The Micro Anatomy of Macro Consumption Adjustments

Rafael GuntinPablo OttonelloDiego PerezNYUMichigan & NBERNYU & NBER

March 26th, 2021

Motivation

- Main macro crises characterized by large consumption adjustments
- Salient examples:

Theoretical Background & Key Idea

Two main hypotheses:

- 1. Neoclassical view (e.g. Aguiar-Gopinath'07, Barro'06)
 - Consumption tracks permanent income
- 2. Credit-tightening view (e.g. Mendoza'05, Eggerston-Krugman'12)
 - Access to credit tightens during crises

Theoretical Background & Key Idea

Two main hypotheses:

- 1. Neoclassical view (e.g. Aguiar-Gopinath'07, Barro'06)
 - Consumption tracks permanent income
- 2. Credit-tightening view (e.g. Mendoza'05, Eggerston-Krugman'12)
 - Access to credit tightens during crises

Key Idea: Two theories have different predictions for cross-section

- Credit tightening: Income-rich households w liquid assets smooth consumption
- Permanent income: All households including income-rich adjust consumption
- \Rightarrow Micro-level anatomy of adjustment informs macro debate

What We Do

- 1. Empirical study micro-level consumption responses during crises
 - Study five episodes of large aggregate consumption adjustment
 - Document: Income-rich with liquid assets adjust consumption, generalized large consumption responses
- 2. Use data to evaluate theories of macro consumption adjustment
 - Quantitative heterogeneous-agent SOE model of consumption
 - Crises experiments capturing two views of aggregate consumption
 - CT-view: decaying patterns of consumption, not observed in data
 - PI-view: goes a long way explaining cross-sectional patterns

Implication for demand-stimulating policies: significantly less powerful

What we don't do:

• Paper does not challenge role of financial frictions for economic activity

Outline

1. Theory

- 2. Empirical Analysis
- 3. Quantitative Model

Preferences & Endowments

- SOE with continumm of heterogeneous agents $i \in [0, 1]$
- Preferences

$$\mathbb{E}_0\left[\sum_{t=0}^\infty \beta^t u(c_{it})\right]$$

• Endowment economy

$$y_{it} = h(\mu_{it}, Y_t)$$

- μ_{it} : idiosyncratic component, stochastic
- ▶ *Y_t*: aggregate component, deterministic (for expositional purposes)
- Mostly focus on $h(\mu_{it}, Y_t) = \mu_{it}Y_t$, study more flexible h(.) in quantative analysis

Asset Markets & Financial Frictions

• Incomplete markets, budget constraint

$$c_{it} = y_{it} + (1+r)a_{it} - a_{it+1}$$

Borrowing constraint

$$a_{it+1} \ge -\kappa f(Y_t)$$

Examples

- $f(Y_t) = 1$: fixed debt limit Bewley models
- $f(Y_t)$ strictly increasing: captures financial amplification mechanism

Crisis Experiments

• At t = 0 economy experiences an unexpected contraction in aggregate income

1. Pl-view crisis experiment

- Income shock permanent, $\log Y_t = \log Y_{t-1} + \rho_g^t \epsilon_Y$
- Borrowing constraint unaffected, $f(Y_t) = 1$
- 2. CT-view crisis experiment
 - Income shock transitory, $\log Y_t = \rho_Y^t \epsilon_Y$
 - Borrowing constraint tightens, $\varepsilon_{fY} \equiv \frac{\partial f(Y_t)}{\partial Y_t} \frac{Y_t}{f(Y_t)} > 0$
- Both experiments can account for the same **aggregate** income and consumption contraction during crisis
- Study cross-sectional responses for households with different μ_{it}

An Analytical Case

- Additional assumptions: $u(c_{it}) = ac_{it} \frac{b}{2}c_{it}^2$, $\beta(1+r) = 1$, $h(\mu_{it}, Y_t) = \mu_{it}Y_t$
- Optimal consumption

• Focus on cons-to-income (C-Y) elasticities

$$\varepsilon_{cy} \equiv \lim_{r \to 0} \frac{\partial c_{it}}{\partial y_{it}} \frac{y_{it}}{c_{it}}$$

Income-Rich to Disentangle Theories

Characterization

Income-rich predicted consumption response differ across theories

- 1. In **PI-view**: income-rich C-Y elast is as large as average elast
 - Constrained households: $\varepsilon_{cy} = 1$
 - ▶ (Permanently) unconstrained households: If $\rho_g = 0$, $\varepsilon_{cy} = 1$
- 2. In CT-view: income-rich C-Y elast is lower than average elast
 - ▶ Constrained households: $\varepsilon_{cy} = g(\varepsilon_{fY}) \ge 1$ with g' > 0
 - ▶ (Permanently) unconstrained: $\varepsilon_{cy} < 1$, increasing in ρ_Y , and $\varepsilon_{cy} \to 0$ when $\rho_Y \to 0$
 - ▶ If μ_{it} mean-reverting, households with low (high) enough μ_{it} are (un)constrained

Also analyze MPCs: differential quantitative predictions, not qualitative

Outline

- 1. Theory
- 2. Empirical Analysis
- 3. Quantitative Model

Episodes of Analysis

Data Sources and Treatment

Sources

- Households' Expenditure and Income, Finance Surveys
- Annual/Biennial frequencies
- Repeated cross-section + panel for Italy, Peru
- Data Representativeness
 More details
 BPP mom

Consumption and Income: Baseline measure

- Monetary non-durable consumption
- Monetary nonfinancial after-tax income
- Residualized (e.g. Blundell, Pistaferri & Preston, 2008)
 Covariates: HH size, geo region, HH head age, education, gender
 Results are robust to other measures of consumption and income

Consumption-Income Elasticities

Main measure: Consumption-income (C-Y) elasticities

- C-Y elasticity of average household in decile $j: \hat{\varepsilon}_{cy}^j = \frac{\Delta \log \bar{c}_j}{\Delta \log \bar{y}_i}$
- \overline{c}_j and \overline{y}_j : average (residualized) C and Y, households in decile j
- Italy: 2006-14, Spain: 2008-13, Mexico: 1994-96, 2006-10, Peru: 2007-10

Why focus on this measure?

- Approximates theoretical object: Avg across deciles "washes out" idiosyncratic shocks
- Useful to distinguish between theories of macro consumption adj

Discuss other measures

• Fixed groups, median individual elasticities, MPCs

Consumption Response of Income-Rich

		Euro ITA	Crises SPA	Emerging-Market Crises MEX '94 MEX '08 PER '08			Average	
$\Delta \log Y$								
	Average	-0.15	-0.15	-0.38	-0.16	-0.09	-0.19	
	Top-Y	-0.08	-0.12	-0.42	-0.19	-0.13	-0.19	
$\Delta \log C$								
	Average	-0.18	-0.15	-0.29	-0.11	-0.08	-0.16	
	Top-Y	-0.17	-0.08	-0.33	-0.17	-0.14	-0.17	
Elasticity								
	Average	1.19	0.97	0.77	0.73	0.90	0.91	
	Top-Y	1.00	1.15	0.78	0.89	1.10	0.98	
N Observations 7,060		7,060	21,802	13,138	27,105	21,170	90,275	
of income • Alt	ernative definit	tions C , Y	► Fixed gr	oups with panel d	ata 🕨 MPC	Individual Elas	ticities • Distributio	on Y changes

Top-5% of iY dynamics

Distribution of Consumption Responses

Additional Empirical Exercises

1. Liquid Wealth

- Elasticities for HH with liquid assets
- Elasticities by differential wealth-to-income ratios > Wealth-to-Income

2. Differential Consumption Baskets

- Elasticities by type of goods (durables/non-durables, tradables/non-tradables, luxury/basic)
 Durables/Non-durables
 Other Types of Goods
- The role of relative prices (Cravino-Levchenko'17) Relative Prices
- 3. Permanent Heterogeneity
 - Accounting for unobservable permanent differences (panel data)
 Permanent Heterogeneity
- 4. Business-Cycle Elasticities
 - Same patterns as crisis elasticities, in contrast with US Business Cycle

Where Are the Smoothers?

High C-Y elasticities found in:

- Households across age
- Households across educational attainment
- Households working in different sectors
- Business owners / non-business owners
- House owners / renters
- Households in different regions
- Detail

Outline

- 1. Theory
- 2. Empirical Analysis
- 3. Quantitative Model

Quantitative Model

Calibration Strategy

- Baseline calibration: Italy, later analyze Mexico
- 2 steps

 - 2. 2 views of crises introduced as unexpected agg shocks
 - Results robust to economy with aggregate risk

PI and CT Experiments

- Both crisis experiments designed to match avg C-Y elasticity Identification
 - PI-view experiment: Calibrate persistence of growth rate of income
 - ▶ CT-view experiment: Calibrate elasticity of borrowing constraint, parametrized as κY_t^{ν}

Consumption Adjustments: Model & Data

(a) PI-view Experiment

2.52.522C-Y Elasticity C-Y Elasticity 1.50.50.5model - model data data 0 2 6 8 10 2 6 8 10 deciles of income deciles of income

(b) CT-view Experiment

• CY elasticities in response to negative agg shock to Y_t

Model Extensions

- 1. Heterogeneous income processes > Go
- 2. Liquid wealth revaluations > Go
- 3. Non-homotheticities > Ita > Mex
- 4. Other shocks
 - Interest rate shock Go
 - Uncertainty shock Go

Implications for Fiscal Policies

- Assess effects of stabilization policies under crisis experiments
- Consider effects of fiscal transfer program:
 - ▶ t = 0: one-time transfer T_0 to HH, financed w. external public debt
 - ▶ $t \ge 1$: flat lump-sum tax to repay interest on public debt, $T_t = -T_0 r$

Policy: Consumption Response to Transfers

Conclusion

- Micro measurement informs debate on macro consumption crises
- Empirical patterns largely consistent with permanent-income view of crises
- Challenge for policies that stimulate aggregate consumption
- Analysis does not rule out financial frictions driving economic activity

Data Representativeness: Italy and Spain (1/2)

Back

Data Representativeness: Mexico and Peru (2/2)

Mexico Consumption

Peru Consumption

Micro Data Description: Italy

- Survey on Household Income and Wealth (SHIW)
- Information on Italian HH's wealth, income and consumption
- Cross-section & rotating panel sub-sample
- Sample period from 1995 to 1998 (triennial) & from 1998 to 2016 (biennial)
- Sample size of 8,000 per wave
- Sample selection criteria
 - 1. HH head between 25 and 60 years old
 - 2. No missing value on characteristics (age, sex, education, HH composition & location)
 - 3. Remove income and consumption outliers
 - 4. HHs in locations with at least 5,000 residents

Micro Data Description: Spain

- Encuesta de Prespuestos Familiares (EPF)
- Information on Spanish HH's income and consumption
- Cross-section
- Sample period from 2006 to 2018 (annual)
- Sample Size of 24,000 per wave
- Sample selection criteria same as SHIW-Italy
- Data on wealth from *The Survey of Household Finances* (EFF)

Back

Micro Data Description: Mexico

- Encuesta Nacional de Ingersos y Gastos de los Hogares (ENIGH)
- Information on Mexican HH's income and consumption
- Cross-section
- Sample period from 1992 to 2014 (biennial, except in 2005)
- Sample Size of 18,000 per wave
- Sample selection criteria same as SHIW-Italy & EPF-Spain

Back

Micro Data Description: Peru

- Encuesta Nacional de Hogares (ENAHO))
- Information on Peruvian HH's income and consumption
- Cross-section
- Sample period from 2004 to 2018 (annual)
- Sample Size of 28,000 per wave
- Sample selection criteria same as SHIW-Italy, EPF-Spain & ENAHO-Mexico • Back

BPP Moments

• BPP income and consumption process

$$\begin{split} \Delta y_{i,t} &= \zeta_{i,t} + \varepsilon_{i,t} + (\theta - 1)\varepsilon_{i,t-1} - \theta\varepsilon_{i,t-2} \\ \Delta c_{i,t} &= \phi\zeta_{i,t} + \varphi\varepsilon_{i,t} + \epsilon_{i,t} \end{split}$$

• We estimate the partial insurance coefficients for permanent and transitory idiosyncratic shocks

	U.S .	ITA	PER
Persistent shocks (ϕ)	0.642	0.662	0.786
Transitory shocks ($arphi$)	0.053	0.297	0.204

Consumption Response of Income-Rich

		Euro Crises		Emergi	A		
		ITA	SPA	MEX '94	MEX '08	PER '08	Average
$\Delta \log Y$							
_	Average	-0.15	-0.15	-0.38	-0.16	-0.09	-0.19
	Top10-Y	-0.08	-0.12	-0.42	-0.19	-0.13	-0.19
	Top5-Y	-0.07	-0.13	-0.43	-0.22	-0.15	-0.20
$\Delta \log C$							
	Average	-0.18	-0.15	-0.29	-0.11	-0.08	-0.16
	Top10-Y	-0.08	-0.14	-0.33	-0.17	-0.14	-0.17
	Top5-Y	-0.10	-0.15	-0.30	-0.21	-0.16	-0.19
Elasticity							
	Average	1.19	0.97	0.77	0.73	0.90	0.91
	Top10-Y	1.00	1.15	0.78	0.89	1.10	0.98
	Top5-Y	1.53	1.12	0.71	0.96	1.07	1.08
N Observations		7,060	21,802	13,138	27,105	21,170	90,275

Consumption Response of Income-Rich: ${\cal C}$ and ${\cal Y}$ Definitions Robustness

	Euro	Crises	Emerging-Market Crises			A
	ITA	SPA	MEX '94	MEX '08	PER '08	Average
Non-Residual						
Avera	ge 1.09	1.18	0.77	0.48	0.80	0.87
Top-Y	0.89	1.54	0.88	0.65	1.08	1.04
Total Monetary						
Avera	ge 1.52	1.18	0.76	0.88	0.86	1.04
Top-Y	1.46	1.51	0.68	1.01	0.96	1.12
Monetary and No	on-Monetary					
Avera	ge 1.18	1.16	0.81	0.88	0.87	0.98
Тор-Ү	<i>'</i> 1.35	1.41	0.71	1.07	1.01	1.11
N Observations	7,060	21,802	13,138	27,105	21,170	90,275
Consumption Response of Income-Rich and Wealthy: Panel Data

		Euro Crises ITA	E-M Crises PER '08	Average
	Average	-0.06	-0.07	-0.07
$\Delta \log Y$	Top-Y	-0.04	-0.09	-0.07
	Top-W	-0.05	-0.25	-0.15
	Average	-0.08	0.11	-0.10
$\Delta \log C$	Top-Y	-0.06	-0.16	-0.11
	Top-W	-0.05	-0.33	-0.19
	Average	1.40	1.65	1.53
Elasticity	Top-Y	1.34	1.75	1.55
	Top-W	1.11	1.32	1.21
N Observat	ions	1,044	2,114	3,158

Consumption Response of Income-Rich: MPC

		Euro Crises		Emergi	Average		
		ITA	SPA	MEX '94	MEX '08	PER '08	Average
Elasticity							
	Average	1.19	0.97	0.77	0.73	0.90	0.91
	Top10-Y	1.00	1.15	0.78	0.89	1.10	0.98
	Top5-Y	1.53	1.12	0.71	0.96	1.07	1.08
MPC							
	Average	1.12	0.98	0.75	0.69	0.78	0.87
	Top10-Y	0.77	0.87	0.59	0.65	0.61	0.70
	Top5-Y	1.11	0.78	0.49	0.64	0.53	0.71
N Observa	ations	7,060	21,802	13,138	27,105	21,170	90,275

Consumption Responses: Individual Elasticities

		Euro Crises ITA	EM Crises PER '08	Average
Elasticity	Average	1.40	1.65	1.53
	Top-Y	1.34	1.75	1.55
Individual Elasticity	Average	0.48	0.35	0.42
	Top-Y	0.37	0.33	0.35
MPC	Average	1.30	1.43	1.37
	Top-Y	1.18	1.27	1.23
Individual MPC	Average	0.45	0.31	0.38
	Top-Y	0.31	0.23	0.27
N Observations		1,044	2,114	3,158

Distribution of Income Changes Back to Data Back to Model

Distribution of Income Changes Back to Data Back to Model

(a) Euro Crises

(b) Emerging-Market Crises

2012

Elasticity of HH with Liquid Wealth - Back

		Euro Crises		Emergi	Δνοτασο		
		ITA	SPA	MEX '94	MEX '08	PER '08	Average
$\Delta \log Y$							
	Average	-0.11	-0.13	-0.40	-0.12	-0.30	-0.21
	Top-Y	-0.12	-0.11	-0.43	-0.18	-0.21	-0.21
$\Delta \log C$							
	Average	-0.13	-0.13	-0.33	-0.07	-0.20	-0.17
	Top-Y	-0.12	-0.16	-0.35	-0.14	-0.19	-0.19
Elasticity							
	Average	1.15	1.00	0.83	0.65	0.68	0.86
	Top-Y	1.00	1.15	0.81	0.81	0.87	1.00
N Observ	ations	7,060	21,802	13,138	27,105	21,170	90,275

C-to-Y Elasticity for Low and High Liquid Wealth Households

ltaly -	Euro	Crisis
---------	------	--------

		Liquid	Non-Liquid	Debt	Net Wealth
W/Y					
	Low	0.18	1.45	0.22	1.90
	High	1.75	11.26	2.48	12.53
Elasticity					
	Low	1.14	1.05	1.10	1.02
	High	1.48	1.39	1.23	1.47
N Observatio	ons	6,025	7,067	2,338	7,067

Income-to-Consumption Elasticity by Consumption Basket (1/2)

	Euro	Crises	Emerging-Market Crises			Average
	ITA	SPA	MEX '94	MEX '08	PER '08	Average
Non-Durable						
Averag	e 1.19	0.97	0.77	0.73	0.90	0.91
Top-Y	1.00	1.15	0.78	0.89	1.10	0.98
Durable						
Averag	e 2.05	1.21	0.71	1.65	2.12	1.55
Top-Y	3.27	1.86	0.53	1.53	1.71	1.78
N Observations	7,060	21,802	13,138	27,105	21,170	90,275

Income-to-Consumption Elasticity by Consumption Basket (2/2)

		Euro Crises	Emerging-	Average	
		SPA	MEX '94	MEX '08	Average
Tradable	Average	1.19	0.60	0.41	0.73
	Top-Y	1.21	0.33	0.81	0.78
Non-Tradable	Average	1.16	0.98	1.66	1.27
	Top-Y	1.74	0.95	1.38	1.36
Luxury	Average	4.19	0.94	1.97	2.37
	Top-Y	5.24	0.69	1.73	2.55
Non-Luxury	Average	0.75	0.67	0.34	0.59
	Top-Y	0.87	0.55	0.48	0.63
N Observation	S	21,802	13,138	27,105	40,243

C-Y Elasticities Adjusted by Inflation Heterogeneity

	Emergi	Emerging-Market Crises				
	MEX '94	MEX '94 MEX '08 PER '08				
Average - Top-Y Inflation	2.0%	0.9%	1.3%	1.4%		
Elasticity						
Average	0.77	0.73	0.90	0.80		
Top-Incor	ne 0.78	1.02	1.05	0.95		
N Observations	13,138	27,105	21,170	61,413		

 \bullet Calculate change in consumption using inflation specific to each income group \bullet_{Back}

The Role of Permanent Heterogeneity

	Euro Crises ITA	E-M Crises PER '08	Average
Low-Elasticity			
Average	0.87	0.63	0.75
Top-Y	0.61	0.73	0.67
High-Elasticity			
Average	1.15	1.46	1.30
Top-Y	0.98	1.61	1.30
N Observations	1,463	2,537	4,000

 \bullet Group households according to their consumption response to individual income \bullet_{Back}

From Crises to Business Cycles

• Estimate C-Y elasticities for each Y-quintile for all the cycle

$$\Delta \ln c_{q,t} = \alpha_q + \beta_q \Delta \ln y_{q,t} + \varepsilon_{q,t}$$

Where Are the Smoothers? Elasticity (1/2)

		Euro Crises		Emerging-Market Crises			Avorago
		ΙΤΑ	SPA	MEX '94	MEX '08	PER '08	Average
Age	$\leq 35 \\ > 35, \leq 50 \\ > 50$	1.22 1.30 0.96	0.79 0.96 1.19	0.71 0.82 0.77	0.70 0.76 0.69	1.05 0.93 0.69	0.87 0.96 0.87
Education	Low High	1.31 1.10	0.91 1.02	0.77 0.70	0.70 0.75	1.32 0.76	1.00 0.87
Firm own	Yes No	1.49 1.13	1.74 0.93	0.69 0.79	0.96 0.59	1.32 0.83	1.24 0.86
House own	Yes No	1.41 0.92	1.05 0.80	0.80 0.65	0.70 0.76	0.87 0.80	0.97 0.79
N Observations		7,060	21,802	13,138	27,105	21,170	90,275

Where Are the Smoothers? Elasticity (2/2)

		Euro Crises		Emerging-Market Crises			Avorago
		ITA	SPA	MEX '94	MEX '08	PER '08	Average
Location	Large Pop	1.43	0.87	0.82	0.78	0.81	0.94
	Low Pop	0.95	1.10	0.68	0.59	0.98	0.86
	Primary	1.10	0.92	0.71	0.68	0.77	0.87
Sectors	Industry	1.13	0.92	0.75	0.68	0.79	0.85
	Services	1.19	1.03	0.80	0.75	0.97	0.99
N Observations		7,060	21,802	13,138	27,105	21,170	90,275

Steady-State Calibration

- Functional forms
 - CRRA utility
 - Idiosyncratic income: $\ln \mu_{it} \operatorname{AR}(1)$
- Fix standard parameters (risk aversion, risk-free rate)
- Calibrate $(\rho_{\mu}, \sigma_{\mu})$ to match panel moments of income
- Calibrate (β, κ) params to match wealth-to-income ratio and HtM share

Variable	Model	Data
Wealth-to-income ratio	0.87	0.87
Hand-to-mouth share	0.23	0.23

Crisis Experiments

1. Pl-view crisis experiment

- Permanent shock to agg income & borrowing constraint unaffected
- Parametrize as persistent shock to growth rate of income
- Calibrate persistence to match avg C-Y elasticity

2. CT-view crisis experiment

- Transitory shock to agg income & borrowing constraint tightened
- Parametrize borrowing constraint as κY_t^{ν}
- Calibrate elasticity borr constraint ν to match avg C-Y elasticity

Parameters
Untargeted Moments
Back

Parametrization

Parameter		Value
Discount factor	β	0.90
Risk-aversion coefficient	γ	2.00
Risk-free interest rate	r*	0.02
Persistence of idiosyncratic process	$ ho_{\mu}$	0.88
Volatility of idiosyncratic process	σ_{μ}	0.26
Financial constraints	κ	0.23

Targeted and Untargeted Moments

Variable	Model	Data
Targeted		
Wealth-to-income ratio Hand-to-mouth share	0.87 0.23	0.87 0.23
Non-Targeted		
Gini index income	0.30	0.34
Income share bottom 75	0.49	0.56
Income share top 10	0.24	0.23
Income share top 5	0.15	0.13
Gini index wealth	0.58	0.74
Wealth share bottom 75	0.09	0.14
Wealth share top 10	0.59	0.65
Wealth share top 5	0.39	0.51

Identification of Crisis Persistence and Elasticity of Borrowing Constraints

- Larger persistence of growth shocks \rightarrow larger PI-elasticity
- Larger elasticity of borrowing constraint \rightarrow larger CT-elasticity for low income mostly

Permanent Shock to Borrowing Constraint

• Simulate episode w. permanent shock to borrowing constraint

Consumption-Income Elasticities: Protracted Crisis

(a) PI-view Experiment (b) CT-view Experiment 2.52.52 2 C-Y Elasticity Φ C-Y Elasticity 1.5baseline ----- baseline 0.5 0.5simulated ♦ simulated data o data • 0 0 9 6 8 10 2 6 8 10 deciles of income deciles of income

Consumption-Income Elasticities: Alternative Exercises

(a) PI-view Experiment (b) CT-view Experiment 2.52.5haseline - baseline theoretical ♦ theoretical 2 data data C-Y Elasticity C-Y Elasticity 1.50.50.50 0 2 6 8 10 2 6 8 10 deciles of income deciles of income

MPC: Model & Data

(a) PI-view Experiment

(b) CT-view Experiment

Robustness Episode Window: Italy

• We check robustness using 2006 (baseline), 2008 and 2010 as alternative pre-crisis peaks • Back

Consumption Adjustments in Close Econ: Model & Data

(a) PI-view Experiment

(b) CT-view Experiment

• Market clears at agg lev of initial st-st liquid assets

Consumption Adjustments in Close Econ: Interest Rate

Interest rate (r)

Consumption-Income Elasticities: Model with Aggregate Risk

- PI: trend and transitory shocks
- FF: transitory shocks

Heterogeneous Income Processes -> Back

- Estimate heterogeneous loadings to aggregate income shock
 - Income-poor have higher loadings to shock

Heterogeneous Income Processes

- Estimate heterogeneous loadings to aggregate income shock
 - Assume income process $y_{it} = \mu_{it} Y_t^{\Gamma(\mu_{it})}$
 - Estimate for each income decile $d: \Delta \ln (y_{d,t}) = \Gamma_d \Delta \ln (Y_t) + \varepsilon_{d,t}$

Low-income households have higher loadings to shock Distribution Y changes Y dynamics

CY Elasticities with Wealth Revaluations - Back

- Joint shock with wealth revaluations observed in data > Data
 - Income-rich more affected (larger asset price drops, higher wealth)

Wealth Revaluation During Euro Crisis - Back

- · Joint shock with wealth revaluations observed in data
 - Assume wealth drop $\Delta p_{it}a_{it}$, estimate Δp_{it} from data
 - Income-rich more affected (larger asset price drops, higher wealth)

- low-risk = deposits + gov. bonds
- high-risk = stocks + other lending

CY Elasticities w Non-Homotheticities: Italy > Back

- Subsistence level of consumption (Stone-Geary preferences)
 - Informed by poverty measures in data

CY Elasticities w Non-Homotheticities: Mexico - Back

(a) PI-view Experiment

(b) CT-view Experiment

Subsistence C Level

Subsistence Level of Consumption

- Subsistence level of consumption (Stone-Geary preferences)
- Choose the \underline{c} to match the share of HH with income below indigence level

Interest Rates in Crisis Episodes

Income + Interest Rate Shock: Mexico

• Feed in asymmetric shock to saving & borrowing interest rates

Income + Uncertainty Shock

• Feed in assymetric uncertainty shock from data

$$\ln(\sigma_{d,t+1}) = \alpha_d + \Sigma_d \ln(\sigma_t) + \varepsilon_{d,t+1}$$

Income + Uncertainty Shock: C-Y Elasticities

(a) PI-view Experiment

(b) CT-view Experiment

Back

Policy Analysis: Fiscal Policies with Varying Progressivity

(a) Initial Transfers

(b) Aggregate Response

• Tax scheme progressivity indexed by τ (eg. if larger then more progressive) with initial transfer $T_0(\mu_{it}) = X e^{\tau \mu_{it}}$

Back