Discussion of

"Optimal Monetary Policy in Production Networks"

by Jennifer La'O and Alireza Tahbaz-Salehi

Andrea Ferrero

University of Oxford and CEPR

FRBSF Conference on "Macroeconomics and Monetary Policy"

26 March 2021

Question and Results

- How should a central bank conduct monetary policy in an economy with
 - Nominal rigidities
 - Multiple sectors
 - Sectoral linkages (production network)

Question and Results

- How should a central bank conduct monetary policy in an economy with
 - Nominal rigidities
 - Multiple sectors
 - Sectoral linkages (production network)
- Main finding: Stabilize price index assigning higher weight to sectors that
 - Are larger, stickier and more upstream
 - ⁽²⁾ Have less sticky upstream suppliers but stickier downstream customers

Question and Results

- How should a central bank conduct monetary policy in an economy with
 - Nominal rigidities
 - Multiple sectors
 - Sectoral linkages (production network)
- Main finding: Stabilize price index assigning higher weight to sectors that
 - Are larger, stickier and more upstream
 - **2** Have less sticky upstream suppliers but stickier downstream customers
- Output gap stabilization approximates fully optimal policy

- Imperfectly competitive producers of varieties within each sector
 - Technology uses labor and inputs produced by other sectors
 - Sector-specific technology shocks
 - Nominal rigidity: Technology shock imperfectly observable

- Imperfectly competitive producers of varieties within each sector
 - Technology uses labor and inputs produced by other sectors
 - Sector-specific technology shocks
 - Nominal rigidity: Technology shock imperfectly observable
- Competitive producers of sectoral goods (CES aggregator at sectoral level)

- Imperfectly competitive producers of varieties within each sector
 - Technology uses labor and inputs produced by other sectors
 - Sector-specific technology shocks
 - Nominal rigidity: Technology shock imperfectly observable
- Competitive producers of sectoral goods (CES aggregator at sectoral level)
- Households consume CES aggregator over sectoral goods
 - And are subject to a cash-in-advance constraint

- Imperfectly competitive producers of varieties within each sector
 - Technology uses labor and inputs produced by other sectors
 - Sector-specific technology shocks
 - Nominal rigidity: Technology shock imperfectly observable
- Competitive producers of sectoral goods (CES aggregator at sectoral level)
- Households consume CES aggregator over sectoral goods
 - And are subject to a cash-in-advance constraint
- Central bank controls quantity of money (nominal demand)

What Do We Learn from This Paper?

- Compare this paper with two-sector NK model without production network in Woodford (2003)
 - Labor only input in production
 - Perfectly observable sector-specific technology shocks
 - Staggered price setting (Calvo, 1983)

What Do We Learn from This Paper?

- Compare this paper with two-sector NK model without production network in Woodford (2003)
 - Labor only input in production
 - Perfectly observable sector-specific technology shocks
 - Staggered price setting (Calvo, 1983)
- Two dimensions
 - Nominal rigidities as imperfect information
 - Production network

Approximated Equilibrium Conditions

• Sectoral Phillips curves

$$\pi_{jt} = \kappa_j (x_t + \gamma_j q_t) + \beta \mathbb{E}_t \pi_{jt+1}$$

- $q_t \rightarrow$ Price of good 2 relative to good 1 (in log-deviations from flexible-price counterpart)
 - * Endogenous cost-push shock
- + $\gamma_1 \propto n_2 \rightarrow$ Size of sector 2 weights importance of relative price for inflation in sector 1
 - * Similarly, $\gamma_2 \propto -n_1$

Approximated Equilibrium Conditions

• Sectoral Phillips curves

$$\pi_{jt} = \kappa_j (x_t + \gamma_j q_t) + \beta \mathbb{E}_t \pi_{jt+1}$$

- $q_t \rightarrow$ Price of good 2 relative to good 1 (in log-deviations from flexible-price counterpart)
 - ★ Endogenous cost-push shock
- + $\gamma_1 \propto \textit{n}_2
 ightarrow$ Size of sector 2 weights importance of relative price for inflation in sector 1
 - * Similarly, $\gamma_2 \propto -n_1$
- Relative price dynamics

$$q_t = q_{t-1} + \pi_{2t} - \pi_{1t} + \Delta p_{Rt}^*$$

where p_{Rt}^* is price of good 2 relative to good 1 in flexible-price equilibrium

• Per-period loss

$$L_t = w_1 \pi_{1t}^2 + w_2 \pi_{2t}^2 + \lambda_x x_t^2 + \lambda_q q_t^2$$

- ► Size of sector *j*
- Degree of price rigidity in sector j

• Per-period loss

$$L_t = w_1 \pi_{1t}^2 + w_2 \pi_{2t}^2 + \lambda_x x_t^2 + \lambda_q q_t^2$$

- ► Size of sector *j*
- Degree of price rigidity in sector j
- In general,
 - Impossible to stabilize all objectives simultaneously

• Per-period loss

$$L_t = w_1 \pi_{1t}^2 + w_2 \pi_{2t}^2 + \lambda_x x_t^2 + \lambda_q q_t^2$$

- ► Size of sector *j*
- Degree of price rigidity in sector j
- In general,
 - Impossible to stabilize all objectives simultaneously
 - If q_t varies over time, impossible to stabilize π_{1t} , π_{2t} and q_t simultaneously

• Per-period loss

$$L_t = w_1 \pi_{1t}^2 + w_2 \pi_{2t}^2 + \lambda_x x_t^2 + \lambda_q q_t^2$$

- ► Size of sector *j*
- Degree of price rigidity in sector j
- In general,
 - Impossible to stabilize all objectives simultaneously
 - If q_t varies over time, impossible to stabilize π_{1t} , π_{2t} and q_t simultaneously
 - Suboptimal to stabilize aggregate inflation $(\pi_t \equiv n_1 \pi_{1t} + n_2 \pi_{2t})$

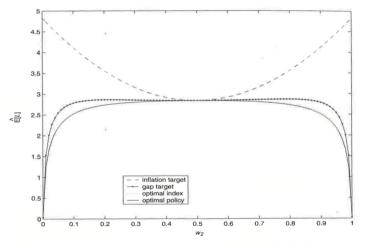


Figure 6.2 Welfare losses under alternative policies with asymmetric disturbances.

Source: Woodford (2003)

Fix average price stickiness and let relative weight on sector 2 vary

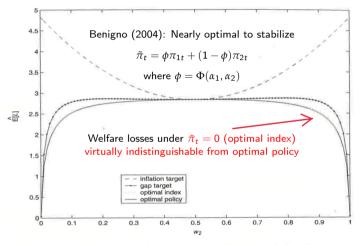


Figure 6.2 Welfare losses under alternative policies with asymmetric disturbances.

Source: Woodford (2003)

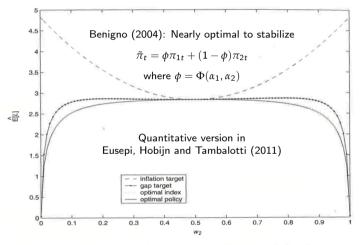


Figure 6.2 Welfare losses under alternative policies with asymmetric disturbances.

Source: Woodford (2003)

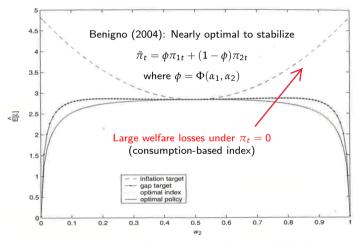


Figure 6.2 Welfare losses under alternative policies with asymmetric disturbances.

Source: Woodford (2003)

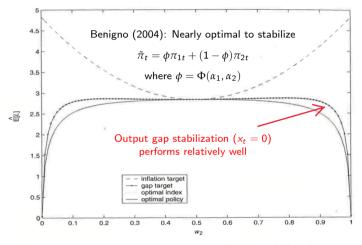


Figure 6.2 Welfare losses under alternative policies with asymmetric disturbances.

Source: Woodford (2003)

Taking Stock

- Nature of nominal rigidities \Rightarrow Static versus dynamic distortions
 - Stabilize price level (information friction) vs. inflation rate (Calvo)

Taking Stock

- Nature of nominal rigidities \Rightarrow Static versus dynamic distortions
 - ► Stabilize price level (information friction) vs. inflation rate (Calvo)
- Does Calvo model imply excessively high costs of inflation?
 - Output gap stabilization closely approximates optimal policy in this paper
 - Stabilization of stickiness-weighted index not much better than CPI targeting or Domar-weighted index

Taking Stock

- Nature of nominal rigidities \Rightarrow Static versus dynamic distortions
 - Stabilize price level (information friction) vs. inflation rate (Calvo)
- Does Calvo model imply excessively high costs of inflation?
 - Output gap stabilization closely approximates optimal policy in this paper
 - > Stabilization of stickiness-weighted index not much better than CPI targeting or Domar-weighted index
- Role of production network not so clear-cut
 - Hard to fully disentangle from role of stickiness
 - ▶ Stickiness (and size) seem to prevail on upstream/downstream and connectedness