Back to the 1980s or Not? The Drivers of Inflation and Real Risks in Treasury Bonds Discussion

Martin Lettau Haas School of Business, UC Berkeley

Summary

- Goal: understand time-varying correlation of stock and bond returns
- Campbell, Pflueger, and Viceira (2020): habit, inflation, stocks, and bonds
 - Correlation of inflation and output gap switched from + to in 2001
 - Before 2001: Treasuries are risky
 - After 2001: Treasuries are hedges
 - Structural break in output gap/inflation correlation in 2001: to +
 - Key: Time-varying risk premia
 - Exogenous inflation process
- This paper: endogenous inflation
 - Same Euler equation and asset pricing model
 - ► Philips curve, monetary policy → endogenous inflation
 - "Structural" shocks

Summary

- ▶ 1980-2001 vs. 2001-2019: Monetary policy, inflation, and Treasury yields
- ▶ New-Keynesian model: Euler equation, Philips curve, MP rule
- Asset pricing: habit with time-varying risk aversion
- Exogenous shocks: "supply", MP, "demand"
- Calibrations: 1980-2001 vs. 2001-2019
- Some parameters held constant: g, γ, \bar{R}^f , habit, persistence
- Different across subsamples:
 - MP rule
 - Volatilities of shocks
 - Adaptive inflation expectations (why?)
 - Leverage (why?)
- ► Goal: match asset pricing moments, in particular stock-bond correlation

> Yield of 1-period nominal bond i_t is set by the Fed + Fisher eqn:

 $r_{1,t} = \exp(\mathsf{E}_t \pi_{t+1} - i_t)$

► Yields of real/nominal bonds, stocks: Euler eqn with $M_{t+1} = M(\Delta c_{t+1}, s_t)$

```
1 = \exp(-\xi_t) \quad \mathsf{E}_t[M_{t+1}R_{1,t+1}]P_{n,t} = \exp(-\xi_t) \quad \mathsf{E}_t[M_{t+1}P_{n-1,t+1}]
```

- ► ξ_t does **not** (directly) affect stock prices: $E_t[M_{t+1}R_{s,t+1}] = 1$
- Paper: ξ_t is a **preference** shocks of stocks vs. bonds
- Alternative interpretation: slope shock (given C,)
 - \rightarrow short rate is set by Fed and given $E_t \pi_{t+i}$
 - $\rightarrow \xi_t > 0$ raises longer yields more than short yields
 - → yield curve **steepens**
- Euler equation: ξ_t affects Δc_{t+1}

- GE effect of $\xi_t > 0$:
 - ► Direct effect: $Y_{n,t}$ ↑
 - ▶ EIS<1 → consumption and output gap \uparrow
 - \rightarrow Risk aversion $\downarrow \rightarrow$ risk premia \downarrow
 - \rightarrow Asset prices $\uparrow \rightarrow P_t/D_t \uparrow$, $Y_{n,t} \downarrow$
 - $\rightarrow\,$ positive correlation of stocks and bonds
 - (Net effect of ξ_t on $Y_{n,t}$: ≤ 0)
- Implication: ξ_r plays many roles simultaneously
 - 1. Moves yield curve
 - 2. Affects **consumption** (via Euler equation) → "demand" shock (?)
 - 3. Shock to **output gap**
 - 4. Shock to risk aversion/risk premia of all assets (habit preferences)

Correlation of stocks and bonds

1979-2001 vs 2001-2019 subsamples

- Three exogenous shocks
 - 1. Demand/bond yield shock
 - 2. Supply shock: productivity + sticky wages + adaptive inflation expectations
 - → Philips curve
 - 3. Monetary policy (MP) shock
- Key result: importance of shocks differs in subsamples:
 - ► 1979-2001: $\sigma(\text{supply}), \sigma(\text{mp}) > 0, \quad \sigma(\text{demand}) \approx 0$
 - ► 2001-2019: $\sigma(\text{demand}) > 0$, $\sigma(\text{supply}), \sigma(\text{mp}) \approx 0$
- MP rule:
 - 1979-2001: γ^{π} = 1.35, γ^{χ} = 0.5 ρ^{i} = 0.54
 - 2001-2019: γ^{π} = 1.10, γ^{χ} = 1.0 ρ^{i} = 0.80
- Other parameters: stickiness of expectations, leverage
 - 1979-2001: $\zeta = 0.60$, $\delta = 0.5$
 - ► 2001-2019: $\zeta = 0.0$, $\delta = 0.66$

- The correlation of stocks and bond depends on 2 effects:
 - 1. Risk aversion:
 - ► C_t , output gap $\uparrow \rightarrow RRA$, risk premia \downarrow
 - → all asset prices ↑
 - → **positive** correlation of stocks and bonds
 - 2. "Dividends":
 - Stocks: $D_t = C_t = Y_t$
 - ► Bonds: 1/Π_t
 - $\operatorname{Corr}(R_t^s, R_t^b)$ depends on $\operatorname{Corr}(\Delta c_t, \pi_t) \leq 0$
- Model:
 - MP rule affects inflation dynamics and dividend/inflation correlation
 - Different shock have different effects on risk aversion, dividends, and inflation mix of shocks important

	1979-2001		2001-2019
Fed focus Shocks	Inflatic Supply/PC	on MP	Output gap Demand/bonds
Policy rate i _t	↑ ↑	↑ ↑	<u>↑</u> ↑
Inflation	<u>↑</u> ↑	= 0	≈ 0
Output gap	$\downarrow\downarrow$	≈ 0	<u>↑</u> ↑
Consumption	$\downarrow\downarrow$	≈ 0	↑ ↑
Risk aversion	↑ ↑	1	$\downarrow\downarrow$
P/D stocks	$\downarrow\downarrow$	\downarrow	↑ ↑
Nominal 10-year yield	↑ ↑	1	1
R ^s stocks	$\downarrow\downarrow$	Ļ	↑
R_t^{b} stocks	$\downarrow\downarrow$	Ļ	≲ 0
$Corr(\Delta c_t, \pi_t)$	< 0	≈ 0	≈ 0
$Corr(R_t^s, R_t^b)$	> 0	> 0	≲ 0

Comments

- Change in MP rule: reasonable
- How about shocks?
 - $\sigma(\text{supply}) = 0.58 \rightarrow 0.07$
 - ► $\sigma(MP) = 0.55 \rightarrow 0.07$
 - σ (demand) = 0.01 \rightarrow 0.59
- Shapiro (2022): estimate contributions of supply and demand shocks to inflation using price, quantity, and expenditure data
- Important episodes for stock markets:
 - Late 1990s: dot.com boom and correction
 - Early 2000s: housing boom
 - Late 2000s: financial crisis and recovery
 - Early 2020s: COVID
 - → How do these "shocks" fit into the shocks in the model?
- Greenwald, Lettau and Ludvigson (2022): high stock returns between 1970 and 2000's partially due to declining labor share

Shapiro (2022): "Decomposing Supply and Demand Driven Inflation"

Figure 1: Share of PCE by shock type

CPV: habit depends on stochastically detrended consumption:

$$x_t = c_t - (1 - \phi) \sum_{j=0}^{\infty} \phi^j c_{t-1-j}$$

- Equilibrium: $\mathbf{x}_t = \log \text{ output gap}$
- Calibration: $\phi = 0.99$
- Compare x, constructed from consumption to BEA output gap

Persistence of x_t and output gap

- ▶ BEA output gap is significantly less persistent than x_t with $\phi = 0.99$
- ϕ = 0.85 matches persistence better

Persistence: ϕ = 0.85 instead of ϕ = 0.99

- Better fit for ϕ = 0.8 than for ϕ = 0.99
- How does lower ϕ effect model results?
- Next: asset prices

Questions

- Yield spread 2001-2019
 - ► Model: -0.58% yields curve is on average inverted
 - Data: 2.06%, postwar high in early 2000s and early 2010s (> 3%)
- Can the model capture the secular decline of (long) yields starting in 1982?
- Are consumption/dividend growth forecastable by P/D (or consumption surplus ratio)?
- ► Campbell-Cochrane habit: increasing **term structure of equity** → **growth premium**
- Interpretation of demand/supply shocks:
 - Model assumes no investment $\rightarrow C_t = Y_t$
 - "Demand" shock, or real interest rate shock?

- Matching moments is useful but how about time series fit?
 - \rightarrow Plot **fitted** *P*/*D* and *Y*_{*n*,*t*}
- Plot realized supply/MP/demand shocks (mean zero?)
- Show IRF of consumption surplus ratio s_t (≈ RRA)
- Expected returns depend on s_t : use s_t as a forecasting variable for realized returns
- Plot s_t and $P/D, Y_{n,t}$
- How about pre-1979 period?