Optimal Monetary Policy in Production Networks by Jennifer La'O and Alireza Tahbaz-Salehi

Discussed by Mathieu Taschereau-Dumouchel

Cornell University

Federal Reserve Bank of San Francisco Macro Conference

Introduction

- Outline for this discussion
 - 1. Brief overview of standard production network model
 - 2. Overview of findings from the paper
 - 3. Comments and suggestions

Simplest production network model

• We have n firms $i \in \{1, ..., n\}$ each with CRS technology

$$y_i = z_i \zeta_i I_i^{\alpha_i} \prod_{j=1}^n x_{ij}^{a_{ij}}$$

where z_i is TFP and ζ_i is a constant.

Look at the minimal cost of producing one unit (numeraire = wage

$$K_i\left(p_1,\ldots,p_n
ight) = \min_{x,l} l + \sum_{j=1}^n p_j x_{ij}$$

subject to $y_i \ge 1$

With Cobb-Douglas

$$K_i\left(p_1,\ldots,p_n
ight)=rac{1}{z_i}\prod_{j=1}^n p_j^{a_i}$$

Simplest production network model

• We have n firms $i \in \{1, ..., n\}$ each with CRS technology

$$y_i = z_i \zeta_i I_i^{\alpha_i} \prod_{j=1}^n x_{ij}^{a_{ij}}$$

where z_i is TFP and ζ_i is a constant.

Look at the minimal cost of producing one unit (numeraire = wage)

$$K_i(p_1, \dots, p_n) = \min_{x,l} I + \sum_{j=1}^n p_j x_{ij}$$

subject to $y_i \ge 1$

With Cobb-Douglas

$$K_i(p_1,\ldots,p_n)=\frac{1}{z_i}\prod_{j=1}^n p_j^a$$

• We have n firms $i \in \{1, \dots, n\}$ each with CRS technology

$$y_i = z_i \zeta_i I_i^{\alpha_i} \prod_{j=1}^n x_{ij}^{a_{ij}}$$

where z_i is TFP and ζ_i is a constant.

Look at the minimal cost of producing one unit (numeraire = wage)

$$K_i(p_1, \dots, p_n) = \min_{x,l} I + \sum_{j=1}^n p_j x_{ij}$$

subject to $y_i \ge 1$

With Cobb-Douglas

$$\mathcal{K}_i\left(p_1,\ldots,p_n
ight)=rac{1}{z_i}\prod_{j=1}^n p_j^{a_{ij}}$$

Under perfect competition, it must be that

$$p_i = K_i (p_1, \dots, p_n)$$

$$p_i = \frac{1}{z_i} \prod_{i=1}^n p_i^{a_{ij}} \tag{*}$$

- Things to notice:
 - 1. Price of a good depends on its TFP and on the price of its inputs.
 - 2. Prices propagate downstream
- Hulten's theorem:

$$\frac{d\log Y}{d\log z_i} = v_i$$

where $v_i = \frac{p_i y_i}{\sum_{j=1}^n p_j c_j}$ is the **Domar weight** of i (its sales share)

Under perfect competition, it must be that

$$p_i = K_i (p_1, \dots, p_n)$$

$$p_i = \frac{1}{z_i} \prod_{i=1}^n p_i^{a_{ij}} \tag{*}$$

- Things to notice:
 - 1. Price of a good depends on its TFP and on the price of its inputs.
 - 2. Prices propagate downstream
- Hulten's theorem:

$$\frac{d\log Y}{d\log z_i} = v_i$$

where $v_i = \frac{p_i y_i}{\sum_{j=1}^n p_j c_j}$ is the **Domar weight** of i (its sales share)

Under perfect competition, it must be that

$$p_i = K_i (p_1, \dots, p_n)$$

$$p_i = \frac{1}{z_i} \prod_{i=1}^n p_i^{a_{ij}} \qquad (\star)$$

- Things to notice:
 - 1. Price of a good depends on its TFP and on the price of its inputs.
 - 2. Prices propagate downstream
- Hulten's theorem:

$$\frac{d\log Y}{d\log z_i} = v_i$$

where $v_i = \frac{p_i y_i}{\sum_{j=1}^n p_j c_j}$ is the **Domar weight** of i (its sales share)

Monetary policy in a network

Network of firms with sticky prices

- Standard monetary policy in many models: Stabilize the price level to minimize distortions
 - Should we still target a price? Which price? Consumer price index? Producer price index? Some other average of firm prices?
 - All prices are all related

$$p_i = \frac{1}{z_i} \prod_{i=1}^n p_j^{a_{ij}}$$

If we stabilize one price there are consequences all through supply chains.

Monetary policy in a network

Network of firms with sticky prices

- Standard monetary policy in many models: Stabilize the price level to minimize distortions
 - Should we still target a price? Which price? Consumer price index? Producer price index? Some other average of firm prices?
 - ► All prices are all related

$$p_i = \frac{1}{z_i} \prod_{j=1}^n p_j^{a_{ij}}$$

If we stabilize one price there are consequences all through supply chains.

Production network in the U.S.

Source: Taschereau-Dumouchel (2020), data from Factset 2015

Optimal Monetary Policy

This paper: best way to conduct monetary policy in production network

- Great question without an obvious answer!
- Two key results
 - 1. No monetary policy can implement first-best allocation
 - 2. The optimal monetary policy takes the form

$$\sum_{s=1}^n \psi_s \log p_s = 0$$

Optimal Monetary Policy

This paper: best way to conduct monetary policy in production network

- Great question without an obvious answer!
- Two key results:
 - 1. No monetary policy can implement first-best allocation
 - 2. The optimal monetary policy takes the form

$$\sum_{s=1}^n \psi_s \log p_s = 0$$

Optimal Monetary Policy

$$\sum_{s=1}^n \psi_s \log p_s = 0$$

The paper shows that optimal policy puts larger weight ψ_{s} on

- 1. industries with larger Domar weights
 - ▶ These have the most influence from Hulten's theorem
- 2. stickier industries
 - These are where the inefficiencies are largest
- 3. more upstream industries
 - Those have the most impact on other firms (recall prices propagate from a supplier to its customer)
- industries with less sticky upstreams suppliers and stickier downstream customers
 - ▶ Less sticky suppliers → own price is volatile
 - ▶ Stickier customers → large misallocation from volatility

Comments

- Broad comments:
 - Great paper!
 - ► Elegant theory:
 - just the right ingredients to capture the main forces
 - · characterize things sharply even with all the complexity
- Comments that follow
 - Thoughts about big picture and next steps
 - Suggestions about exposition

Thoughts/Suggestions

- Static model in a dynamic world
 - In reality, price setting is a forward looking activity
 - Firms want to minimize future cost of price adjustment
 - ▶ This is absent from the paper
 - ▶ Not clear what are the implications of introducing dynamics here
 - Best guess: no fundamental change in main mechanism but maybe in magnitude
 - Dynamics in network models can easily become intractable...

Thoughts/Suggestions

- Only downstream propagation of shocks (I think)
 - ▶ Under different demand structure they could also propagate upstream
 - If a customer changes its price, its sales might change and its demand from a supplier would also change. If supplier has monopoly power they might change their price.
 - ► This would add an additional channel for monetary policy to operate
 - Not clear how important this channel is in reality

- What if the policy maker does not know the detailed micro-structure?
 - ▶ Lots of information is needed to conduct optimal monetary policy
 - Full network, price stickiness parameters, etc...
 - Surprising finding from the paper: stabilizing the output gap is almost as good as the optimal policy

	optimal policy (1)	output-gap stabilization (2)
Welfare loss (percent consumption)	2.98	2.99
within-industry misallocation	2.66	2.67
across-industry misallocation	0.32	0.32
output gap volatility	10^{-5}	0
Cosine similarity to optimal policy	1	0.9957

- Is that a general result? Or is it a coincidence?
- Would be very interesting if a general (Hulten like) result could be established

Concluding thoughts

- Great paper!
- Opens the door to further work on this topic