Discussion of "Labor Market Shocks and Monetary Policy"

Masao Fukui

March 2023

by Birinci, Mercan, Karahan, See

- Two agents: permanent income & hand-to-mouth
- Retailers purchase labor service at a price p_t^l/P_t and set price with Calvo/Rotemberg: $\pi_t = \delta_p \ln(p_t^l / P_t) + \beta \pi_{t+1}$
- All jobs homogenous (z = 1)
 - When $U \to E$, piece rate $\gamma \in [0,1]$, lose job at rate s, OJS intensity ν_t • When E meets other employers, extract full surplus, $\gamma = 1$
- Free entry

$$k = q(\theta_t) \frac{u_{t-1}}{u_{t-1} + \nu_t (1 - u_{t-1})} J_t,$$

- Market clearing: $C_t = Y_t = (1 u_t)$ (assume $b, k \rightarrow 0$)
- Monetary policy sets $\{R_t\}$

Stylized Model

$$J_{t} = (1 - \gamma)(p_{t}^{l}/P_{t}) + \frac{(1 - s)(1 - \nu_{t+1}f(\theta_{t+1}))}{R_{t}}$$

Supply Block

Generalized Phillips Curve: Ask $\{Y_t, R_t, \iota\}$ • Canonical NKPC: $\hat{\pi}_t = \kappa \sum_{s=t}^{\infty} \beta^{s-t} \hat{Y}_s$

- Steps toward obtaining GPC:
 - 1. $\{Y_t\}$ pins down $\{u_t\}$, from $Y_t = 1 u_t$ 2. $\{u_t, v_t\}$ pins down $\{v_t\}$, from labor market flows 3. $\{v_t, v_t\}$ and $\{R_t\}$ pin down $\{p_t^l/P_t\}$, from free entry
 - 4. $\{p_t^l/P_t\}$ pin down inflation through price-setting equation

$$\nu_t\}_{t=0}^{\infty} \to \{\pi_t\}_{t=0}^{\infty}$$

Phillips Curve in the Textbook NK

Linearize:

$\hat{\pi} = \mathbf{K}_{Y}\hat{\mathbf{Y}} + \mathbf{K}_{R}\hat{\mathbf{R}} + \mathbf{K}_{\nu}\hat{\nu}$

Philips Curve with Labor Market $\hat{\pi} = \mathbf{K}_Y \hat{\mathbf{Y}} + \mathbf{K}_R \hat{\mathbf{R}} + \mathbf{K}_\nu \hat{\nu}$

- One can prove $\mathbf{K}_{\nu} \geq \mathbf{0}$:
 - positive OJS shock ⇒ congestion ↑ ⇒ positive markup shock
- Labor market also changes the entire shape of GPC, \mathbf{K}_Y and \mathbf{K}_R

Demand Block

- $\{Y_t, R_t, \nu_t\}_{t=0}^{\infty} \to \{C_t\}_{t=0}^{\infty}$
- $\{Y_t, \nu_t\}$ uniquely map to $\{v_t\}$ and $\{l_t^i\}$ from labor market flow
- { v_t, v_t, R_t } pin down { p_t^l/P_t } from free entry
- $\{p_t^l/P_t\}$ and $\{l_t^i\}$ determine the sequence of labor and profits income
- In turn, sequence of income and interest rates give $\{C_t\}$
- Imposing market clearing ⇒ IS curve (intermpotral Keynsian cross):

Linearizing

- $\mathbf{Y} = C(\mathbf{Y}, \mathbf{R}, \nu)$
- $\hat{\mathbf{Y}} = \mathbf{M}_{Y}\hat{\mathbf{Y}} + \mathbf{M}_{R}\hat{\mathbf{R}} + \mathbf{M}_{\nu}\hat{\nu}$

Representative Agent NK Moscaini & Postel-Vinay (2022): RANK $\hat{\mathbf{Y}} = \mathbf{M}_{Y}\hat{\mathbf{Y}} + \mathbf{M}_{R}\hat{\mathbf{R}} + \mathbf{M}_{\nu}\hat{\nu}$

IRF to OJS Shock (constant *R***)** $\hat{\pi} = \mathbf{K}_{Y}\hat{\mathbf{Y}} + \mathbf{K}_{R}\hat{\mathbf{R}} + \mathbf{K}_{\nu}\hat{\nu}$ $\hat{\mathbf{Y}} = \mathbf{M}_{Y}\hat{\mathbf{Y}} + \mathbf{M}_{R}\hat{\mathbf{R}} + \mathbf{M}_{\zeta}\hat{\boldsymbol{\zeta}}$

• $\nu \uparrow$ is positive markup shock and positive agg. demand shock \Rightarrow amplifies inflation response relative to RANK

Dual Mandate Optimal Monetary Policy

- s.t. $\hat{\pi} = \mathbf{K}_{V}\hat{\mathbf{Y}} + \mathbf{K}_{R}\hat{\mathbf{R}} + \mathbf{K}_{L}\hat{\nu}$ $\hat{\mathbf{Y}} = \mathbf{M}_{V}\hat{\mathbf{Y}} + \mathbf{M}_{R}\hat{\mathbf{R}} + \mathbf{M}_{\nu}\hat{\boldsymbol{\nu}}$
 - $\mathbf{Q}_{\pi,R}\mathbf{b}\hat{\pi} + \Psi\mathbf{Q}_{Y,R}\mathbf{b}\hat{\mathbf{Y}} = \mathbf{0}$
- $\hat{\mathbf{R}} = \Xi_{R,\nu} \hat{\nu}$ $\hat{\mathbf{R}} = \Xi_{R,\pi} \hat{\pi}, \quad \hat{\mathbf{R}} = \Xi_{R,\nu} \hat{\mathbf{Y}}, \text{ or } \hat{\mathbf{R}}_t = \tilde{\Xi}_{R,\pi} \hat{\pi} + \tilde{\Xi}_{R,\nu} \hat{\mathbf{Y}}$

BKMS Implementation

BKMS argument $\min_{\{\hat{Y}_{t},\hat{\pi}_{t},\hat{R}_{t},\Phi_{u},\Phi_{EE}\}} \sum_{t} \beta^{t} [\hat{\pi}_{t}^{2} + \Psi_{y}\hat{Y}_{t}^{2}]$ s.t. $\hat{\pi} = \mathbf{K}_{Y}\hat{\mathbf{Y}} + \mathbf{K}_{R}\hat{\mathbf{R}} + \mathbf{K}_{v}\hat{\nu}$ $\hat{\mathbf{Y}} = \mathbf{M}_{Y}\hat{\mathbf{Y}} + \mathbf{M}_{R}\hat{\mathbf{R}} + \mathbf{M}_{v}\hat{\nu}$ $\hat{R}_{t} = 1.5\hat{\pi}_{t} + \Phi_{u}u_{t} + \Phi_{EE}EE_{t}$

- 1. Qualitatively, has to be true
- 2. Quantitatively, 10% reduction in losses. Help me understand.
 - Is this big? Relative to what? Output, UE rate, ALP, lags?
 - If so, why? $\Phi_{\pi} = 1.5$? $\Phi_{y} = 0$? Lack of leads and lags? Multiple shocks?
 - Starting from a relaxed problem helpful. Want to understand the principle

$$\min_{\{\hat{Y}_{t},\hat{\pi}_{t},\hat{R}_{t},\Phi_{u}\}} \sum_{t} \beta^{t} [\hat{\pi}_{t}^{2} + \Psi_{y}\hat{Y}_{t}^{2}]$$
s.t. $\hat{\pi} = \mathbf{K}_{Y}\hat{\mathbf{Y}} + \mathbf{K}_{R}\hat{\mathbf{R}} + \mathbf{K}_{v}\hat{\nu}$
 $\hat{\mathbf{Y}} = \mathbf{M}_{Y}\hat{\mathbf{Y}} + \mathbf{M}_{R}\hat{\mathbf{R}} + \mathbf{M}_{v}\hat{\mu}$
 $\hat{R}_{t} = 1.5\hat{\pi}_{t} + \Phi_{u}u_{t}$

 $\hat{
u}$

Beyond Dual Mandate

- To me, an interesting question is to dig deeper into the welfare function
- Suppose in the steady state, ν is at the level that ensures Hosios condition
- Then, any fluctuations in $\nu \Rightarrow$ distortion (failure of Hosios)
- My conjecture (in RANK case):
 - $\sum \beta^t [\hat{\pi}_t^2 +$ Policymakers should care about *EE* fluctuations above and beyond the dual mandate
- Here, *EE* is a pure rent-seeking activity
- Opposite view: EE is a productivity-enhancing activity

$$\Psi_{y}\hat{Y}_{t}^{2} + \Psi_{EE}\widehat{EE}_{t}^{2}]$$

Is EE Rent-Seeking or Reallocation?

- Heterogenous $z \Rightarrow$ TFP of the economy endogenous to $\nu, A(\nu)$
- How does $\nu \uparrow$ affect aggregate demand, $C(\mathbf{Y}, \mathbf{R}, \nu)$?
 - An increase in TFP \Rightarrow less employment needed to achieve Y • Increases unemployment by $du = \frac{A'(\nu)}{A(\nu)} d\nu > 0 \Rightarrow$ reduce the income of u
- Now it's not clear $\nu \uparrow$ is positive or negative agg. demand shock...
 - $d\mathbf{Y} = \mathbf{M}_{Y}d\mathbf{Y} + \mathbf{M}_{R}d\mathbf{R} + \mathbf{M}_{\nu}d\nu + ? ?$
 - What moments discipline the sign of \mathbf{M}_{ν} ? $MPC^{u} MPC^{e}$? Δw upon job-changes?
- Normative: How should the CB weigh along the job-ladder, $\hat{Y}_t^{\omega} = \int \omega(z) l_t(z) dz$?

Supply Block

• OJS + HANK \Rightarrow supply and demand block no longer separable OJS shocks = markup shocks + agg. demand shocks

My discussions:

- 1. Broader implications for GPC and IKC? What moments determine K and M?
- 2. Unclear $\nu \uparrow$ is a positive or negative agg. demand shock. Can go either way.
- 3. Normative: Study relaxed problem. Going beyond dual mandate promising.

Summary

Demand Block

Supply Block

• OJS + HANK \Rightarrow supply and demand block no longer separable OJS shocks = markup shocks + agg. demand shocks

My discussions:

- 1. Broader implications for GPC and IKC? What moments determine K and M?
- 2. Unclear $\nu \uparrow$ is a positive or negative agg. demand shock. Can go either way.
- 3. Normative: Study relaxed problem. Going beyond dual mandate promising.

Demand Block

