landfall uncertainty (on where the hurricane will hit, if at all)
and impact uncertainty (on the consequences to the local firms and economy following landfall).

Using daily hurricane forecasts from NOAA, we find that landfall uncertainty combined with
potential impact uncertainty are both priced before a hurricane makes landfall, consistent with
investors paying attention to the unfolding of a hurricane. We find that options of firms operating
in regions affected by hurricanes have considerably higher implied volatilities after hurricanes hit.
The higher implied volatilities are in line with investors being concerned about substantial impact
uncertainty. The impact uncertainty resolves slowly, and the implied volatilities return back to
pre-hurricane levels several months after landfall.

Our novel analysis and framework contribute to a burgeoning climate finance literature. Fur-
ther, we add to the existing uncertainty literature by showing that extreme weather uncertainty is
important and reflected in the prices of options and stock markets. Future research can build on
the stylized facts discovered in this paper by, for example, linking extreme weather uncertainty to
real economic activity. Extreme weather uncertainty potentially affects firm production networks,

commodity and agricultural markets, and decisions by various economic agents.
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Figure 1: Variance as a function of the probability of hurricane landfall

This figure shows the total variance prior to landfall, Var;(r;,.+1) derived in equation (6), as the probability of landfall,
¢, varies from 0 to 1. In this figure, 0 = 0.4 and o4 = 0.05. The four dashed lines have absolute values of 0.1, 0.07, 0.05,
and 0 for ug. The solid line shows the level of variance conditional on hurricane landfall, Var:(r; (41|10 = 1) = o? -I-O'g,
as defined in equation (3).
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For the 120 hours (5 days) from 8 AM EDT Sat Oct 27 to 8 AM EDT Thu Nov 1 -

Probability of hurricane force surface winds (1-minute average >= 74 mph) from all tropical cyclones
< indicates HURRICANE SANDY center location at 8 AM EDT Sat Oct 27 2012 (Forecast/Advisory #21)
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Figure 2: Example of a hurricane forecast

This figure from NOAA illustrates the five-day forecast for Hurricane Sandy on October 27, 2012. We obtain the raw
data underpinning such hurricane forecast visualizations for our analysis.
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Figure 3: Hurricane forecasts at different time frames and wind speed probability thresholds

Each map shows the counties indicated as being in the forecast path for Hurricane Sandy given the number of days
before landfall in each row and the wind speed probability threshold in each column. For each day, the last available
forecast before 4pm (market close) is shown.

34



45 45
40 40
E 35 E 35
30 30
25 25
. .
-1'00 -éD -éO —;0 -1'00 -éO -gﬂ —;0
long long
Distance From Radius . 50 Miles . 100 Miles 150 Miles 200 Miles Distance From Radius . 50 Miles . 100 Miles 150 Miles 200 Miles
(a) 2005 Katrina (b) 2012 Sandy
45 45
40 40
E 35 E 35
30 30
25 25
. .
-100 -90 -80 =70 =100 -90 -80 =70
long long
Distance From Radius [JJJj 5o mies [ 100 mies | 15omies 200 mies Distance From Radius [JJl] s0nies [l 100 mies [ 1s0mies 200 wites
(c) 2016 Matthew (d) 2017 Harvey

Figure 4: Counties in a hurricane landfall area

This figure highlights the counties that are within 50, 100, 150, and 200 miles of the eye of the hurricane at landfall.
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Figure 5: Firm establishments by county

This chart plots counties based on the number of establishments located in that county for the years 2010 (Panel A)
and 2014 (Panel B). Only firms that could be mapped to CRSP-Compustat are included. The counties are sorted
into deciles based on the number of establishments.
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Figure 6: Changes in implied volatilities post hurricane landfall

This figure plots coefficient estimates from the regression model given in equation (10). Changes in implied volatilities
from inception of the hurricane up to 90 trading days (4.5 months) post hurricane landfall are regressed on the
landfall region establishment share of firms. An coefficient estimate of, for example, 30 means that a firm with all
of its establishments in the landfall region is estimated to experience a 30% increase in the implied volatility. The
landfall region is based on a 50 mile radius around the eye of the hurricane (a) and 200 mile radius around the eye
of the hurricane (b). Confidence bands of 95 percent are shown.
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Figure 7: Differences in cumulative abnormal returns between hit and control firms

This chart plots the difference in cumulative abnormal returns between firms with at least 25% of their establishments
in the landfall region of a hurricane, that is hit firms, and firms with less than 25% of their establishments in the
landfall region, that is control firms. The difference is shown for nine percentiles of the return distribution. The
cumulative abnormal returns are computed since hurricane inception up to 5, 10, 60, and 120 trading days post
landfall. The landfall region is based on 50 miles around the eye of the hurricane. The data are from 1996 to 2017.
Confidence bands of 95 percent are shown.
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Figure 8: NOAA’s Atlantic Hurricane Season Outlook

Panel A shows the May Outlook for the Atlantic Hurricane season that NOAA issues each year. This outlook
represents a projection of the number of hurricanes that will form in the Atlantic and the Gulf. Panel B depicts the
relationship between the season outlook and realized hurricane outcomes for that season.
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Table 1: Hurricane sample

The tables below show the hurricanes included in our analyses. Panel A, showing the sample for the forecast analyses,
includes storms with wind speed forecasts reporting at least 1 percent probability of hurricane force winds. Because
the forecasts include storms that never make landfall in the U.S., we indicate storms that make landfall with asterisks
(*). Panel B shows the landfall and inception dates for storms that are included in the post-landfall analyses. The
damage estimates shown here come from the National Hurricane Center’s Tropical Cyclone Reports and have been
inflated to 2017 values using the consumer price index from the U.S. Census Bureau. We show the revised estimates
when applicable. Landfall dates come from the Tropical Cyclone Reports. In the event that a storm made multiple
landfalls, we use the date of landfall that occurred with the higher Saffir-Simpson Hurricane Wind Scale category. For
storms with forecast data (post-2007), the inception date reflects the first date for which there is at least a 1 percent
probability of hurricane force winds in a U.S. location. For storms without forecast data (pre-2007), the inception
date reflects the date that the tropical depression formed, as per the Tropical Cyclone Reports.

Panel A: Storms included in forecast analyses

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Dean Dolly* Ana Alex Don Debby  Andrea  Arthur* Ana Colin Harvey*
Humberto* Edouard Bill Bonnie Emily Isaac* Karen Erika Hermine*  Irma*
Noel Fay Danny Earl Irene*  Leslie Joaquin  Matthew™  Jose

Gustav* Ida Paula Nate Sandy* Maria

Hanna Nate*

Tke*

Kyle

Paloma
Panel B: Storms included in post-landfall analyses

Post-Landfall Analysis Only Forecast and Post-Landfall Analyses

Damages Damages

Storm Landfall date Inception date 2017 $mn  Storm Landfall date  Inception date 2017 $mn
Bertha Jul. 12, 1996 Jul. 5, 1996 421 Humberto  Sep. 13, 2007 Sep. 12, 2007 N/A
Fran Sep. 6, 1996  Aug. 23, 1996 4,994  Dolly Jul. 23, 2008 Jul. 20, 2008 1,198
Danny Jul. 18, 1997 Jul. 16, 1997 153  Gustav Sep. 1, 2008  Aug. 25, 2008 5,271
Bonnie Aug. 27, 1998  Aug. 19, 1998 1,085 Tke Sep. 13,2008  Sep. 1, 2008 33,692
Earl Sep. 3,1998  Aug. 31, 1998 119 Irene Aug. 27,2011  Aug. 21, 2011 17,258
Georges Sep. 28, 1998 Sep. 15, 1998 9,594 Isaac Aug. 29,2012 Aug. 21, 2012 2,514
Bret Aug. 23, 1999  Aug. 18, 1999 89  Sandy Oct. 30,2012  Oct. 22, 2012 53,481
Floyd Sep. 16, 1999 Sep. 7, 1999 10,184  Arthur Jul. 4, 2014 Jul. 1, 2014 2
Irene Oct. 15,1999  Oct. 13, 1999 1,181 Hermine Sep. 2,2016 Aug. 28, 2016 562
Lili Oct. 3, 2002  Sep. 21, 2002 1,264 Matthew Oct. 8, 2016  Sep. 28, 2016 10,215
Claudette  Jul. 15, 2003 Jul. 8, 2003 240 Harvey Aug. 26,2017 Aug. 17, 2017 125,000
Isabel Sep. 18, 2003 Sep. 6, 2003 7,175 Irma Sep. 10, 2017  Aug. 30, 2017 50,000
Charley Aug. 13, 2004 Aug. 9, 2004 19,661 Nate Oct. 8, 2017 Oct. 4, 2017 225
Frances Sep. 5, 2004 Aug. 25, 2004 12,368
Ivan Sep. 16, 2004 Sep. 2, 2004 24,483
Jeanne Sep. 26, 2004 Sep. 13, 2004 9,965
Dennis Jul. 10, 2005 Jul. 4, 2005 3,202
Katrina Aug. 29, 2005 Aug. 23, 2005 135,894
Rita Sep. 24, 2005  Sep. 18, 2005 15,146
Wilma Oct. 24,2005  Oct. 15, 2005 26,433
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Table 4: Hurricane effects on implied volatility post landfall

This table reports the coefficients and test statistics when estimating the panel model in equation (10). The dependent
variable is the change (in percent) in the implied volatility of firm ¢ from the day before the inception day of the
hurricane T} until 5 trading days (1 week) and 30 trading days (1.5 months) after the landfall T3 in Panel A and
B, respectively. The independent variable measures how much (from 0 to 1) of the geographic footprint of a firm,
that is establishments, is in counties located in the landfall region of a hurricane. To identify counties that lie in the
landfall region of a hurricane we rely on the location of the eye of the hurricane and a radius of 50, 100, 150, and 200
miles surrounding the eye. For each regression, the total number of firm observations with an establishment share
in the landfall region of greater than 0%, at least 20%, and at least 50%, are reported. The data are from 1996 to
2017. The values in parentheses are the t-stats. The standard errors are clustered by county based on a firm’s largest
exposure. Industry and time fixed effects are used. The time fixed effect can be interpreted as a hurricane fixed effect
as we include a separate time period in the panel for each hurricane as shown in equation (10). The significance of
the coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Inception to 5 trading days (1 week) after landfall

Dependent variable: Change in IV (in %), log (I%,Th+5/IW,T;>

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegion Exposure;, r,1), 16.833***  11.946™*  8.741"**  7.191"**  5.185™"*  4.251**"  5.444™**  4.074***

(3.629) (2.549) (4.206) (3.355) (3.639) (2.901) (5.258) (3.683)
Adjusted R? (%) 12.077 12.587 12.214 12.715 12.173 12.701 12.238 12.779
Total firm obs. 20,240 20,240 19,987 19,987 20,052 20,052 20,184 20,184
Total firm obs. with exposure > 0% 4,634 4,634 7,285 7,285 8,974 8,974 10,249 10,249
Total firm obs. with exposure > 20% 157 157 633 633 1,302 1,302 2,133 2,133
Total firm obs. with exposure > 50% 44 44 212 212 435 435 685 685
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry x Time (Hurricane) FE No Yes No Yes No Yes No Yes

Panel B: Inception to 30 trading days (1.5 months) after landfall

Dependent variable: Change in IV (in %), log (IV;‘,T;L+3O/IV;1T;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegion Exposure;, r 1, 31.049"**  21.539™**  8.302*" 4.778 6.369"**  4.368"  8.515""  6.575"*

(3.483) (2.827)  (2.380)  (1.552)  (2.710)  (1.884)  (3.661)  (2.925)
Adjusted R? (%) 35.642 35.922 36.309 36.625 36.294 36.589 36.404 36.693
Total firm obs. 20,298 20,298 20,049 20,049 20,109 20,109 20,237 20,237
Total firm obs. with exposure > 0% 4,629 4,629 7,291 7,291 8,990 8,990 10,263 10,263
Total firm obs. with exposure > 20% 158 158 640 640 1,309 1,309 2,141 2,141
Total firm obs. with exposure > 50% 44 44 215 215 441 441 691 691
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry x Time (Hurricane) FE No Yes No Yes No Yes No Yes
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Table 6: Hurricane effects on implied volatility post landfall (excluding Katrina, Sandy,
and Harvey)

This table reports the coefficients and test statistics when estimating the panel model in equation (10) but when
excluding hurricanes Katrina (2005), Sandy (2012), and Harvey (2017), which are the hurricanes in our sample that
caused most damage. The dependent variable is the change (in percent) in the implied volatility of firm ¢ from the
day before the inception day of the hurricane 7} until 5 (1 week) and 30 (1.5 months) trading days after the landfall
Ty in Panel A and B, respectively. The independent variable measures how much (from 0 to 1) of the geographic
footprint of a firm, that is establishments, is in counties located in the landfall region of a hurricane. To identify
counties that lie in the landfall region of a hurricane we rely on the location of the eye of the hurricane and a radius
of 50, 100, 150, and 200 miles surrounding the eye. For each regression, the total number of firm observations with
an establishment share in the landfall region of greater than 0%, at least 20%, and at least 50%, are reported. The
data are from 1996 to 2017. The values in parentheses are the t-stats. The standard errors are clustered by county
based on a firm’s largest exposure. Industry and time fixed effects are used. The time fixed effect can be interpreted
as a hurricane fixed effect as we include a separate time period in the panel for each hurricane as shown in equation
(10). The significance of the coeflicient estimate is indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Inception to 5 trading days (1 week) after landfall

Dependent variable: Change in IV (in %), log (IWyTths/H/i,T;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegionExposure; g1, 18.924***  12.709**  9.231***  7.150"**  5.500***  3.909**  5.701***  3.835"**
(4.020)  (2.510)  (4.033)  (3.084)  (3.054)  (2.220)  (4.504)  (2.998)

Adjusted R? (%) 13.192 13.749 13.250 13.791 13.239 13.806 13.343 13.914
Total firm obs. 18,072 18,072 17,862 17,862 17,959 17,959 18,062 18,062
Firm obs. with exposure > 0% 4,057 4,057 6,405 6,405 7,847 7,847 9,076 9,076
Firm obs. with exposure > 20% 129 129 538 538 1,053 1,053 1,841 1,841
Firm obs. with exposure > 50% 37 37 182 182 345 345 587 587
Hurricanes 30 30 30 30 30 30 30 30
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry X Time (Hurricane) FE No Yes No Yes No Yes No Yes

Panel B: Inception to 30 trading days (1.5 months) after landfall

Dependent variable: Change in IV (in %), log (I\G,Tthgo/IVi,T;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegionExposure; g1, 37.679"""  26.806™  9.694™" 5.154 8.532™"  5.613*  9.943"**  7.415""
(4.150)  (3.215)  (2.416)  (1.436)  (2.534) (1.875) (3.197)  (2.631)

Adjusted R? (%) 37.355 37.628 37.923 38.245 37.900  38.191 38.038 38.323
Total firm obs. 18,129 18,120 17,924 17,924 18,019 18,019 18,123 18,123
Firm obs. with exposure > 0% 4,059 4,059 6,418 6,418 7,867 7,867 9,097 9,097
Firm obs. with exposure > 20% 130 130 542 542 1,056 1,056 1,847 1,847
Firm obs. with exposure > 50% 37 37 182 182 347 347 589 589
Hurricanes 30 30 30 30 30 30 30 30
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry X Time (Hurricane) FE No Yes No Yes No Yes No Yes
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Table 8: Hurricane effects on implied volatility of insurance firms post landfall

This table reports the coefficients and test statistics when estimating the panel model in equation (10) for insurance
firms. The dependent variable is the change (in percent) in the implied volatility of firm ¢ from the day before the
inception day of the hurricane T until 5 trading days after the landfall T},. The independent variable measures the
share of total premiums written by an insurance firm in states that were in the landfall region of a hurricane. For
Panel A, if at least 10% of a state’s counties lie in the hurricane landfall region, the state is considered to be hit
by the hurricane. For Panel B, the threshold is 25% of the counties. To identify counties that lie in the landfall
region of a hurricane we rely on the location of the eye of the hurricane and a radius of 50, 100, 150, and 200 miles
surrounding the eye. For each regression, the total number of firm observations with an exposure to the states in the
landfall region of greater than 0%, at least 20%, and at least 50%, are reported. The data are from 1996 to 2017.
The values in parentheses are the t-stats. The standard errors are clustered by the state to which the insurance firm
has the largest exposure. The time fixed effect can be interpreted as a hurricane fixed effect as we include a separate
time period in the panel for each hurricane as shown in equation (10). The significance of the coefficient estimate is
indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: State considered hit if 10% or more of the counties were damaged

Dependent variable: Change in IV (in %), log (IVi,Th+5/IVi,T;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegionExposure; r,T, 38.615*** 20.978* 18.232 6.779
(6.882)  (1.902)  (1.571)  (1.060)

Adjusted R? (%) 22.625 18.391 18.958 18.525
Total firm obs. 557 693 731 731
Firm obs. with exposure > 0% 518 660 707 711
Firm obs. with exposure > 20% 17 50 107 149
Firm obs. with exposure > 50% 7 12 24 34
Hurricanes 25 31 33 33
Time (Hurricane) FE Yes Yes Yes Yes

Panel B: State considered hit if 25% or more of the counties were damaged

Dependent variable: Change in IV (in %), log (IVZ-,Tth5/IVi7T;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

LandfallRegionEzxposure; g1,  70.207°**  41.892***  19.887" 23.934**
(4.332)  (6.850)  (L.757)  (2.266)

Adjusted R? (%) 8.407 19.700 18.341 18.699
Total firm obs. 301 601 693 693
Firm obs. with exposure > 0% 277 561 662 672
Firm obs. with exposure > 20% 6 22 55 93
Firm obs. with exposure > 50% 3 7 13 21
Hurricanes 13 27 31 31
Time (Hurricane) FE Yes Yes Yes Yes
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Table 9: Hurricane season outlook effects on implied volatility

This table reports the coefficients and test statistics when estimating the panel model in equation (14). The dependent
variable is the change (in percent) in the implied volatility of firm ¢ from the last trading day before the May Outlook
for the hurricane season is released (T5—1) to 5 trading days thereafter. Options that cover the majority of the
hurricane season (120 to 210 days to expiry) are used. The independent variable AboveAvgSeasonForecasts is the
probability which NOAA assigns to an above average hurricane season in terms of number of storms. In Panel A, the
independent variable Coastal Exposure; s measures the share of a firm’s establishments that are located in Atlantic
and Gulf coastal counties. For columns 4 and 5, the counties on the Atlantic coast north of Florida are excluded. In
Panel B, the independent variable Historical Hurricane Exposure; s measures the share of a firm’s establishments
that are located in counties that over the previous 30 years had a probability of being hit by a hurricane in a given
season of at least 0.05 and 0.1, respectively. For each regression, the total number of firm observations with an
establishment share in the coastal counties (or the counties with an elevated probability of getting hit) of greater
than 0%, at least 20%, and at least 50%, are reported. The data range from 2001 to 2017. The values in parentheses
are the t-stats. The standard errors are clustered by county based on a firm’s largest exposure. Industry and time
fixed effects are used separately and interacted. The significance of the coefficient estimate is indicated by * for p <
0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Atlantic and Gulf coast counties

1v;
Dependent variable: Change in IV (in %), log (%)
tils—1

All coastal counties Excl. counties north of FL

Coastal Exposure; s 1.315* 1.364* 0.998 0.956
(1.850) (1.857) (1.309) (1.194)

Coastal Exposure; s -1.335 -1.415 -0.998 -0.799
x Above AvgSeasonForecasts (-1.028) (-1.067)  (-0.752) (-0.560)
Adjusted R? (%) 3.463 3.853 3.411 3.799
Total firm obs. 11,531 11,531 11,531 11,531
Total firm obs. with exposure > 0% 9,393 9,393 7,589 7,589
Total firm obs. with exposure > 20% 7,583 7,583 2,441 2,441
Total firm obs. with exposure > 50% 2,663 2,663 759 759
Industry FE Yes No Yes No
Time FE Yes No Yes No
Industry X Time FE No Yes No Yes

Panel B: Counties selected based on historical probability of being hit

Counties with prob. > 0.05 Counties with prob. > 0.1

Historical Hurricane Exposure; s 1.533** 1.457** 1.138 1.097

(2.105) (2.021)  (1.436) (1.294)
Historical Hurricane Exposure; s -1.988 -1.843 -1.143 -0.931
x Above AvgSeasonForecasts (-1.464) (-1.346)  (-0.798) (-0.595)
Adjusted R? (%) 3.440 3.822 3.415 3.803
Total firm obs. 11,531 11,531 11,531 11,531
Total firm obs. with exposure > 0% 8,179 8,179 7,186 7,186
Total firm obs. with exposure > 20% 3,997 3,997 2,073 2,073
Total firm obs. with exposure > 50% 1,131 1,131 706 706
Industry FE Yes No Yes No
Time FE Yes No Yes No
Industry X Time FE No Yes No Yes
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1 Hurricane data

The paper uses data on the forecast path and landfall regions of hurricanes. This section describes
how we gather the data from the National Oceanic and Atmospheric Administration (NOAA) and

process them.

1.1 Details on hurricane forecast data

In our paper, we use the wind speed forecasts from NOAA. This wind speed forecasts can be
found in NOAA'’s hurricane archives here https://www.nhc.noaa.gov/archive. For each tropical
storm, NOAA issues text files in real-time that contain wind speed forecasts for five days out for
selected locations along the coast. Figure A1 provides an example of such a text file. The file shows
the coastal locations in the first column, and then provides for each location and three different
wind speeds (34 knots (KT), 50 KT, and 64 KT) a probability and a cumulative probability (in
parentheses) for the location reaching these wind thresholds 12 to a 120 hours out.

We translate these wind speed forecasts into counties that are located in the forecast path of a
hurricane in two steps. First, we apply a series of probability thresholds — a minimum reported
cumulative probability 5 days (120 hours) out for a 64 KT wind speed — ranging from 1 to 50
percent to select locations in the text files. For example, when we apply a probability threshold of

1 percent for 64 KT wind, Surf City, NC, is the only location on this list that is selected. We then

*Kruttli: The Board of Governors of the Federal Reserve System. Email: mathias.s.kruttli@frb.gov. Roth Tran:
The Board of Governors of the Federal Reserve System. Email: brigitte.rothtran@frb.gov. Watugala: Cornell
University. Email: sumudu@cornell.edu.
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map these selected locations to specific counties. In a second step, we add counties that are within
a 75 mile radius of the counties from the first step.! We only focus on the 64 KT wind speed,
because this is the minimum hurricane level wind speed.

Table Al reports summary statistics on the hurricane forecast data. The number of storms for
which we observe forecasts decreases as probability threshold or days to event resolution (hurricane
landfall or dissipation) increases. Panel A reports the mean, median, and standard deviation of the
number of county-date observations for which we have hurricane forecasts for each storm at a given
probability threshold. When using a probability threshold of 1 percent, we include 49 storms, with
the average storm having 306 county-day observations. At a probability threshold of 50 percent,
our sample includes only nine storms with an average of just 7 county-day observations. Panel B

presents the observation count by days to resolution at a given probability threshold.

1.2 Details on hurricane landfall region data

We use hurricane track data collated from forecast advisory files from the NOAA hurricane archives
to determine which counties were located in the hurricane landfall regions. For each hurricane,
NOAA publishes forecast advisory text files from the inception of the storm until the storm dissolves.
Every six hours a new file is published with information on the location, that is the coordinates,
of the storm eye. The file also contains information on the storm category, for example, was the
storm a tropical depression or a hurricane at a given point in time. A lot of storms in NOAA’s
hurricane archive never get close to landfall. We select all the storms for which the eye gets within
50 miles of at least one county while being of hurricane level strength.

To determine the landfall region of each of the selected hurricanes, we first hand collect the
landfall time of the hurricanes from NOAA’s tropical cyclone reports, which can also be found in
the hurricane archives. Then we include all counties in the landfall region that were at one point
within a radius R of the storm eye 24 hours before or after the landfall time.? Having this time
window around the landfall time ensures that we capture counties that lie more inland and counties

that were close to the eye of the hurricane before the actual landfall for hurricanes that move along

!We use Census county centroids for this purpose, which can be found here https://www2.census.gov/geo/tiger/
TIGER2017/COUNTY/.

*We use Census county centroids that can be found here https://www2.census.gov/geo/tiger/ TIGER2017/
COUNTY/.
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the coast. Also, because we only require the storm to be of hurricane level strength at landfall, as
described previously, this methodology captures counties that are affected by strong rainfall even
when the storm windspeeds fall below hurricane level after landfall. While 24 hours is our baseline
time window, we try additional time windows, namely 12, 36, and 48 hours, and the results are
qualitatively similar. The values used for the radius R around the storm eye are 50, 100, 150, and

200 miles.



- - - - WIND SPEED PRCBABILITIES FCR SELECTED LOCATICNS - - - -

FROM FROM FRCM FROM FROM FRCM FRCM

TIME 18Z THU OeZ FRI 18Z FRI 0OeZ SAT 182 SAT 18Z S5UN 18Z MON
PERICDS TC TC TC TC TC TC TC

06Z FRI 182 FRI 06Z S5AT 18Z S5SAT 182 SUN 18Z MON 18Z TUE

FORECAST HOUR (12) (24) (38) (48) (72) (98) (120)
LOCATION KT
DANVILLE VA 34 X X( X) 1( 1) 21 3) 21 5) 1( &) X({ &)

NORFOLK NA&S 34 X X(X) X(X  X(X) 3(3 1(4) X({4)

NORFOLE VA 34 X X(X) X(X) 1(1) 2{3) 1(4) X(4)
OCELNE NAS VA 34 X X(X) X({X) 1{1) 3(4) 1( 35 X{ 5
ELIZREETH CTY 34 X X( X) X({X) 2{2) 4( & 2(8 X{ &)
GREENSBORD NC 34 X X( X) 1( 1) 3{ 4) 4( 8 X(=28) X[ &)
RALEIGH NC 34 X X(X) 1( 1) 4(5) S5{10) XK({10) X(10)

ROCKY MT NC 34 X X(X) 1( 1) 4( 5) 5{10)  X(10)  1(11)

CAPE HATTERAS 34 X X( X} X(X) 4( 4) 8(12) 2(14) X(14)
FAYETTEVILLE 34 X X( X} 5( 5) a(14)  T{21) 1(22) X(22)
CHARLOTTE NC 3¢ X X( X} 5( 5) 4( 9 3(12) 1(13) X(13)
CHERRY BT NC 3¢ X X( X} 2( 2) 8(10) 10(20) 3(23) X(23)
CHERRY BT NC 50 X X( X) X(X) 1( 1) 2(3) X(3) X{3)
NEW RIVER NC 34 ¥ X( X} 2( 2) 7{ 9) 12(21) 4(25) X(25)
NEW RIVER NC 50 X X( X} X({ X} 1( 1) 2(3) 1( 4) X{ 4)
MOREHEAD CITY 34 X X( X) 2( 2} 8(10) 12(22) 4(26) X(28)
MOREHEAD CITY 50 X X( X) X({ ¥X) 1( 1) 2(3) 1( 4) X( 4)
SURF CITY NC 34 X 1( 1) &( &) 11(17) 15(32) 3(35) X (35)
SURF CITY NC 50 X X( X} X(X) 2(2) 4( & X( & X &
SURF CITY NC &4 X X(X) X(X X(X) 1(1) 1(2) X( 2)

Figure Al: Partial sample raw text file for windspeed forecast data

This figure shows a portion of a NOAA wind speed forecast text file for Hurricane Matthew on October 6, 2016.
The left column shows selected locations with wind speed probabilities of at least one percent at the speed of at
least 34 knots (KT) within the 120 hours following the time of the forecast. The next column shows which wind
speed the probabilities for a given row pertain to. When a location has probability of at least 1% of achieving 64
KT wind, then it will also show rows for 34 and 50 KT winds. In each of the following columns, the first number
is the probability of the wind speed within that time frame while the number in parentheses reflects the cumulative
probability of experiencing that wind speed at some point by the end of that period. For example, Surf City, NC,
has an 11 percent probability of experiencing 34 KT winds during the 12-hour window occurring 36-48 hours from
the time of the forecast. The cumulative probability that Surf City, NC will have experienced 34 KT winds within
the next 48 hours is 17 percent.



Table Al: Summary statistics of hurricane forecast data

This table reports summary statistics of NOAA wind speed forecasts from 2007 to 2017 for storms that are forecast
to make landfall within five days with wind speeds of at least 64KT with a given minimum probability. Panel A
reports the mean, median, and standard deviation of the number of county-date observations for which we have
hurricane forecasts for each storm at a given probability threshold. Panel B presents the observation count by days
to resolution (hurricane landfall or, in the case of “misses”, dissipation) at a given probability threshold.

Panel A: Summary statistics of county-days forecast observations per storm

Probability >

1 10 20 40 50
Storms 49 17 14 9 9
County-days observations 14,988 2,093 913 414 335
Mean 305.878  42.714 18.633  8.449 6.837
Std. dev. 402.974 91.761 43.723 20.857 18.004
Median 124.000  0.000 0.000 0.000 0.000

Panel B: Number of county-days forecast observations

Days to dissipation or Probability >
landfall

1 10 20 40 50
1 2,251 536 371 239 199
2 3,131 678 320 149 122
3 3,198 545 159 14 14
4 2,431 187 37 12
5 1,929 101 21 0 0




Table A2: Summary statistics of hurricane landfall region data

This table reports summary statistics on the hurricane landfall regions derived from NOAA data as described in
Section 1.2 of this Online Appendix. Reported are statistics on the number of counties located in hurricane landfall
regions from 1996 to 2017. Landfall regions are based on a range of radii around the eye of the hurricane.

Across all hurricanes By hurricane

Radius around eye of the hurricane  Hurricanes Total counties Unique counties ~Avg. counties SD counties Median counties

50 miles 33.000 832.000 537.000 25.212 15.299 24.000
100 miles 33.000 2,431.000 973.000 73.667 44.020 64.000
150 miles 33.000 4,370.000 1,246.000 132.424 74.903 123.000
200 miles 33.000 6,705.000 1,471.000 203.182 108.634 194.000




2 Additional figures and tables

This section provides additional figures and tables. Figure A2 plots the counties used for the
seasonal outlook analysis in Section 4.2 of the paper. Tables A3 and A4 present the results of
our baseline regressions that estimate the uncertainty before and after hurricane landfall when
measuring the firms’ geographic footprint with county level sales instead of establishments. In
Table A5, we show that our baseline results are robust when double clustering standard errors by
county and time (hurricane). In the paper, our baseline estimations cluster the standard errors
by county to which the firm has the largest exposure. This choice is motivated by geographic
location determining whether a firm is hit or not (see Abadie, Athey, Imbens, and Wooldridge
(2017)). Also, for none of the regressions do we have a sufficient number of hurricanes to cluster
by hurricane, as the recommended minimum number of clusters is 50 (see Bertrand, Duflo, and
Mullainathan (2004)), and using fewer clusters leads to overly conservative standard errors. The
sample with the largest number of hurricanes (33) is used to estimate changes in implied volatility
post landfall, as done in Table A5. Tables A6 and A7 show long-run cumulative abnormal return
differences between hit and control firms 5 trading days (1 week) and 60 trading days (3 months)
after landfall. The two tables are structured as Table 7 in the paper, which shows the cumulative

abnormal return differences up to 120 trading days (6 months) after landfall.



Historical Probability
0%
<5.0%

. 5.0-10%

. 10-15%

15-20%
>20%

(a) Atlantic and Gulf counties (b) Historical probability of hurricane landfall

Figure A2: Coastal counties and hurricanes

This figure plots the coastal counties used for the analysis in Section 6.4. Panel A shows all the counties that are
either directly bordering the Atlantic/Gulf coast or are within a 100 mile distance of a county that does. Panel B
shows the counties’ historical probabilities of being in the landfall region of a hurricane at least once in a given year.
The plotted probabilities are as of 2001 and computed based on a window of 30 years. The landfall regions are based
on a 100 mile radius around the eye of the hurricane.
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Table A4: Hurricane effects on implied volatility post landfall (firms’ geographic foot-
prints based on sales)

This table reports the coeflicients and test statistics when estimating the panel model in equation (10). The dependent
variable is the change (in percent) in the implied volatility of firm ¢ from the day before the inception day of the
hurricane T}, until 5 trading days (1 week) and 30 trading days (1.5 months) after the landfall T} in Panel A and B,
respectively. The independent variable measures how much (from 0 to 1) of the geographic footprint of a firm, that is
sales, is in counties located in the landfall region of a hurricane. To identify counties that lie in the landfall region of
a hurricane we rely on the location of the eye of the hurricane and a radius of 50, 100, 150, and 200 miles surrounding
the eye. For each regression, the total number of firm observations with a sales share in the landfall region of greater
than 0%, at least 20%, and at least 50%, are reported. The data are from 1996 to 2017. The values in parentheses
are the t-stats. The standard errors are clustered by county based on a firm’s largest exposure. Industry and time
fixed effects are used. The time fixed effect can be interpreted as a hurricane fixed effect as we include a separate
time period in the panel for each hurricane as shown in equation (10). The significance of the coefficient estimate is
indicated by * for p < 0.10, ** for p < 0.05, and *** for p < 0.01.

Panel A: Inception to 5 trading days (1 week) after landfall

Dependent variable: Change in IV (in %), log (IVi,T;#5/IVi,T;>

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

Landfall Region Exposure; T, 11.647* 8.067"" 7.133***  5.986™**  3.096""  2.263"  4.133***  3.101"**

(3.413) (2.438) (3.753) (3.159)  (2.255) (1.694)  (4.005) (3.128)
Adjusted R? (%) 12.073 12.59 12.188 12.722 12.166  12.706 12.238 12.792
Total firm obs. 20,201 20,201 20,046 20,046 20,061 20,061 20,126 20,126
Total firm obs. with exposure > 0% 4,529 4,529 7,245 7,245 8,928 8,928 10,174 10,174
Total firm obs. with exposure > 20% 168 168 635 635 1,247 1,247 1,960 1,960
Total firm obs. with exposure > 50% 81 81 320 320 620 620 979 979
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry x Time (Hurricane) FE No Yes No Yes No Yes No Yes
Panel B: Inception to 30 trading days (1.5 months) after landfall
Dependent variable: Change in IV (in %), log (IVi,Th,+30/IVi,T;)

Radius around eye of the hurricane
50 miles 100 miles 150 miles 200 miles

LandfallRegion Exposure; r,T, 24.591"**  16.827***  7.912*" 5.180* 5.403*"  3.783"  7.595™"*  6.141***

(3.107) (2.676) (2.234) (1.736)  (2.349) (1.845)  (3.266) (2.966)
Adjusted R? (%) 35.623 35.952 36.341 36.664 36.481  36.779 36.423 36.698
Total firm obs. 20,267 20,267 20,097 20,097 20,121 20,121 20,184 20,184
Total firm obs. with exposure > 0% 4,525 4,525 7,248 7,248 8,946 8,946 10,190 10,190
Total firm obs. with exposure > 20% 169 169 640 640 1,252 1,252 1,967 1,967
Total firm obs. with exposure > 50% 81 81 325 325 624 624 986 986
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry x Time (Hurricane) FE No Yes No Yes No Yes No Yes
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Table A5: Hurricane effects on implied volatility post landfall (double clustered stan-
dard errors)

This table reports the coeflicients and test statistics when estimating the panel model in equation (10). The dependent
variable is the change (in percent) in the implied volatility of firm ¢ from the day before the inception day of the
hurricane T until 5 trading days (1 week) and 30 trading days (1.5 months) after the landfall T} in Panel A and
B, respectively. The independent variable measures how much (from 0 to 1) of the geographic footprint of a firm,
that is sales, is in counties located in the landfall region of a hurricane. To identify counties that lie in the landfall
region of a hurricane we rely on the location of the eye of the hurricane and a radius of 50, 100, 150, and 200 miles
surrounding the eye. For each regression, the total number of firm observations with an establishment share in the
landfall region of greater than 0%, at least 20%, and at least 50%, are reported. The data are from 1996 to 2017.
The values in parentheses are the t-stats. Industry and time fixed effects are used. The time fixed effect can be
interpreted as a hurricane fixed effect as we include a separate time period in the panel for each hurricane as shown
in equation (10). The standard errors are double clustered by county based on a firm’s largest exposure and by time
period (hurricane). The significance of the coefficient estimate is indicated by * for p < 0.10, ** for p < 0.05, and
*** for p < 0.01.

Panel A: Inception to 5 trading days (1 week) after landfall

Dependent variable: Change in IV (in %), log (I‘/i,T;,,+5/I‘/;’T;)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

Landfall Region Exposure; r,T, 16.833***  11.946** 8.741**  7.191* 5.185* 4.251%  5.444***  4.074**
(2.724)  (2.215)  (2.302) (2.036) (2.102) (1.898)  (2.797)  (2.463)

Adjusted R? (%) 12.077 12.587 12.214  12.715 12173 12.701 12.238 12.779
Total firm obs. 20,240 20,240 19,987 19,987 20,052 20,052 20,184 20,184
Firm obs. with exposure > 0% 4,634 4,634 7,285 7,285 8,974 8,974 10,249 10,249
Firm obs. with exposure > 20% 157 157 633 633 1,302 1,302 2,133 2,133
Firm obs. with exposure > 50% 44 44 212 212 435 435 685 685
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry X Time (Hurricane) FE No Yes No Yes No Yes No Yes

Panel B: Inception to 30 trading days (1.5 months) after landfall

Dependent variable: Change in IV (in %), log (I‘/i,Th-%—SO/I‘/i,T}T)

Radius around eye of the hurricane

50 miles 100 miles 150 miles 200 miles

Landf all Region Exposure; r, T, 31.049"  21.539" 8.302 4.778 6.369 4.368 8.515™  6.575"
(2.086)  (1.660)  (1.121) (0.741) (1.318) (1.042) (1.963) (1.778)

Adjusted R* (%) 35.642 35.922 36.309  36.625 36.294 36.589  36.404 36.693
Total firm obs. 20,298 20,298 20,049 20,049 20,109 20,109 20,237 20,237
Firm obs. with exposure > 0% 4,629 4,629 7,291 7,291 8,990 8,990 10,263 10,263
Firm obs. with exposure > 20% 158 158 640 640 1,309 1,309 2,141 2,141
Firm obs. with exposure > 50% 44 44 215 215 441 441 691 691
Hurricanes 33 33 33 33 33 33 33 33
Industry FE Yes No Yes No Yes No Yes No
Time (Hurricane) FE Yes No Yes No Yes No Yes No
Industry X Time (Hurricane) FE No Yes No Yes No Yes No Yes
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