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Abstract: We characterize optimal policy rules in business-cycle models with

nominal rigidities and heterogeneous households. The derived rules are expressed

in terms of the causal effects of policy instruments on policymaker targets. Our

first result is that the optimal policy rule of a “dual mandate” central banker—a

policymaker that only cares about inflation and output—is unaffected by house-

hold heterogeneity. The optimal rule of a Ramsey planner contains an additional

distributional term that incorporates the effects of her available policy instru-

ments on consumption inequality. When calibrated to match empirical evidence

on the distributional effects of monetary policy, our model implies that this con-

cern for inequality only has a moderate effect on optimal interest rate policy.

Fiscal stimulus payments, on the other hand, are strongly progressive and thus

well-suited to cushion the distributional effects of cyclical fluctuations.
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1 Introduction

Should household inequality affect the conduct of cyclical stabilization policy? In principle

it may do so in two separate ways. First, household inequality could alter the transmission

from policy instruments to any given policy target (e.g., inflation and output). This change

in transmission may affect whether or not a policymaker can attain those given targets,

and how policy instruments need to be set to do so. Second, household heterogeneity may

also alter the policymaker targets themselves. For example, with market incompleteness,

policymakers may want to dampen the distributional effects of cyclical fluctuations.

In this paper, we provide new insights to this question by expressing optimal policy rules

in heterogeneous-household models as a function of empirically measurable statistics. Our

first contribution is to cast optimal policy problems in a general heterogeneous-agent New

Keynesian (HANK) environment in linear-quadratic form, closely mirroring the canonical

representative-agent New Keynesian (RANK) literature. As familiar from this literature, the

solution to the linear-quadratic policy problem takes the form of a forecast target criterion,

providing a general characterization of optimal policy independently of the shocks hitting the

economy (Giannoni & Woodford, 2002). Drawing on McKay & Wolf (2021), we furthermore

show that these optimal policy rules can be expressed in terms of the measurable causal

effects of policy instruments on policymaker targets—a connection that we leverage when

disciplining our quantitative analysis. With this apparatus in place, we are able to cleanly

decompose the effects of inequality on stabilization policy design into its two parts: through

a) policy instrument propagation and b) policymaker objectives.

Our analysis is set in a business-cycle model with nominal rigidities and household hetero-

geneity. Households face idiosyncratic income risk and self-insure by borrowing and saving in

a (long-duration) asset, allowed to be indexed to inflation and the level of economic activity.

Labor supply is intermediated by unions subject to nominal wage rigidities. The policy-

maker sets short-term nominal interest rates, pays transfers to households, and finances its

expenditure through taxation and bond issuance.

We begin our analysis by studying the optimal policy of a conventional “dual-mandate”

central banker that seeks to close the output gap and stabilize inflation. In the context of our

model, this is of course an ad hoc loss function. We nevertheless find it useful to discuss this

case, for two reasons. First, it allows us to explore the role of changes in policy instrument

propagation while fixing policy targets. Second, it is arguably the relevant objective function

for real-world central banks. Our main result is that the optimal interest rate target criterion
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is exactly the same as in a standard representative-agent environment. The logic is as follows.

Household heterogeneity only affects the model’s demand side (i.e., the “IS” curve). In the

optimal policy problem, however, this demand side is a slack constraint: the policymaker

can pick an output-inflation allocation subject to the Phillips curve, and then simply set

nominal interest rates as necessary to generate aggregate demand consistent with the desired

allocation. Household heterogeneity thus may matter for the path of the policy instrument,

but not for optimal output and inflation outcomes.

We connect these theoretical results on optimal dual-mandate policy to empirical evi-

dence on monetary policy shock transmission. The empirical literature has identified the

causal effects of nominal rate changes on output and inflation (e.g. see Ramey, 2016). While

silent on transmission mechanisms and so in particular on the importance of heterogeneity-

related channels, aggregate data are informative about the size of interest rate movements

required to move output and inflation by any given amount. But it then follows that quan-

titatively relevant HANK and RANK models—that is, models that are consistent with the

empirical evidence on monetary shock propagation—will not only share the same optimal

dual-mandate policy rule, but they will in fact also tend to agree quite closely on the interest

rate path needed to implement the optimal inflation and output outcomes.1

We then turn to a Ramsey problem in which the planner seeks to maximize a weighted

sum of individual household utilities, allowing us to explore the role of changes in policymaker

objectives. Applying a second order approximation, we derive a loss function that adds to

the usual output gap and inflation objectives a novel third term reflecting distributional

concerns. Solving the optimal policy problem, we find that the optimal rule for any given

policy instrument now contains three terms, trading off the policymaker’s ability to stabilize

output, inflation, and the consumption distribution. If, for example, interest rate movements

do not affect consumption shares (e.g. as in Werning, 2015), then the Ramsey rule is in fact

identical to the optimal dual-mandate rule; if, on the other hand, monetary policy has large

redistributional effects (e.g. as in Bhandari et al., 2021), then distributional concerns may

swamp price and output stability considerations.

To characterize the empirically relevant Ramsey policy, we again leverage the tight con-

nection between our theoretical formulas and empirical evidence on policy shock transmis-

sion. The key new ingredient to the Ramsey rule are the causal effects of the policy instru-

1Formally, if estimated to be consistent with the same evidence on contemporaneous and news policy
shocks, then HANK and RANK would also agree exactly on instrument paths (McKay & Wolf, 2021). In
practice, since model estimation typically relies only on a single policy shock, agreement will be approximate.
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ment on the consumption distribution. For monetary policy, we argue that the weight of

the empirical evidence points to U -shaped effects on income in the cross section: households

with low income and low wealth gain from expansionary policy due to a tighter labor market,

while high-income and high-wealth households gain due to large capital gains. We calibrate

our structural model to be consistent with these channels, and then find that it also produces

a moderately pronounced U -shape on consumption, consistent with results from Norwegian

administrative data reported by Holm et al. (2021).2 Given this distributional incidence of

monetary policy, we find that it is ill-suited as a tool to deal with business-cycle shocks that

largely affect the bottom of the income distribution. In particular, if interest rates were

set to stabilize consumption of the poor, then consumption of the rich and so aggregate

output and inflation would overshoot significantly. Optimal Ramsey policy in response to

such distributional shocks thus looks very similar to optimal dual-mandate policy. Those

quantitative findings contrast with much recent work on optimal monetary policy with het-

erogeneous households that tends to find a strong role for distributional considerations (e.g.

Bhandari et al., 2021; Acharya et al., 2020; Dávila & Schaab, 2022).

Finally, we turn attention to a Ramsey policymaker that jointly sets nominal interest rates

and stimulus checks, consistent with recent U.S. policy practice. While equivalent in their

effects on output and inflation (Wolf, 2021), the two instruments differ significantly in their

distributional incidence, with fiscal stimulus payments sharply compressing consumption

inequality. We thus find that the two instruments are highly complementary, with stimulus

payments well-suited to offset the distributional impacts of a cyclical shock that mainly

affects the bottom of the income distribution.

Literature. This paper contributes to a fast-growing literature on optimal policy de-

sign in business-cycle models with rich microeconomic heterogeneity. Conceptually, our key

contribution is to characterize optimal policy through forecast target criteria, and then tie

these target criteria to empirical evidence. Our computation of these optimal policy rules

heavily leverages sequence-space representations of equilibria and thus the recent work of

Auclert et al. (2021).3 A contemporaneous paper that does the same is Dávila & Schaab

2Capital gains—which largely accrue to advantaged groups—are large in dollar terms, but their immediate
pass-through to consumption is relatively low. The labor income gains that flow to low-income, high-MPC
households, on the other hand, pass through immediately to consumption. The overall effects of interest rate
policy on the consumption distribution are thus much more equitable than the effects on household balance
sheets. Our model matches these empirical patterns.

3By the equivalence of perfect-foresight sequence-space and stochastic linear state-space methods, our tar-
geting criterion also applies to the analogous stochastic linear-quadratic optimal control problem. Sequence-
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(2022). Those authors do not rely on linear-quadratic approximations, thus providing more

general optimal policy results, but without our tight connection to empirical evidence. Our

discussion of the mapping between policy rules and empirical evidence builds on our earlier

work in McKay & Wolf (2021). In operationalizing these results, we are fortunate to rely on

a recent literature that empirically documents the distributional effects of monetary policy

interventions (e.g. Holm et al., 2021; Andersen et al., 2021; Bartscher et al., 2021).

Our conceptual innovations allow us to revisit several substantive results in the prior

heterogeneous-household optimal policy literature. First, we derive a sharp set of irrelevance

results for the effects of household inequality on optimal policy design. Prior work has

emphasized that household inequality will affect policy propagation by altering the demand

side of the economy (Kaplan et al., 2018; Auclert, 2019); our analysis however reveals that

these changes leave the optimal target criterion and thus equilibrium paths of inflation and

output unaffected. If furthermore matched to the same empirical evidence on policy shock

propagation, then heterogeneous-agent and representative-agent models will also (roughly)

agree on the required interest rate paths. Second, cyclical stabilization policy may be used

to provide insurance (Acharya et al., 2020; Bhandari et al., 2021; Le Grand et al., 2021). We

contribute to this area by characterizing optimal policy in a model that matches empirical

evidence on the distributional consequences of stabilization policy and thus on its scope for

insurance. Third, our analysis of optimal joint fiscal-monetary policy extends results in Wolf

(2021) and Bilbiie et al. (2021). Wolf (2021) shows that, in a standard HANK environment,

transfers and monetary policy can implement the same set of aggregate allocations, but differ

in their distributional implications. These are purely positive properties of the model. On

the normative side, in a two-agent environment, Bilbiie et al. (2021) argue that monetary

policy and fiscal policy can be used together to stabilize both the aggregate level of activity

and the consumption shares of the two household types. Our work is complementary: we

analyze the optimal monetary-fiscal policy mix in an environment with rich heterogeneity

and a tight link to empirical evidence.4

space linear-quadratic policy problems have been used in prior work to derive “optimal policy projections”
(Svensson, 2005; De Groot et al., 2021; Hebden & Winker, 2021). We show how to fit optimal policy problems
in HANK models into this environment.

4A fourth theme of the recent optimal policy literature is that inequality among households introduces
a new source of time inconsistency (Acharya et al., 2020; Nuno & Thomas, 2021; Dávila & Schaab, 2022).
This channel is not present in our analysis, as we construct the social welfare function so that the planner
does not wish to intervene in the absence of aggregate shocks.
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Outline. In Section 2, we present a general linear-quadratic sequence-space problem and

its solution. Section 3 then outlines our HANK model, and Sections 4 and 5 present our

results for optimal dual-mandate and Ramsey policy, respectively. We conclude in Section 6.

2 Linear-quadratic problems in the sequence space

Throughout this paper we study optimal policy problems that can be recast as determin-

istic linear-quadratic control problems. We begin in Section 2.1 by stating the problem

and presenting its solution. Section 2.2 then places our analysis in the broader context of

the literature, focussing in particular on the tight connection between our expressions and

empirical evidence on the effects of policy shocks.

2.1 Problem & solution

We consider a policymaker that faces a linear-quadratic optimal control problem.

Preferences. The policymaker targets I variables, indexed by i. We let xit be the

deviation of the ith target variable from its target value at date t. We then consider a

policymaker with quadratic loss function

L ≡ 1

2

∞∑
t=0

βt
I∑
i=1

λix
2
it =

1

2
xxx′ (Λ⊗W )xxx, (1)

where xxxi ≡ (xi0, xi1, . . . )
′ is the perfect-foresight sequence of the ith target variable through

time and xxx ≡ (xxx1,xxx2, . . . ,xxxI)
′ stacks those paths for all of the I targets. The λi’s denote the

weights associated with the different policy targets, with Λ ≡ diag(λ1, λ2, . . . , λI). Finally

W = diag(1, β, β2, . . . ) summarizes the effects of discounting in the policymaker preferences,

with discount factor β ∈ (0, 1).

Constraints. The policymaker faces constraints imposed by the equilibrium relationships

between variables. These linear constraints are expressed compactly as

Hxxxx+Hzzzz +Hεεεε = 000, (2)

where zzz ≡ (zzz1, zzz2, . . . , zzzJ)′ stacks time paths for the J policy instruments available to the

policymaker, and εεε ≡ (εεε1, εεε2, . . . , εεεQ)′ similarly stacks the paths for Q exogenous shocks.
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{Hx,Hz,Hε} are then conformable linear maps.

While the structural models considered in the remainder of this paper directly map into

constraints of the general form (2), it follows from the discussion in McKay & Wolf (2021)

that these constraints can equivalently and more conveniently be expressed as

xxxi =
J∑
j=1

Θxi,zjzzzj +

Q∑
q=1

Θxi,εqεεεq, i = 1, 2, . . . , I (3)

where the Θ’s are linear maps that capture the dynamic causal effects of a policy instrument

path zzzj or shock path εεεq on a target variable path xxxi. The alternative constraint (3) thus

expresses the policy targets directly in terms of impulse responses to policy instruments and

exogenous shocks, as opposed to imposing implicit relationships as in (2).5

Problem & solution. The optimal policy problem is to choose the instrument paths zzz

to minimize (1) subject either to (2) (for the original constraint formulation) or (3) (for the

simplified re-cast constraint). The policymaker thus minimizes a convex objective subject to

linear constraints, and so the first-order conditions are necessary and sufficient for a solution

to the problem.

For intuition, it is simpler and more instructive to use the constraint (3). Minimizing (1)

subject to (3) yields:

1. Optimal policy rule. For each policy instrument zzzj, the paths of the policy targets

satisfy the “policy criterion”

I∑
i=1

λi · Θ′xi,zjW︸ ︷︷ ︸
(discounted) causal effect of zj on xi

· xxxi = 000, j = 1, 2, . . . , J (4)

(4) is simply the first-order condition of the optimal policy problem. It says that, for each

instrument zzzj, the paths of the policy targets xxxi must be at an optimum within the space

implementable through zzzj. In the language of Svensson (1997) and Woodford (2003), this

5The equivalence of (2) and (3) would be immediate for invertible Hx. In typical macroeconomic models,
however, Hx is not invertible, so recasting the constraint as (3) requires additional arguments. McKay & Wolf
(2021) provide those arguments; briefly, the core intuition is that the optimal policy problem can be shown
to be equivalent to the alternative, artificial problem of picking shocks to a given baseline, determinacy-
inducing policy rule. Policy and non-policy shocks relative to this arbitrary baseline policy rule then yield
the impulse response matrices Θ. See Appendix C.1 for further details.
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rule is an example of a so-called implicit “target policy criterion”: the policymaker sets the

available instruments to align projections (i.e., future paths) of macro aggregates as well

as possible with its targets, given what is achievable through the available instruments.

We emphasize two important features of such rules. First, they are derived without

reference to and so apply independently of the non-policy shocks hitting the economy.

This robustness property is one of the main virtues of target policy criteria (Giannoni &

Woodford, 2002). Second, note that the optimal policy rule for instrument j places no

weight on a policy target i that cannot be moved by instrument j (i.e., Θxi,zj = 0), even

if λi > 0—intuitively, if an instrument cannot affect a target, then this target plays no

role in informing the setting of the instrument.

2. Optimal policy path. Given the exogenous shock paths εεε, the policy rule (4) together

with the constraints (3) characterizes the evolution of the dynamic system. In particular,

the optimal instrument path zzz∗ satisfies

zzz∗ ≡ −
(
Θ′x,z(Λ⊗W )Θx,z

)−1 ×
(
Θ′x,z(Λ⊗W )Θx,ε εεε

)
, (5)

where Θx,z and Θx,ε suitably stack the individual Θxi,zj ’s and Θxi,εq ’s. The optimal path

of the policy instruments thus has an intuitive regression interpretation: the instruments

zzz are set to offset as well as possible—in a weighted least-squares sense—the perturbation

to the policy targets xxx caused by the exogenous shocks, given as Θx,ε × εεε. In particular,

the policymaker will rely most heavily on the tools zj that are best suited to offset the

perturbation to its targets induced by a particular shock path εεε.

2.2 Discussion

Equations (4) and (5) will guide our analysis in much of the remainder of the paper. In

this section we briefly relate our results to prior work on: first, stochastic linear-quadratic

problems; and second, empirical measurement of the propagation of policy shocks.

Deterministic transitions vs. aggregate risk. It is well-established that, by cer-

tainty equivalence, the first-order perturbation solution of models with aggregate risk is

mathematically identical to linearized perfect-foresight transition paths.6 This insight im-

6For detailed discussions of this point see for example Fernández-Villaverde et al. (2016), Boppart et al.
(2018) or Auclert et al. (2021).
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plies the following connections between our linear-quadratic perfect foresight problem and

the canonical linear-quadratic stochastic problem (as in Benigno & Woodford, 2012). First,

the policy target criterion (4) corresponds to a forecast targeting criterion in a stochastic

economy. For a time-0 problem with commitment, that forecast targeting criterion is simply

E0

[
I∑
i=1

λi ·Θ′xi,zjW · xxxi

]
= 000, j = 1, 2, . . . , J (6)

This is an implicit rule that determines the expected evolution of the economy as of date 0. In

a stochastic environment, new shocks will occur as time goes by, causing the evolution of the

economy to deviate from what was expected at date 0. In this case, (6) gives a rule for how to

revise forecasts at each date. Second, by the same logic, the optimal instrument path zzz∗ in (5)

corresponds to the instrument impulse response to a time-0 shock that changes expectations

of the exogenous shifters from 000 to εεε. The exact same impulse response interpretation applies

to our solution for the paths of the policy targets xxx∗.

Measurement. The linear maps stacked in Θx,z collect the dynamic causal effects of

variations in the policy instruments z onto the policymaker targets x. As we show formally

in McKay & Wolf (2021), entries of these maps can be estimated using semi-structural time

series methods applied to identified policy shocks (as in e.g. Ramey, 2016). We will leverage

this connection in our quantitative analysis in Sections 4.3 and 5.4.

Outlook. In the remainder of this paper we will first show that optimal policy problems in

models with household heterogeneity can be represented in the form of our linear-quadratic

control problem, and then use (4) and (5) to characterize optimal policy rules, throughout

connecting as closely as possible to empirical evidence on policy shock propagation. Section 3

begins the analysis with a description of our model environment.

3 Model

Our model environment is a standard HANK economy, with two somewhat special features.

First, our model features sticky wages. While the early HANK literature focussed on sticky

price models (McKay et al., 2016; Kaplan et al., 2018), some recent contributions have shifted

their focus to frictions in wage-setting. Appealingly, such frictions generate more realistic

responses of capital income to changes in aggregate demand (Broer et al., 2020); furthermore,
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they allow the model to be consistent with small household marginal propensities to earn

(see Auclert et al., 2020). Second, households in our model save in a long-duration asset.

Including a long-duration asset allows us to more flexibly capture the consequences of policy

actions for the valuation of assets and liabilities. Both of these changes will be important to

connect our model to empirical evidence on policy propagation.

Time is discrete and runs forever, t = 0, 1, 2, . . . . Consistent with our linear-quadratic

framework in Section 2, we will consider linearized perfect-foresight transition sequences.

By certainty equivalence, our solutions will be identical to the analogous economy with

aggregate risk, solved using conventional first-order perturbation techniques with respect

to aggregate variables. Throughout this section, boldface denotes time paths (so e.g., xxx ≡
(x0, x1, x2, . . . )

′), bars indicate the model’s deterministic steady state (x̄), and hats denote

(log-)deviations from the steady state (x̂).7

3.1 Households

The economy is populated by a unit continuum of ex-ante identical households indexed by

i ∈ [0, 1]. Household preferences are given by

E0

∞∑
t=0

βt
[
c1−γ
it − 1

1− γ
− ν (`it)

]
, (7)

where cit is the consumption of household i and `it is its labor supply.

Households are endowed with stochastic idiosyncratic labor productivity eit. We let ζit

be a stochastic event that determines the labor productivity of household i at date t. We

then assume there is a function Φ that maps ζit to eit,

eit = Φ(ζit,mt, yt).

This mapping potentially depends on an exogenous distributional shock, mt, and an endoge-

nous component captured by aggregate income, yt. ζit itself follows a stationary Markov

process. A canonical heterogeneous agent model would simply set eit = ζit. We further

assume that
∫
eitdi = 1 for any value of mt and yt, so these variables only affect the distri-

bution of labor productivities (and not the average level). For the quantitative analysis in

7To be precise, we use log deviations for the variables {y, c, `, 1 + r, 1 + i, v} and level deviations for the
variables {π, τx, τe,m}.
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Sections 4.3 and 5.4, the shock mt will be our example of an inequality shock—a shock that

affects aggregate demand through redistribution and precautionary savings motives.

Total pre-tax nominal household labor income is eitwt`it, where wt is an aggregate nominal

wage rate per efficiency unit of labor. As we describe below, labor supply is determined by

a labor market union, so hours worked `it are taken as given by the household. Total labor

income is taxed at some constant proportional rate τy. Households also receive a time-varying

lump-sum transfer τx,t + τe,teit. Here, the first component of the transfer, τx,t, is the same

for all households and will be manipulated as part of the optimal policy problem; we refer

to it as a “fiscal stimulus payment” as it resembles the real-world stimulus checks that have

been used in recent recessions in the U.S. The second component, τe,teit, is the “endogenous”

component, adjusting slowly over time to maintain long-run budget balance. This component

of transfers is proportional to the household’s productivity. Finally, households can borrow

and save through a financial asset with realized time-t real return rt, subject to an exogenous

borrowing constraint a ≤ 0. Putting all the pieces together, the budget constraint is

ait + cit = (1 + rt)ait−1 + (1− τy)eit
wt
pt
`it + τx,t + τe,teit, (8)

where ait are assets held at the end of period t and pt is the nominal price of the final good.

While asset returns are expressed here in real terms, the contracts that give rise to these

returns can be nominal, as discussed further below.

The solution to each individual household i’s consumption-savings problem gives a map-

ping from paths of wages www, hours worked `̀̀i, real returns rrr, transfers τττx and τττ e, prices ppp and

shocks mmm to that household’s consumption ccci. Aggregating consumption decisions across all

households, we thus obtain an aggregate consumption function C(•), exactly as in Auclert

et al. (2018) or Wolf (2021):

ccc = C(www/ppp, `̀̀, rrr, τττx, τττ e,mmm), (9)

where www/ppp is the sequence of real wages. Linearizing this consumption function around the

deterministic steady state yields

ĉcc = Cw/pŵww/ppp+ C`̂̀̀̀+ Crr̂rr + Cxτ̂ττx + Ceτ̂ττ e + Cmm̂mm, (10)

where all of the aggregate consumption derivative matrices C• are evaluated at the economy’s

deterministic steady state.
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3.2 Technology, unions, and firms

Labor supply is intermediated by a unit continuum of labor unions, and a competitive

producer then packages union labor supply to produce the final good. Since this production

model block is relatively standard, we only state and briefly discuss the key relations here,

with a detailed discussion relegated to Appendix A.1.

Union k demands `ikt units of labor from household i. The final good is sold at nominal

price pt and produced by aggregating the labor supply of all individual unions k, denoted

`kt ≡
∫ 1

0
eit`iktdi. The aggregate production function takes a standard constant elasticity

form, with the elasticity of substitution between labor of different unions, ηt, allowed to

vary exogenously over time. This “supply”-type shock will be important in our discussion of

optimal policy: it implies changes in market power that result in inefficient fluctuations in

the flexible-price level of output, thus creating a trade-off between stabilizing output around

its efficient level and stabilizing inflation. All unions satisfy labor demand by rationing

labor equally across all households. This rationing rule together with marginal cost pricing

(wt = pt) for the competitive producer imply that eit`it
wt
pt

= eityt for all i.

Each union sets its nominal wage in standard Calvo fashion, with probability 1 − θ of

updating the wage each period. As usual, unions select their wages upon reset based on

current and future marginal rates of substitution between leisure and consumption among

its household members. Given separable preferences and with everyone supplying an equal

amount of hours worked, it follows that all households share a common marginal disutility

of labor. The marginal utility of consumption, however, is generally not equalized. For

reasons that we will discuss in detail later, we assume that the union evaluates the benefits

of higher after-tax income using the marginal utility of average consumption (c−γt ) rather

than the average of marginal utilities (
∫ 1

0
c−γit di), as also done in Wolf (2021) and Auclert

et al. (2021). We show in Appendix A.1 that the solution to this union problem then gives

rise to a standard linearized perfect-foresight New Keynesian Phillips curve:

π̂t = κŷt + βπ̂t+1 + ψη̂t, (11)

where κ ≡ (φ+γ) (1−θ)(1−βθ)
θ

, φ ≡ ν``(¯̀)¯̀

ν`(¯̀)
and ψ ≡ − κ

(φ+γ)(η̄−1)
. We allow for a (time-invariant)

subsidy on union labor hiring, financed with lump-sum taxes also levied on the unions; this

subsidy will matter in Section 5, where we require efficiency of the deterministic steady state

to write our optimal policy problem in a form consistent with the linear-quadratic set-up of

Section 2, exactly as in prior work (e.g. Woodford, 2003).
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Finally, aggregate production is equal to

yt =
`t
dt
, (12)

where `t ≡
∫ 1

0

∫ 1

0
eit`iktdidk and dt ≥ 1 captures efficiency losses related to aggregate wage

dispersion across unions.

3.3 Asset structure

There are two different assets in the economy: a short-term, risk-free nominal bond that is

in zero net supply, and a second asset that is long-lived, (partially) indexed to inflation and

output, and in positive net supply. By arbitrage, both assets will provide the same expected

returns along equilibrium transition paths, thus allowing us to consider a single asset in the

household budget constraint (8). The realized return at date 0, however, will differ between

the two assets. The purpose of the long-term asset is to allow monetary policy to have data-

consistent effects on household asset income including capital gains—a key determinant of

the policy’s distributional implications and so, as we will see, optimal policy design.

A unit of the nominal bond purchased at time t returns 1+it
1+πt+1

units of the final good at

time t+1. For the second asset, at time t, households can purchase a unit of the asset for a real

price of qt (i.e., denominated in goods); at time t+ 1, the household receives a real “coupon”

of (r̄+δ)(1+πt+1)χπ−1(yt+1

ȳ
)χy and furthermore retains a fraction (1−δ)(1+πt+1)χπ−1 of the

asset position, now valued at (1 − δ)(1 + πt+1)χπ−1qt+1 in units of goods. This asset set-up

captures the following features. First, the parameter δ controls the maturity of the asset,

with coupons decaying at rate δ. The coupon scaling factor (r̄ + δ) normalizes the steady-

state price of the bond to one. Second, the inflation term captures inflation indexation,

with χπ = 1 corresponding to a real bond, χπ = 0 corresponding to a nominal bond, and

χπ ∈ (0, 1) giving the intermediate case. Third, the output term captures the sensitivity of

asset income with respect to real economic activity, with χy > 0 corresponding to an asset

with higher returns in good times.

Now let rt denote the real return on the second asset. Bond coupon payments are then

linked to real returns as

1 + rt =
(r̄ + δ)(1 + πt)

χπ−1
(
yt
ȳ

)χy
+ (1− δ)(1 + πt)

χπ−1qt

qt−1

, (13)
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with the convention that q−1 = q̄. (13) gives real bond returns as a function of bond prices,

inflation, and real output. By arbitrage, for all t > 0, real returns are furthermore linked to

returns on the nominal bond via the standard Fisher relation

1 + rt =
1 + it−1

1 + πt
. (14)

At date t = 0, the realized return on a household’s portfolio will depend on the composition

of its portfolio between the two assets. We assume that there are no existing gross positions

in the short-term asset, so time-0 realized returns are simply those on the long-term asset,

for all households.

3.4 Government

The final actor in our model is the government. The government collects tax revenue, pays

out lump-sum transfers, sets the nominal rate on the short-term bond, and issues positive

quantities of the long-lived asset. Letting bt−1 denote outstanding claims on the government

(denominated in units of bonds), the government budget constraint becomes

(r̄ + δ)(1 + πt)
χπ−1

(
yt
ȳ

)χy
bt−1 + τx,t + τe,t = τyyt + qt

(
bt − (1− δ)(1 + πt)

χπ−1bt−1

)
. (15)

We consider the nominal rate of interest it and the exogenous component of transfers τx,t

(i.e., “stimulus checks”) as the independent policy instruments of the government, used for

business-cycle stabilization policy. We assume that the endogenous component of transfers

τe,t adjusts gradually to ensure long-term budget balance:

τe,t = (r̄ + σ)(bt−1 − b̄). (16)

When the stock of bonds outstanding exceeds its steady state level, taxes are raised to

pay interest and a portion σ of the outstanding bonds. For example, if σ = δ, then the

policymaker pays off interest and any amount of maturing bonds beyond the steady state

level. Given this feedback rule, government debt then evolves according to (15).
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3.5 Equilibrium

We can now define a linearized perfect-foresight transition equilibrium in this economy.8

Definition 1. Given paths of exogenous shocks {mt, ηt}∞t=0, a linearized perfect foresight equi-

librium is a set of government policies {it, τx,t, τe,t, bt}∞t=0 and a set of aggregates {ct, yt, at, πt, rt,
qt, wt/pt, `t}∞t=0 such that:

1. The path of aggregate consumption {ct}∞t=0 is consistent with the linearized aggregate con-

sumption function (10), and the path of household asset holdings {at}∞t=0 is consistent

with the budget constraint (8), aggregated across households.

2. The real wage is consistent with marginal cost pricing for final goods firms, so wt = pt.

3. The paths of {`t, yt}∞t=0 satisfy the aggregate production function (12).9

4. The paths {πt, yt, ηt}∞t=0 are consistent with the Phillips curve (11).

5. The evolution of government debt bt and the endogenous component of transfers τe,t are

consistent with the budget constraint (15) and law of motion (16).

6. The asset returns {rt, it, qt}∞t=0 satisfy (13) and (14).

7. The output and asset markets clear, so yt = ct and at = qtbt.

Sections 4 and 5 will describe optimal policy problems and so discuss how the policy

instrument paths {it, τx,t}—simply taken as given in Definition 1—are determined.

Equilibrium characterization. We can reduce Definition 1 to a small number of linear

relations. Lemma 1 provides this more compact characterization of equilibrium dynamics.

Lemma 1. Given paths of shocks {mt, ηt}∞t=0 and government policy instruments {it, τx,t}∞t=0,

paths of aggregate output and inflation {yt, πt}∞t=0 are part of a linearized equilibrium if and

only if

π̂ππ = κŷyy + βπ̂ππ+1 + ψη̂ηη, (17)

8All statements in Definition 1 thus refer to the linearized versions of the relevant model equations.
9Note that we drop the efficiency loss term dt since it is of second order, and thus does not affect a

first-order approximation of the production function around a zero inflation steady state (see Gaĺı, 2015).
Price dispersion will, however, affect the social welfare function in Section 5.
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ŷyy = C̃yŷyy + C̃ππ̂ππ + C̃îiii+ C̃xτ̂ττx + Cmm̂mm, (18)

where the linear maps {C̃y, C̃π, C̃i, C̃x} are defined in Appendix D.1, and π̂ππ+1 = (π1, π2, . . . ).

Lemma 1 reduces the complexity of the equilibrium in Definition 1 to two equations:

the Phillips curve (17) (which is simply a stacked perfect-foresight version of the original

relation (11)); and the IS curve (18), which differs from the consumption function (10)

chiefly in that it imposes: (i) output market-clearing (ŷt = ĉt); (ii) the aggregate production

function (̂̀t = ŷt); (iii) the equilibrium real wage (wt/pt = 1); and (iv) feedback effects

through the government budget to the endogenous component of transfers, τe,t. Together,

these two equations fully characterize the evolution of output and inflation given exogenous

non-policy shocks {mt, ηt}∞t=0 and policy choices {it, τx,t}∞t=0.

Discussion. How does our model differ from the canonical representative agent New Key-

nesian models (Gaĺı, 2015; Woodford, 2003)? Positively, the main change is that a simple

aggregate Euler equation,

ŷt = −1

γ
(̂it − π̂t+1) + ŷt+1, (19)

is now replaced by a more general IS curve (18). Inequality thus affects the aggregate

dynamics of our economy in response to shocks and policy actions only through the de-

mand side, with supply—in particular the Phillips curve (17)—kept exactly as in standard

representative-agent models. To arrive at this clean separation, our assumptions on union

bargaining (see Section 3.2) are central. We adopt this approach because the demand-side ef-

fects of household heterogeneity are the focus of the recent HANK literature (Kaplan et al.,

2018; Auclert et al., 2018).10 Normatively, household inequality may affect social welfare

functions and thus change policymaker objectives.

The remainder of the paper studies the implications of these two changes for optimal

policy design. First, in Section 4, we isolate the role of changes in propagation by studying

a dual-mandate optimal policy problem. Then, in Section 5, we turn to the full Ramsey

problem, thus allowing the planner objective to change.

10Furthermore, as discussed in Wolf (2021), the supply-side effects of household heterogeneity are generally
of limited importance, because (i) the dynamics of average marginal utilities and marginal utilities at the
average rarely differ much, and (ii) the importance of any remaining difference is dampened by wage rigidity.
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4 Optimal dual-mandate policy

In this section we study the optimal policy problem of a conventional dual-mandate policy-

maker; that is, a policymaker that simply seeks to stabilize fluctuations in aggregate inflation

and the output gap. In the context of the structural model of Section 3, such a loss function

is ad hoc, but we find it interesting, for two reasons. First, it is conceptually useful, as it

allows us to isolate the role of inequality for optimal policy design through its effects on

policy propagation. Second, it is practically relevant, as real-world central banks are often

mandated to achieve these types of objectives.

We begin in Section 4.1 by stating the optimal policy problem in linear-quadratic form.

We then in Section 4.2 characterize the solution in the form of a policy forecast target

criterion. Finally, in Section 4.3, we present some quantitative explorations, leveraging in

particular the connection between our optimal policy formulas and empirical evidence.

4.1 The optimal policy problem

We consider a policymaker with objective function

LDM ≡
∞∑
t=0

βt
[
λππ̂

2
t + λyŷ

2
t

]
. (20)

(20) is a dual-mandate loss function: the policymaker wishes to stabilize inflation and output

around the deterministic steady state, with weights λπ and λy, respectively.

For most of this section, we focus on the optimal setting of nominal interest rates it, with

only brief reference to optimal stimulus check policy.11 The policymaker sets nominal interest

rates to minimize (20) subject to the equilibrium constraints embedded in Definition 1. By

Lemma 1, we can reduce these two constraints to two simple linear relationships: the Phillips

curve (17) and the IS curve (18). This optimal policy problem is a minimal departure from

optimal policy analysis in conventional representative-agent environments: the loss function

(by assumption) and the supply side are unaffected, while the demand constraint changes

from a simple aggregate Euler equation as in (19) to the richer demand relation (18).

Note that so far the constraints of this policy problem take the form of our general linear

11Of course, since our model does not feature Ricardian households, monetary and fiscal policy are never
truly separate. Thus, to be more precise, we study the choice of nominal interest rates conditional on the
debt feedback rule (16).
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constraint (2). By the arguments in McKay & Wolf (2021), we can equivalently re-write this

constraint set in impulse response space, thus giving our alternative formulation (3).12 For

future reference, we write the constraints in impulse response space as

π̂ππ = Θπ,îiii+ Θπ,xτ̂ττx + Θπ,ηη̂ηη + Θπ,mm̂mm, (21)

ŷyy = Θy,îiii+ Θy,xτ̂ττx + Θy,ηη̂ηη + Θy,mm̂mm. (22)

Computational details. Solving the dual-mandate optimal policy problem is straight-

forward. Key to this computational simplicity is that the maps characterizing the linear-

quadratic problem—either the C̃’s in the original constraint formulation or the Θ’s in the

equivalent impulse response space formulation—can be obtained straightforwardly as a side-

product of standard sequence-space solution output, following the methods developed in

Auclert et al. (2021). It thus follows that optimal policy analysis in the dual-mandate case

comes at essentially zero additional computational cost: if a researcher can solve her HANK

model given a policy rule, then she is only a trivial linear-quadratic problem away from also

obtaining an optimal policy rule for a given quadratic loss.

4.2 Policy rule irrelevance

Our first main result is that, under mild regularity conditions on the linear map C̃i—i.e., the

mapping from nominal interest rate paths to net excess consumption demand in the gener-

alized “IS” curve (18)—, the optimal monetary policy forecast target criterion is completely

unaffected by household heterogeneity.

Proposition 1. Let ĉcc be a path of household consumption with zero net present value, i.e.,∑∞
t=0

(
1

1+r̄

)t
ĉt = 0. If, for any such path ĉcc, we have that

ĉcc ∈ image(C̃i), (23)

then the optimal monetary policy rule for a dual-mandate policymaker with loss function (20)

12In McKay & Wolf (2021), we close the model with a determinacy-inducing policy rule for the policy
instruments, here i and τx. The causal effect matrices are then defined as impulse response matrices for
shocks to the baseline rule. For example, if the inflation and interest rate impulse response matrices to
monetary shocks to the base rule are denoted Θ̃π,i and Θ̃i,i, then Θπ,i ≡ Θ̃π,iΘ̃

−1
i,i . This re-writing is without

loss of generality (see McKay & Wolf, 2021).
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can be written as the forecast target criterion

λππ̂t +
λy
κ

(ŷt − ŷt−1) = 0, ∀t = 0, 1, . . . (24)

Recall that our expressions for general linear-quadratic policy problems derived in Sec-

tion 2 immediately yield the optimal dual-mandate policy target criterion as

λπ ·Θ′π,i · π̂ππ + λy ·Θ′y,i · ŷyy = 000. (25)

The proof of Proposition 1 leverages the structure of our particular model to turn the general

expression (25) into the simple rule (24). Importantly, the rule (24) is exactly the same as in

conventional representative-agent optimal policy analyses (e.g. as in Gaĺı, 2015; Woodford,

2003). The logic underlying this result is as follows. In the familiar representative-agent

policy problem, any desired path of output and inflation that is consistent with the Phillips

curve can be implemented through a suitable choice of interest rates. The IS curve is thus a

slack constraint: the policymaker picks the best output-inflation pair subject to the Phillips

curve constraint, and then sets interest rates residually to deliver the required time path of

demand. Our technical condition in (23) is precisely enough to ensure that this logic carries

through in our environment with household heterogeneity. In words, the condition says that,

through manipulation of short-term nominal interest rates, the policymaker can engineer any

possible net excess demand path with zero net present value. The proof of Proposition 1

reveals that this is sufficient to ensure that any desired output-inflation pair consistent with

the Phillips curve (17) is in fact implementable. But then, with the Phillips curve as the

supply side of the economy not depending on household inequality, we find that the target

criterion is the same as in conventional representative-agent models.

The implementability condition (23) is discussed further in Wolf (2021). That paper

shows—analytically in simple models, and numerically in heterogeneous-agent environments—

that interest rate policies are indeed generally flexible enough to induce every possible zero

net present value path of aggregate net excess demand. The irrelevance of household hetero-

geneity for optimal forecast criteria is thus a robust feature of HANK-type environments.

Implications for monetary policy practice. The upshot of Proposition 1 is that,

independently of the non-policy shocks hitting the economy, under optimal dual-mandate

policy, the equilibrium paths of output and inflation will be unaffected by household het-

erogeneity and thus equal to those in a standard representative-agent economy. The only
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possible effect of heterogeneity is to change the instrument paths—i.e., the current and fu-

ture values of nominal interest rates—required to attain those desired output and inflation

paths. We conclude that the positive implications of household heterogeneity have a rather

limited effect on the practice of dual-mandate policymakers: they can continue to set their

instruments to bring projections of macroeconomic outcomes in line with target, exactly as

done in standard practice of flexible inflation targeting.13

Optimal stimulus checks. Proposition 1 only considers the first instrument available to

our policymaker: nominal interest rates. Results for stimulus checks follow immediately from

Wolf (2021), who identifies conditions under which interest rate and stimulus check policies

can implement the same sequences of aggregate output and inflation. More formally, it

follows from his results that, if

ĉcc ∈ image(C̃τ ) (26)

for all sequences ĉcc with zero net present value, then stimulus check policies can also im-

plement the target criterion (24), just like conventional monetary policy. This alternative

implementability condition (26) is again generally satisfied in HANK-type environments.

It follows from the previous discussion that the two policy instruments are perfect substi-

tutes, and so that the solution to the joint optimal policy problem is indeterminate—multiple

paths of the two policy instruments are consistent with the optimal outcomes for output and

inflation. One way to break this indeterminacy is to introduce further constraints on in-

struments, e.g. a lower bound on nominal interest rates. Section 5 considers an alternative

resolution to this indeterminacy: a richer loss function.

4.3 Quantitative analysis & connection to empirical evidence

We have seen that household heterogeneity does not affect the optimal inflation and output

gap outcomes implemented by a dual-mandate policymaker. Heterogeneity could, however,

in principle quite materially affect the time paths of nominal rates required to achieve those

optimal outcomes. This section leverages the close connection between our theory and em-

pirical evidence on policy shock propagation to argue that, in quantitatively relevant models,

13Bernanke (2015) succinctly summarizes the salience of this perspective for Federal Reserve policymaking
practice: “The Fed has a rule. The Fed’s rule is that we will go for a 2 percent inflation rate. We will go for
the natural rate of unemployment. We put equal weight on those two things. We will give you information
about our projections about our interest rates. That is a rule and that is a framework that should clarify
exactly what the Fed is doing.”
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the effects of household heterogeneity on optimal rate paths are likely to be modest in scope.

Exact instrument path irrelevance. We begin with another exact irrelevance result,

building closely on McKay & Wolf (2021). For this result, it will prove convenient to re-state

(5) for the optimal policy instrument path, here specialized to the policy instrument i and

for the policy targets x = (y, π)′, for some generic set of shocks εεε:

îii
∗
≡ −

(
Θ′x,i(Λ⊗W )Θx,i

)−1 ×
(
Θ′x,i(Λ⊗W )Θx,ε · εεε

)
. (27)

Equation (27) has the following important implication. Any two models—say HANK and

RANK—that agree on (i) the effects of a given shock εεε on output and inflation, Θy,ε · εεε and

Θπ,ε · εεε, and (ii) the effects of interest rate changes on output and inflation, Θy,i and Θπ,i,

will necessarily agree on the optimal interest rate path îii
∗
.

We view this irrelevance result as informative because its ingredients are measurable. In

particular, the dynamic causal effects of interest rate changes on aggregate outcomes—that

is, elements of Θy,i and Θπ,i—are the estimands of a large empirical literature on monetary

policy shocks (Ramey, 2016). Structural models are often calibrated or estimated to be

consistent with estimates from this literature, which leads them to yield similar outcomes

for Θy,i and Θπ,i. The degree to which such quantitative models can disagree on optimal

dual-mandate interest rate paths is thus limited by the empirical evidence.

Quantitative illustration. We close with a quantitative illustration of the analytical

results presented in this section. To this end, we study optimal dual-mandate monetary

policy in response to a cost-push shock ηt in a calibrated version of our HANK model.

Details of the calibration are postponed until Section 5.3; for purposes of the discussion

here, it suffices to note that the model has been parameterized to in particular be consistent

with empirical evidence on the output gap and inflation effects of monetary shocks. We

then contrast aggregate outcomes in this economy with those in an analogous RANK model,

calibrated similarly to be consistent with empirical policy shock evidence.

Results are displayed in Figure 1. We emphasize the following two takeaways, consistent

with our analytical discussion in the rest of this section. First, consistent with Proposition 1,

the output and inflation paths are exactly the same. The optimal trade-off between inflation

and output is fully governed by the Phillips curve, which itself is not affected by household

inequality. Second, the nominal interest rate path required to implement the optimal out-

come is quite similar across the two models. Intuitively, since by construction both models
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Figure 1: Optimal dual-mandate policy response to a cost-push shock. The RANK model replaces
our general “IS” curve (18) with the simple textbook Euler equation (19). We then calibrate all
parameters as in the headline HANK model (see Section 5.3), with one exception: we set the
elasticity of intertemporal substitution (EIS) to generate the same peak response of output to an
identified monetary shock as in the HANK model. In practice, the EIS is little changed.

agree on the transmission from interest rate changes to output and inflation, the interest rate

movements that achieve the policymaker’s desired output and inflation movements cannot

be too dissimilar.14

5 Optimal Ramsey policy

We now turn to the optimal policy problem of a Ramsey planner. Unlike our ad hoc dual-

mandate loss function of Section 4, this planner’s objective is directly affected by household

inequality, reflecting a desire to dampen the distributional consequences of aggregate shocks.

For most of this section we will focus on optimal monetary policy. We will, however, also

discuss joint optimal monetary and stimulus check policy, emphasizing the complementarity

between these two standard stabilization tools.

The remainder of this section proceeds in three steps. First, in Section 5.1, we show how

to express the optimal policy problem in our general linear-quadratic form. Second, in Sec-

tion 5.2 we present general analytical results and discuss some instructive analytical special

cases. Finally, in Sections 5.3 and 5.4, we turn to quantitative analysis, first connecting our

14As discussed above, the two interest rate paths would agree exactly if the two models were to agree
on all of Θy,i and Θπ,i. Our calibration instead only ensures that peak output and inflation responses in
response to a particular, transitory interest rate movement align. This limits the extent of—but does not
fully eliminate—disagreement in nominal rate paths.
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optimal rule expressions to empirical evidence, and then applying our results to particular

business-cycle shocks.

5.1 The optimal policy problem

We consider a conventional Ramsey planner that aggregates utilities of the households pop-

ulating the economy. This section presents a linear-quadratic version of this policy problem.

As is typical in the optimal policy literature (e.g. see Giannoni & Woodford, 2002), doing so

requires a particular notion of efficiency of the steady state—here efficiency in the sense that

the planner finds the steady-state cross-sectional distribution of consumption desirable. Our

optimal policy analysis will thus reflect an insurance motive against fluctuations in these

consumption shares.

Loss function. To state the loss function, it will prove convenient to describe an individ-

ual’s outcomes in terms of their idiosyncratic history of shocks; that is, we replace cit with

ωt(ζ
t
i )ct where ζti ≡ (ζit, ζit−1, ζit−2, · · · ) is individual i’s history of idiosyncratic shocks and

ωt(ζ
t
i ) ≡ cit/ct is their share of aggregate consumption.15 Letting Γ(ζ) denote the (station-

ary) distribution of such histories (with ζ a generic realization of a history), we can write

the social welfare function as

VHA =
∞∑
t=0

βt
∫
ϕ(ζ)

[
(ωt(ζ)ct)

1−γ − 1

1− γ
− ν (`t)

]
dΓ(ζ), (28)

where ϕ(ζ) is a Pareto weight on the utility of households with history ζ.

In keeping with optimal (monetary) policy analysis in standard representative-agent en-

vironments (Woodford, 2003), our objective is to evaluate the social welfare function (28)

to second order. To this end, a first-order approximation to aggregate equilibrium dynamics

suffices only if the expansion point (i.e., the deterministic steady state) is efficient. With-

out household heterogeneity, a simple production subsidy is sufficient to ensure this. With

household heterogeneity, however, we now additionally require the consumption shares of

all households to be optimal. In principle there are two ways of ensuring this: either the

steady-state fiscal tax-and-transfer system achieves the optimal level of insurance given the

planner weights ϕ(•), or the planner weights are set residually so that the implied steady-

15Note that this is without loss of generality, as individuals in our model are ex ante identical, so their
outcomes only differ due to different histories of shocks.
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state distribution of consumption given a tax-and-transfer system is optimal. We adopt the

second approach, following much of the inverse optimal taxation literature (e.g. Heathcote

& Tsujiyama, 2021). Our preference for this approach reflects the overarching focus of this

paper: we ask how cyclical policy tools should be manipulated to respond to cyclical changes

in inequality, leaving the long-run steady state outside of the purview of our analysis.

Appendix D.3 presents our assumptions on the production subsidy and policymaker pref-

erence weights that ensure efficiency of the deterministic steady state. Given those assump-

tions, a second-order approximation of (28) around the efficient steady state then gives the

following characterization of the policymaker loss function.

Proposition 2. To second order, the social welfare function VHA is proportional to −LHA,

given as

LHA ≡
∞∑
t=0

βt
[
π̂2
t +

κ

η̄
ŷ2
t +

κγ

(γ + φ)η̄

∫
ω̂t(ζ)2

ω̄(ζ)
dΓ(ζ)

]
, (29)

where ω̂t(ζ) = ωt(ζ)− ω̄(ζ) and ω̄(ζ) is the steady-state consumption share of an individual

with history ζ.

Note that, in the representative-agent analogue of our economy (as discussed in Sec-

tion 3.5), the loss function would feature the same first two terms, as already well-known

from prior work (Woodford, 2003). Our analysis reveals that household heterogeneity adds a

third, inequality-related term, with the planner wishing to stabilize the consumption shares

of everyone in the economy.

How does the inequality term in (29) fit into the linear quadratic framework in Section 2?

Moving to a sequence-space formulation, we can write the loss as

LHA = λππ̂ππ
′Wπ̂ππ + λyŷyy

′Wŷyy +

∫
λω(ζ)ω̂ωω(ζ)′Wω̂ωω(ζ)dΓ(ζ), (30)

where λπ = 1, λy = κ
η̄

and λω(ζ) ≡ κγ
(γ+φ)η̄ω̄(ζ)

. The consumption share for each idiosyncratic

history thus emerges as a separate target variable for the policymaker. We will discuss our

approach to computation of (30) later in this section.16

Constraints. The constraints of the optimal policy problem characterize the evolution

of policymaker targets—π, y, and the consumption shares ω(ζ)—as a function of exogenous

16Note that, technically, (30) does not immediately fit into our framework in Section 2.1 since the objective
here features an integral (rather than a simple sum). Our approach to computation will consider an equivalent
formulation of the problem with finitely many policy targets.
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shocks and policy choices. As already discussed in Section 4.1, the evolution of output and

inflation are governed by the Phillips curve (17) and the IS curve (18). It then remains to

describe the evolution of the inequality term in (29). In Appendix C.2, we establish that, to

first order, we can write the consumption share for a household with specific history ζ as

ω̂ωω(ζ) = Ωω(ζ),yŷyy + Ωω(ζ),ππ̂ππ + Ωω(ζ),îiii+ Ωω(ζ),xτ̂ττx + Ωω(ζ),mm̂mm, ∀ζ (31)

where the maps Ω• give the derivatives of consumption shares with respect to aggregate vari-

ables. The intuition for (31) is the same as that for the aggregate consumption function—an

individual household’s consumption, given their history of idiosyncratic shocks, evolves over

time as a function of the aggregate inputs to the household consumption-savings problem.

By the proof of Lemma 1, we can obtain these inputs as a function of exogenous shocks,

policies, and aggregate output and inflation paths.

Following McKay & Wolf (2021), we can alternatively re-write this constraint in impulse

response space, solving out the dependence of consumption shares on income and inflation:

ω̂ωω(ζ) = Θω(ζ),îiii+ Θω(ζ),xτ̂ττx + Θω(ζ),ηη̂ηη + Θω(ζ),mm̂mm. ∀ζ (32)

Summary & computational details. The Ramsey planner chooses paths of the two

available policy instruments—nominal interest rates iii and the exogenous component of trans-

fers τττx—to minimize the derived loss function LHA subject to the same two constraints as

before, (17) and (18), as well as the evolution of the inequality term, (31).

To computationally evaluate the more complicated loss function (30) and the associated

constraints, we show in Appendix C.2 that the Ramsey loss can be re-written as

LHA = π̂ππ′Wπ̂ππ +
κ

η̄
ŷyy′Wŷyy +

κγ

(γ + φ)η̄
x̂xx′Qx̂xx (33)

where xxx = (yyy,rrr, τττx, τττ e,mmm) and Q is a linear map, defined in Appendix C.2.17 The alternative

formulation in (33) reflects the simple intuition that it is always possible to re-write the loss

coming from cross-sectional inequality as a function of the (small number of) inputs to the

household consumption-savings problem—income, interest rates, taxes, and shocks. With

the re-written loss function (33), the relevant constraints are then simply the equilibrium

dynamics of xxx = (yyy,rrr, τττx, τττ e,mmm). Computation is thus again straightforward: Appendix C.2

17The linear map Q in (33) is in general not diagonal. Thus Appendix C.2 also extends the results from
Section 2 to the case with such interaction terms.
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discusses how to recover the map Q, while the coefficient matrices for all constraints are again

immediate from standard sequence-space solution output, exactly as in the dual-mandate

problem considered before. To summarize, relative to solving a HANK model given a pol-

icy rule, the only additional computational work needed to solve a Ramsey optimal policy

problem is the one-time computation of the auxiliary matrix Q.

5.2 Optimal policy rules

Having expressed the optimal Ramsey problem in linear-quadratic form, we can now leverage

the results of Section 2 to provide a general characterization of optimal Ramsey policy rules.

The optimal Ramsey monetary policy rule is given as

Θ′π,iWπ̂ππ +
κ

η̄
Θ′y,iWŷyy +

∫
λω(ζ)Θ

′
ω(ζ),iWω̂ωω(ζ)dΓ(ζ) = 000, (34)

where as before the matrices Θ•,i collect the dynamic causal effects of interest rate movements

on the various policymaker targets. In particular, we see that the first two terms in (34)

are identical to the optimal dual-mandate rule (25), just now with weights derived from

policymaker preferences (rather than exogenously assumed). The novel third term—which

reflects the planner’s distributional insurance concerns—collects the causal effects of interest

rate movements on consumption shares. Proceeding analogously for stimulus checks we find

the optimal rule

Θ′π,τxWπ̂ππ +
κ

η̄
Θ′y,τxWŷyy +

∫
λω(ζ)Θ

′
ω(ζ),τxWω̂ωω(ζ)dΓ(ζ) = 000, (35)

As discussed in Wolf (2021) and in Section 4.2, interest rate and stimulus check policy in our

environment implement the same output-inflation allocations, so the first two terms in (34)

and (35) reflect identical aggregate stabilization objectives. The distributional terms Θω(ζ),i

and Θω(ζ),τx , on the other hand, will generally differ, thereby opening the door for interest

rate and stimulus check policies to be useful complementary tools for aggregate stabilization.

We will return to this observation in Section 5.4. Overall, (34) and (35) fully characterize

joint optimal monetary-fiscal policy.

The key takeaway from the characterizations in (34) and (35) is that optimal policy rules

in the general Ramsey problem deviate from the dual-mandate rules discussed in Section 4

if and only if the policy instruments affect cross-sectional consumption inequality. On the

one hand, if monetary policy is distributionally neutral—as is for example the case in the
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environment of Werning (2015) (see Appendix A.2 for details)—then household inequality

does not affect the optimal rule: Θω(ζ),i = 000 implies that the optimal monetary rule continues

to take the dual-mandate form18

π̂t +
1

η̄
(ŷt − ŷt−1) = 0, ∀t = 0, 1, . . . (36)

On the other hand, if interest rate cuts are strongly progressive (as is the case in Bhandari

et al., 2021; Dávila & Schaab, 2022), then the concerns about inequality as embedded in the

policymaker objective (29) may materially change policy conduct, with insurance concerns

swamping the usual price and output stabilization motives. For example, in response to a

cost-push shock that redistributes income from workers to capitalists, the central bank may

be reluctant to aggressively hike rates, to avoid further worsening consumption inequality.

Ultimately, which case is the relevant one is an inherently empirical question.

Our strategy. The optimal policy analysis in the remainder of this paper will proceed

by confronting the general expressions in (34) and (35) with empirical evidence. Given the

paper’s emphasis on monetary policy, we pay particular attention to evidence on the response

of consumption inequality to changes in nominal rates—that is, entries of the causal effect

matrices Θω(ζ),i. Section 5.3 begins by reviewing that empirical evidence, before then using

it to calibrate our structural model. Applications follow in Section 5.4.

5.3 Empirical evidence, calibration, and model validation

We have seen that the extent to which the insurance motive embedded in (29) affects optimal

policy design depends crucially on the distributional effects of changes in policy instruments.

By the results in McKay & Wolf (2021), we can assess these distributional effects by studying

the implications of identified policy shocks.

In this section we do so by proceeding in three steps. First, we review the empirical

evidence on the distributional effects of monetary policy shocks. Second, we calibrate our

structural HANK model to be consistent with that evidence. And third, we validate our

model against untargeted moments.

18Bilbiie (2021) makes an analogous argument in a two-agent context, showing that, if monetary policy
does not redistribute between spenders and savers, then the optimal policy rule is not affected by inequality
concerns. Our analysis reveals that the conditions underlying Werning’s aggregation result are precisely
enough to extend this insight to our heterogeneous-agent setting.
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The distributional effects of monetary policy. We are ultimately interested in

the effects of policy changes on consumption inequality. Empirical work, however, has so

far provided the most definitive answers not on consumption itself, but on inputs to the

consumption-savings decision—that is, on various channels of monetary policy propagation.

We begin with a brief review of the evidence on the most important channels.

a) Labor income. There is extensive evidence that those with less education, low past earn-

ings, and racial minorities tend to be more exposed to cyclical fluctuations in labor market

conditions (e.g. Okun, 1973; Hoynes, 2000; Guvenen et al., 2014; Patterson, 2022). Turn-

ing to monetary policy more specifically, Guvenen et al. (2014) study earnings dynamics

in the 1979–1983 recession—a contraction that was arguably caused by a large monetary

intervention. They find that individuals with low previous earnings also suffered the

largest earnings losses. Several recent studies that combine identified monetary policy

shocks with European administrative data arrive at very similar conclusions (Andersen

et al., 2021; Amberg et al., 2021; Holm et al., 2021).

b) Asset prices. Expansionary monetary policy raises the value of long-duration assets and

leads to considerable capital gains for the owners of those assets. For example, Bauer

& Swanson (2022) estimate that a 100 basis point reduction in short-term interest rates

increases the S&P 500 stock market index by about five percentage points. As the

distribution of wealth is concentrated, these capital gains are very unequally distributed

across the population. Andersen et al. (2021) leverage administrative household-level data

from Denmark to quantify this distributional gradient. They find that, in response to a

one percentage point decrease in the policy rate, asset values increase by around 70 per

cent of total annual disposable household income at the top of the income distribution,

and around 30 per cent at the median.19

c) Nominal wealth redistribution. Surprise inflation will lower the real value of nominal po-

sitions. Doepke & Schneider (2006) report that wealthy households have about 10-15%

of their net worth in nominal positions, while young middle-class households have consid-

erable nominal liabilities in the form of mortgages. The magnitude of the redistribution

19Of course, while long-duration real assets increase in value following an expansionary monetary shock,
so too do the values of long-duration liabilities. In particular, the future consumption plans of households
become more costly as real interest rates fall. Theoretically, one would want to measure the net exposure
to interest rates that accounts for the difference between asset income and planned consumption (see e.g.
Auclert, 2019).
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that occurs through this channel of course depends on the strength of the inflation re-

sponse to monetary policy. Most empirical studies point to a relatively flat Phillips curve

(see e.g. Mavroeidis et al., 2014), thus implying relatively small inflation responses to

changes in policy, and so only moderate nominal wealth redistribution.

d) Mortgage payments. Expansionary policy lowers mortgage interest rates, thus leading to

lower debt service payments for households that buy a new home or choose to refinance

an existing mortgage. This channel most strongly benefits middle-class households that

own a home with a large mortgage relative to their net worth; renters and homeowners

who own their home outright, on the other hand, are not directly affected (e.g. see Cloyne

et al., 2020; Wong, 2021).

Several studies have tried to go beyond these inputs to the consumption-savings decision

and examine the response of household consumption directly. Our preferred estimates come

from Holm et al. (2021)—to the best of our knowledge the only study in which households are

tracked over time and household fixed effects are included. One of their main findings is that

expansionary policy has U -shaped effects on household consumption across the distribution of

liquid asset holdings.20 Other work however arrives at somewhat different conclusions: using

data from the Consumer Expenditure Survey, Coibion et al. (2017) find that expansionary

policy leads consumption inequality to fall, while Chang & Schorfheide (2022) conclude that

inequality increases, reflecting a large increase in consumption in the right tail.

Overall, our reading of the literature is that conclusions on channels are more definitive

than conclusions on the implied consumption movements. Our strategy is thus to match the

empirical evidence on channels of redistribution in our model, and then infer the implica-

tions for consumption, leveraging the fact that the canonical incomplete-markets model is a

successful model of the consumption-savings problem (e.g. Kaplan et al., 2018).21

Model calibration. We calibrate our model to capture the just-summarized channels

of monetary policy propagation to consumption inequality. Since our model does not feature

mortgages, we only match channels a)–c), and so our model may understate the benefits of

20Like many empirical studies of monetary policy shocks, Holm et al. find that monetary policy affects the
labor market with a considerable delay. Therefore the induced changes in non-financial income also occur
with a delay. As it takes time for these indirect effects of monetary policy to materialize we focus on the
consumption response at horizons of two to five years.

21A similar strategy of using a model of consumption and savings decisions to infer the implications of
monetary shocks for the consumption distribution has been employed by Ampudia et al. (2018). They too
find U -shaped effects on consumption.
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expansionary policy to middle class households. As we find that these households benefit

the least, actual heterogeneity in the distributional effects of monetary policy may be even

less pronounced than our model implies, thus reinforcing our conclusions in Section 5.4.

• Income process. Since many of the distributional effects of monetary policy involve

changes in asset values, it is paramount that the model generates a concentrated dis-

tribution of wealth, as in the data. Since standard incomplete-markets models of

the consumption-savings decision struggle to generate sufficiently concentrated wealth

holdings in the top tail of the distribution, we follow Castaneda et al. (2003), Boar

& Midrigan (2020), and Greenwald et al. (2021) in specifying an income process with

superstar earners, allowing us to generate a realistic concentration of wealth.

The underlying household income state, ζit, follows a two-component process, with

households being either regular workers or high earners. The function Φ that maps ζit

to labor productivity eit is parameterized as

log eit = log (ζit) (1 +mt + α log yt) + log ēt, (37)

where α controls the sensitivity of income dispersion to the cycle. A negative α implies

that low-ζ households are more exposed to the cycle. ēt is a normalization constant

such that
∫
eitdi = 1 at all dates. For regular workers, the income state log ζit follows

an AR(1) process. To estimate this process we follow Guvenen et al. (2022). Those

authors propose a parametric income process that allows for differential exposure to

aggregate conditions, and then estimate it using moments taken from the Social Se-

curity Administration data. Adopting this strategy allows us to pin down α in (37).

Alternatively, households can be high earners, with households entering and exiting

the high-earnings state at constant rates. We allow for two levels of high earnings, and

then calibrate the size of these groups, the level of their earnings, and the persistence

of these states to match data on the income and wealth distributions. Specifically, we

target the shares of total wealth held by the wealthiest 1%, 5%, 10%, 25% and 50% of

the wealth distribution. We also target the same moments of the income distribution.

Table 1 shows the targets and fitted values. Further details on the calibration of the

income process and its parameters are presented in Appendix B.1.

• Asset structure. The steady state real interest rate r̄ is set to 2 per cent annually.

The duration of the long-run bond is set to 15 years, following Greenwald et al. (2021).

Next, we set χπ = 0.9 in reference to the estimates for wealthy households in Doepke &
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Wealth Income

Data Model Data Model

Top 1% 37 36 17 20
Top 5% 65 66 32 36
Top 10% 76 78 43 52
Top 25% 91 95 64 65
Top 50% 99 100 84 80

Table 1: Shares (%) of wealth and income concentrated in the top x% of the distribution. Data
are from the 2019 Survey of Consumer Finance.

Schneider (2006), while χy is calibrated internally to match the sensitivity of aggregate

household net worth to an identified monetary shock. Details on the internal calibration

are provided in Appendix B.1. The aggregate supply of assets is set to match the

average ratio of household net worth to GDP (with household net worth computed from

the U.S. Financial Accounts), and the borrowing limit a is set to zero, as commonly

done in the literature (e.g. McKay et al., 2016).

• Fiscal system. The U.S. fiscal tax-and-transfer system is reasonably well-approximated

by a common baseline lump-sum transfer coupled with a constant marginal tax rate (see

Kaplan et al., 2018). Data on post-government and pre-government income from the

Congressional Budget Office (2019) imply a steady state transfer of 0.17 times average

income, pinning down the ratio τ̄x/ȳ in our model.22 The speed of fiscal adjustment is

controlled by σ, which we set equal to δ. Bonds in excess of the steady state level are

thus paid off as they mature.23

• Other parameters. We set the Frisch elasticity to one, and the elasticity of substitution

between labor varieties to six, based on Basu & Fernald (1997). Lastly, we set the

coefficient of relative risk aversion γ and the slope of the Phillips curve κ to match

the peak responses of output and inflation to an empirically identified monetary policy

shock. Again, details for this internal calibration are provided in Appendix B.1.

We summarize all parameter values in Table 2.

22We exclude Medicaid and CHIP benefits from the after-tax income. We then regress after-tax incomes
on before-tax incomes for the first four quintiles of the income distribution. The intercept of this regression
gives the steady state transfer.

23We have found that the results are robust to the choice of σ as long as it takes a low value. Empirically,
changes in public debt are highly persistent implying a low value of σ.
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Parameter Description Value Calibration target

Households

{ζit} Income risk process – See text

α Income exposure -1.61 Het. earnings cyclicality

γ Relative risk aversion 1.5 Monetary shock effects

φ Frisch elasticity 1 Standard

β Discount factor 0.985 Asset market clearing

Firms

κ Phillips curve slope 0.027 Monetary shock effects

η̄ Labor Substitutability 6 Basu & Fernald (1997)

Asset Structure

r̄ Steady-state return 0.5% 2% annual real return

a Borrowing limit 0 Standard
ā
ȳ

Total asset supply 16.24 Household net worth/GDP

δ Asset duration 0.048 Greenwald et al. (2021)

χπ Inflation indexation 0.9 Doepke & Schneider (2006)

χy Output sensitivity 7.0 Monetary shock effects

Government

τy Labor tax 0.248 Steady-state budget balance
τ̄x
ȳ

Transfer share 0.17 After-tax vs. before-tax income

σ Tax-Debt Responsiveness = δ See text

Table 2: Calibration of our quantitative HANK model. The model period is one quarter.
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Consumption responses & model validation. Having calibrated our model to be

consistent with empirical evidence on the transmission channels of monetary policy to house-

holds, we now use the model to map these income responses into monetary policy’s effects

on consumption inequality.

Our main finding is that the consumption of low-wealth and high-wealth households is

more sensitive to monetary policy than the consumption of households with moderate assets.

Figure 2 provides an illustration. The figure shows the initial change in consumption across

the wealth distribution following an expansionary monetary shock. On the one end of the

spectrum, low-wealth households tend to have low incomes, their earnings are more exposed

to aggregate income, and they are often borrowing-constrained and so have high MPCs. As

a result, changes in earnings pass through strongly into consumption. At the other end,

high-wealth households benefit from increases in asset values. While these capital gains are

very large, the pass-through to consumption is relatively weak. Households with a moderate

amount of wealth are less affected, thus giving the U -shape displayed in Figure 2.24

Finally, Figure 2 also provides an important validation check of our model. In the figure,

the two black lines show the consumption response to a monetary shock as estimated by

Holm et al. (2021). Since empirical estimates suggest that monetary policy transmits with a

lag, we follow Holm et al. and focus on the consumption response at horizons of 2 to 5 years.

Holm et al. classify households by their liquid asset holdings; assuming that liquid assets are

monotonic in wealth, we can compare their results to our model’s implications. As Figure 2

shows, model and data both qualitatively and quantitatively agree on the cross-sectional

distributional effects of a monetary easing on household consumption.

5.4 Applications

With a model that matches empirical evidence on the distributional effects of monetary policy

in hand, we now use this laboratory to explore optimal Ramsey policy in two empirically

relevant scenarios. As our first application, we consider an aggregate shock with strong

distributional consequences, depressing consumption of the poor relative to that of the rich,

somewhat akin to the Covid-19 recession. Second, we return to the inflationary cost-push

24Note that the earnings of the lowest-wealth group increase by 0.5% of their steady-state income, while
the capital gains of the highest-wealth group amount to more than 20% of steady-state income. The model
is thus consistent with the empirical results of Andersen et al. (2021) and Bartscher et al. (2021) who
emphasize that capital gains effects are large relative to labor income effects. While the implications for
short-run consumption are more equal, high-wealth consumption does remain elevated for longer. These
dynamic effects are not visible in Figure 2, but they are incorporated into our analysis of optimal policy.
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Figure 2: Initial response of consumption to an expansionary monetary policy shock across the
distribution of wealth. The empirical estimates are from Holm et al. (2021), who rank households
according to liquid assets, which we assume are monotonic in wealth in constructing this figure.
We simulate the shock we estimate empirically in Appendix B.1 scaled to match the magnitude of
the consumption responses in Holm et al.. Holm et al. find that the indirect effects of policy build
through time whereas in our model they occur on impact.

shock from Section 4.3—a shock that has received much attention in the HANK optimal

policy literature (e.g. Bhandari et al., 2021; Acharya et al., 2020).

Distributional shock. Our first shock is an innovation to mt, the exogenous driver of

income dispersion in (37). This shock redistributes income from low-income households to

high-income households, thus depressing aggregate demand: precautionary savings increase

due to the increase in risk, and spending falls as income is redistributed towards lower-MPC

households. We study three optimal policy responses to this shock: monetary policy for a

dual mandate policymaker; monetary policy for a Ramsey planner; and joint monetary-fiscal

policy for a Ramsey planner. Results are reported in Figure 3.

As a benchmark we begin with the optimal dual mandate policy response, displayed as

the grey lines in Figure 3. As aggregate demand falls, the dual-mandate central banker

cuts nominal interest rates to perfectly stabilize output and inflation (“divine coincidence”).

The bottom panel shows how the consumption distribution changes on impact of the shock:

the shock itself redistributes from low-income to high-income households, and the monetary
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Figure 3: Optimal policy response to an income distribution shock mt. The figure shows the
results from three policy rules: optimal monetary policy for a dual-mandate policymaker (Dual
Mandate), optimal monetary policy for a Ramsey planner that is constrained not to use lump-sum
transfers (Monetary Only), and optimal policy for a Ramsey planner that can use both tools (Joint
Monetary-Fiscal). Transfers are expressed in units of dollars, using the conversion that steady state
per capita GDP is $60,000.
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easing only moderately offsets these effects, somewhat stabilizing consumption at the bottom

but increasing consumption at the top even further.

We then consider the optimal Ramsey monetary policy that also considers distributional

objectives, depicted as the orange dashed lines in Figure 3. Our headline finding here is that

the optimal policy response is very similar to the dual-mandate policy, with interest rates cut

only slightly more (17 basis points). As a result, output and inflation continue to be stabilized

almost perfectly, and the consumption distribution hardly differs from the dual-mandate

outcome. The intuition is as follows. The original shock mt has a strong distributional

tilt, with low-income households losing the most. The Ramsey planner would like to lean

against this redistribution and stabilize consumption shares. Monetary policy, however, is a

rather blunt tool: if the planner were to cut rates by enough to stabilize consumption at the

bottom, then consumption of the rich and so aggregate output and inflation would overshoot

significantly—an immediate implication of the distributional effects we matched in Figure 2.

We provide a visual illustration of this point in Figure B.4: approximately doubling the size

of the nominal interest rate cut is enough to nearly stabilize the consumption of households

with low income and low wealth, but it comes at the cost of over-stimulating the consumption

of high-wealth households (and thus aggregate output and inflation).

Finally we turn to the optimal joint monetary-fiscal Ramsey policy, with a planner using

both interest rate policy and stimulus checks to pursue her aggregate and distributional

objectives. Results are displayed as the dark blue lines in Figure 3. Compared to monetary

policy, fiscal stimulus payments are much more progressive, with consumption of low-income

and low-wealth households responding significantly more than that of high-income, high-

wealth households (see Wolf (2021) or Figure B.3). Intuitively, this reflects both differences in

MPCs as well as differences in income levels, with any given dollar amount of stimulus checks

amounting to a much larger fraction of income at the bottom of the income distribution. As

a result, fiscal stimulus payments are particularly well-suited as a tool to address shocks that

differently affect low-income and high-income households. The results depicted in Figure 3

are consistent with this intuition: in response to the distributional shock mt, the Ramsey

planner can use stimulus checks to almost perfectly stabilize aggregate output, inflation, and

consumption inequality. Since stimulus payments both compress inequality and stimulate

aggregate demand, there is little need for the monetary authority to intervene, with nominal

interest rates now responding very little.

Overall, our analysis of optimal Ramsey policy responses to the distributional shock

suggests two broad lessons for optimal cyclical policy design. First, for monetary policy
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viewed in isolation, an important question is how well-adapted its distributional effects are

likely to be to the distributional incidence of the underlying business-cycle shock. In many

cases, stabilizing consumption at the bottom of the distribution may require significant

departures from dual-mandate objectives; if the Ramsey planner is unwilling to accept these

departures (as was the case in our example), then optimal policy will stay reasonably close to

the dual-mandate benchmark. Second, fiscal stimulus payments and interest rate policy can

be highly complementary policy tools. They are likely to have very different cross-sectional

incidence profiles (see Figure 2 and Figure B.3), and so will be well-suited to offset cyclical

shocks with similarly distinct distributional incidence profiles.

Cost-push shock. Our second shock is a cost-push shock ηt, as already considered in

Section 4.3. In our model, this cost-push shock introduces a wedge in the Phillips curve,

thus giving an output-inflation trade-off. The shock does not, however, by itself have strong

distributional implications. For our analysis we restrict attention to monetary policy alone,

comparing only the optimal dual-mandate and Ramsey monetary policy responses.25 Results

are displayed in Figure 4.

Overall we find that the Ramsey policy responds less aggressively than the dual-mandate

policy. The intuition is as follows. The increase in nominal interest rates that is optimal

under a dual mandate objective by itself leads to an inverse-U -shaped effect on consumption.

To mitigate these distributional effects, the optimal Ramsey policy response is somewhat

attenuated relative to the dual mandate benchmark. We conclude that insurance concerns

in this experiment do affect optimal monetary policy design, with the initial decline in output

44 per cent smaller than under the dual-mandate rule.

However, we emphasize that the broad thrust of the policy response—raising rates to

lean against inflation—still follows the prescription of standard representative-agent models.

These quantitative findings contrast with recent arguments made for example in Bhandari

et al. (2021), who conclude that distributional considerations may lead to substantial changes

in optimal policy conduct—changing the signs of impulse response functions and the order

of magnitude of inflation volatility. The reason for this disagreement is that, in the frame-

work of Bhandari et al., expansionary monetary policy strongly redistributes from wealthy

households to poor households, thus making it a very useful tool for achieving distributional

25The results for joint optimal monetary-fiscal policy are anyway not particularly different. The intuition
is that the original cost-push shock does not have a particularly pronounced cross-sectional incidence profile.
As discussed below, the optimal monetary response creates distributional effects, but stimulus checks are of
course ill-suited to offset these effects.
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Figure 4: Optimal policy response to an inflationary cost-push shock. The figure shows optimal
monetary policy for a planner whose objective is to stabilize output and inflation (Dual Mandate)
and for a Ramsey planner (Monetary Ramsey).

goals.26 The recent empirical evidence on the distributional effects of monetary policy re-

viewed in Section 5.3 on the other hand suggests that these distributional effects are rather

muted, leading us to find a much smaller departure from dual-mandate policy.

6 Conclusion

Should household inequality affect the conduct of cyclical stabilization policy? The analysis

in this paper suggests the following three main takeaways.

26This redistribution occurs primarily though raising the labor share and reducing monopoly profits in
their sticky price model.
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First, for central banks that target standard macroeconomic aggregates (e.g., a classical

“dual mandate”), household inequality is likely to only have moderate effects. Analytically,

we have given conditions under which the optimal forecast target criterion of a dual mandate

central banker is unaffected by household inequality. Under those conditions, optimal output

and inflation outcomes will be completely independent of household inequality. Empirically,

a long literature already estimates the causal effects of interest rate changes on output

and inflation. Models that are consistent with this evidence will furthermore yield similar

predictions for the paths of nominal rates necessary to implement a given output and inflation

target—irrespective of whether the model features household inequality or not.

Second, the extent to which distributional objectives shape optimal Ramsey monetary

policy depends crucially on the causal effects of interest rate changes on household inequality.

According to our reading of the empirical evidence, monetary policy indeed has meaningful

distributional effects, but these effects are not straightforward—in response to a monetary

easing, both poor as well as rich households are likely to gain the most. Interest rate policy

is thus not a particularly sharp tool to deal with shocks that disproportionately affect the

poor, at least not without substantial costs in terms of aggregate stabilization.

Third, fiscal stimulus checks—an alternative tool of stabilization policy, used increasingly

frequently in recent decades—promises to be more useful for distributional purposes. Such

stimulus checks achieve aggregate stabilization through insurance at the bottom, thus making

them well suited to address cyclical fluctuations that mostly affect poor households.
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A Supplementary model details

This appendix provides further details for our structural model. Appendix A.1 begins by

further discussing the union problem and deriving the log-linearized Phillips curve (11), and

Appendix A.2 discusses the model’s special case in which monetary policy is distributionally

neutral, following Werning (2015).

A.1 Technology, union problem & Phillips Curve

We here provide further details for the production side of our economy, as sketched in

Section 3.2. We begin by specifying the details of the economy’s production technology, and

then derive our Phillips curve (11).

Technology. A unit continuum of unions, indexed by k ∈ [0, 1], differentiate labor into

distinct tasks. Union k aggregates efficiency units into the union-specific task `kt =
∫
eit`iktdi,

where `ikt are the hours worked supplied by household i to union k. A competitive final goods

producer then packages these tasks using the technology

yt =

(∫
k

`
ηt−1
ηt

kt dk

) ηt
ηt−1

.

The price index of a unit of the overall labor aggregate is

wt =

(∫
w1−ηt
kt dk

)1/(1−ηt)

,

where wkt is the price of the task supplied by union k. Marginal cost pricing by final goods

producers requires pt = wt. The resulting demand for labor from union k is

`kt =

(
wkt
wt

)−ηt
yt. (A.1)

Integrating both sides across k yields the aggregate production (12), where dt ≡
∫ (

wkt
wt

)−ηt
dk,

with `t denoting total effective hours supplied by households and dt capturing the efficiency

losses due to price dispersion.
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From union problem to Phillips curve. We assume that union wage payments to

households are subsidized at gross rate η̄Ξ
(η̄−1)(1−τy)

, where η̄ is the steady state elasticity of

substitution between varieties of labor and the term Ξ accounts for the fact that the social

planner may weight households differently from the labor union. We derive the precise value

of Ξ in Appendix D.3; for the purposes of our analysis here, it suffices to note that the labor

subsidy takes this general form and that it is financed with a lump-sum tax on unions. The

union’s problem is to choose the reset wage w∗ and `kt to maximize

∑
s≥0

βsθs
[
uc(ct+s)(1− τy)

η̄Ξ

(η̄ − 1)(1− τy)
w∗

pt+s
`kt − ν` (`t+s) `kt

]

subject to (A.1) and taking ct+s and `t+s as given (since the individual labor union is atom-

istic). The first-order condition is

∑
s≥0

βsθsν` (`t+s) yt+sηt+s

(
pt+s
pt

)ηt+s
=

η̄

(η̄ − 1)

∑
s≥0

βsθsΞuc(ct+s)(ηt+s−1)
w∗t
pt

(
pt+s
pt

)ηt+s−1

yt+s,

(A.2)

where w∗t is the optimal reset wage chosen at date t. Log-linearizing the first-order condition

around a zero-inflation steady state:

∑
s≥0

βsθs
(
φŷt+s + η̂t+s + η̄ (p̂t+s − p̂t) + ŷt+s − ŷt+s −

η̄

η̄ − 1
η̂t+s − ŵ∗t + η̄p̂t − (η̄ − 1)p̂t+s + γŷt+s

)
= 0,

where φ ≡ ν``(¯̀)¯̀

ν`(¯̀)
and we have used the fact ̂̀t = ŷt in a first-order approximation of the

dynamics. Rearranging

ŵ∗t − p̂t = (1− βθ)
∑
s≥0

βsθs
(

(φ+ γ) ŷt+s −
1

η̄ − 1
η̂t+s + p̂t+s − p̂t

)

Next, we from the definition of the price index have

1 + πt ≡
pt
pt−1

=

(
θ−1 − 1− θ

θ

(
w∗t
pt

)1−ηt
) 1

ηt−1

. (A.3)

Log-linearizing around a zero inflation steady state this gives

π̂t = p̂t − p̂t−1 =
1− θ
θ

(ŵ∗t − p̂t) .
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Eliminating ŵ∗t − p̂t and simplifying, we get

π̂t = κŷt + ψη̂t + βπ̂t+1

where κ = (1−θ)(1−βθ)(φ+γ)
θ

and ψ = − κ
(η̄−1)(φ+γ)

.

A.2 Werning (2015) special case

This section elaborates on our discussion in Section 5.2 of optimal policy in a special case of

our model where monetary policy is distributionally neutral, following Werning (2015). We

proceed in three steps. First, we present the assumptions required to arrive at this special

case. Second, we derive the distributional irrelevance result. And third, we formally state

implications for optimal policy design.

Model assumptions. We consider a special case of our environment, adapted to be to

be consistent with the assumptions in Werning (2015).

First, we further restrict the household consumption-savings problem.

Assumption A.1. Household utility is logarithmic (γ = 1). The distribution of household

productivity eit is acylical (i.e., the mapping Φ from idiosyncratic events to productivity is

independent of yt) and households can self-insure only through saving, not borrowing (a = 0).

Second, we assume that the government-supplied asset has particular properties.

Assumption A.2. The government supplies a perpetuity (δ = 0) whose returns are perfectly

indexed to inflation (χπ = 1) and output (χy = 1). The supply of the asset is fixed over time

(bt = b̄ for all t).

The third and final assumption restricts the exogenous component of transfers, τx.

Assumption A.3. In steady-state, the exogenous and endogenous components of govern-

ment transfers to households are zero, i.e. τ̄x = 0 and τ̄e = 0.

Under similar assumptions, Werning (2015) proves that the demand side of the economy

responds to monetary policy exactly like the conventional Euler equation (19). Household

heterogeneity affects the split of the consumption response into indirect income and direct

interest rate effects, but leaves the overall sum unchanged. We will see that the same logic

allows a sharp characterization of optimal policy rules for the Ramsey planner.
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The distributional effects of monetary policy. Following steps similar to those

in Werning (2015), we can prove the following useful building block result.

Proposition A.1. Under Assumptions A.1 to A.3, we have that

Θω(ζ),i = 000 ∀ζ. (A.4)

In words, changes in nominal interest rates have no effect on the consumption distribution,

at any horizon.

Optimal policy characterization. Combining Proposition A.1 and our general char-

acterizations of optimal forecast targeting policy rules in Section 2.1, it follows immediately

that the presence of the inequality term in the policymaker loss function does not at all affect

the target criterion for optimal monetary policy. Corollary A.1 summarizes this conclusion.

Corollary A.1. Under Assumptions A.1 to A.3 and the conditions of Proposition 1, the

optimal monetary policy rule for a Ramsey policymaker with loss function (29) can be written

as the forecast target criterion

π̂t +
1

η̄
(ŷt − ŷt−1) = 0, ∀t = 0, 1, . . . (A.5)

Corollary A.1 formalizes our intuitive discussion in Section 5.2. Finally we also note the

following implication of these results: since monetary policy stabilizes output and inflation as

well as possible, and since fiscal policy has no additional scope to help with this stabilization

(recall Section 4), it follows that fiscal transfer policy is exclusively concerned with inequality

stabilization, with the optimal transfer target criterion given as∫
λω(ζ)Θ

′
ω(ζ),τxWω̂ωω(ζ)dΓ(ζ) = 000. (A.6)

Corollary A.2 summarizes this conclusion.

Corollary A.2. Under the optimal joint fiscal-monetary policy, transfers are set following

the target criterion (A.6), minimizing the inequality term in the loss function (29). Monetary

policy is set residually to enforce the target criterion (A.5), thus attaining the same paths of

aggregate inflation and output as under optimal monetary policy alone.

We thus achieve a strict separation of monetary and fiscal instruments. Corollary A.2

is related to the results in Bilbiie et al. (2021): while those authors find that transfers can
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be set to perfectly stabilize inequality between two groups of households, transfers in our

HANK model are set to stabilize the general inequality term as well as possible. In both

cases, given fiscal stabilization of inequality, conventional monetary policy then implements

the aggregate allocations familiar from standard representative-agent analysis—in their case

because inequality is already perfectly stabilized; in our case because conventional monetary

policy cannot help any further with the inequality-related loss.
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B Supplementary material for Sections 5.3 and 5.4

This appendix presents supplementary material for our quantitative optimal Ramsey policy

analysis. Appendix B.1 begins with further details on model calibration, while Appendix B.2

provides various additional results for our particular business-cycle shock experiments.

B.1 Calibration

Income process. Our process for normal household income is a simplified version of the

one that appears in Guvenen et al. (2022), and we use a similar estimation procedure as

them in fitting the parameters of the process. We briefly summarize the moments that are

targeted here and describe how we deviate from Guvenen et al. while referring the reader

to that paper for most of the details.

We estimate the following income process:

log ζit = ρζ log ζit−1 + ξit

log eit = µi + log (ζit) (1 +mt + α log yt) + log ēt + ξTit

ξit ∼ N(0, σ2
ξ )

µi ∼ N(0, σ2
α).

As described by Guvenen et al., over the lifecycle, the cross-sectional variance of earnings

grows almost linearly in the age of a cohort. In the absence of dispersion in the deterministic

component of individual income profiles, this implies near-random walk behavior in individ-

ual earnings. To have a stationary distribution of income, we fix ρζ at a value less than

one, setting ρζ = 0.91/4.27 ξTit is a transitory income shock that follows a two-state Markov

chain. We fix the parameters of this Markov chain to mimic the “non-employment” shock

in Guvenen et al..28 Finally µi is an individual fixed effect.

When solving the model we discretize the process for ζit. We furthermore allow for

two high-income states, helping the model generate a concentrated distribution of wealth.

Workers enter either one of the high-income states with a constant probability, and then

27Allowing for heterogeneous income profiles, one finds a lower value of ρζ .
28We include this shock in our income process estimation so that the persistent shocks ξit are not forced

to account for all features of the income data. For the sake of parsimony, however, we do not include this
shock in quantitative model analysis. We have experimented with including this shock and found the results
to be similar; the main difference is that the transitory shock leads to a lower average MPC in steady state.
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Figure B.1: Incidence of earnings losses during the 1979-1983 recession. The horizontal axis ranks
individuals according to their earnings during 1974-1978. For each percentile of this distribution,
the vertical axis shows the change from 1979 to 1983 in the log of average earnings for that group.
The upward slope implies that lower-income individuals suffered larger earnings losses on average in
the recession. Data are taken from Guvenen et al. (2014). The model results are from a simulation
of the fitted income process, feeding in the time series of average (aggregate) earnings growth.

later exit with a similarly constant probability. The income levels in these states and the

entry and exit probabilities are calibrated to minimize the sum of squared deviations from

the moments reported in Table 1. The calibrated process has one state that corresponds to

the top 1% of the earnings distribution and another that corresponds to the rest of the top

10%. Households in the top 1% remain there for 26 years in expectation, while households in

the rest of the top 10% remain there for 4.4 years on average.29 The fitted levels of earnings

for the high earners are 20 and 3.4 times average earnings, respectively.

There are three parameters that we need to estimate via simulated method of moments

estimation: the sensitivity of income dispersion to the business cycle, α; the variance of the

persistent shock, σ2
ξ ; and the variance of the fixed effect, σ2

µ. We simulate the process at a

quarterly frequency and time aggregate to annual observations. Many of the moments we

target reflect the shape of the earnings growth distribution for earnings growth at 1-year,

3-year, and 5-year horizons. For the purposes of this paper, the main question is how we

29The quarterly exit probabilities are 1/104.2 and 1/17.7, respectively.
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identify α. Here we proceed as follows. For each business cycle episode between 1979 and

2010, Guvenen et al. (2014) construct a figure analogous to Figure B.1, using average income

over the five years prior to the business cycle episode to rank individuals in the distribution.

For each recession and expansion, we fit a trend line between the 11th and 80th percentiles of

Figure B.1 to obtain a target “slope.” We then seek to replicate these slopes in our simulated

process. To get the model-implied analogue, we feed in average earnings as our measure of yt,

from there recover household earnings, and then finally construct the model-implied slope.

One component of our objective function is then simply the percentage deviation between

the model and empirical slopes of the incidence of the business cycle. Overall, the resulting

parameters are α = −1.61, σξ = 0.077 and σµ = 0.63.

Monetary policy shocks for internal calibration. Three parameters of our model

are set by internal calibration, to target estimated impulse response functions to identified

monetary policy shocks: the relative risk aversion γ; the Phillips curve slope κ; and the out-

put sensitivity of bond returns, χy. We use the high-frequency monetary shocks identified

by Gertler & Karadi (2015) to estimate the response of key macro aggregates to identified

monetary shocks. We first describe the results and internal calibration procedure and then

give the details of the empirical implementation.

Figure B.2 shows point estimates for four estimated impulse response functions. In the

top-left panel we show the time path of real interest rates, which we construct as it − πt+1.

As expected, the expansionary monetary shock leads to a persistent decline in real interest

rates. The top-right panel shows that output increases, eventually reaching a peak of 0.8%

above steady state. The bottom-left panel reveals that inflation rises quite persistently, with

a peak increase of 0.3%. Lastly, the bottom-right panel shows household net worth initially

increases by 4%, before then rising a bit further.

Our internal calibration procedure assumes that monetary policy is set according to a

standard Taylor rule subject to shocks. We find a path of current and anticipated monetary

policy shocks that, when announced at date 0, leads to a change in real rate expectations

that perfectly replicates the empirical estimate in Figure B.2.30 We then choose {γ, κ, χy} to

match the peak responses of output and inflation as well as the initial response of household

net worth. Figure B.2 shows the model-implied impulse response functions. For output

30By the results in McKay & Wolf (2021), the output of this procedure is independent of the baseline
policy rule, as long as it induces a determinate, sunspot-free equilibrium. Our choice of baseline rule is thus
a purely computational device.
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Figure B.2: Empirical (orange) and model-implied (blue-dashed) impulse response following an
expansionary monetary policy shock.

and inflation, the model generates the correct peak response, but unsurprisingly does not

generate the hump-shaped pattern of the empirical estimates.

Our empirical analysis uses the following series: the 3-month Treasury rate, the inflation

rate constructed from the log difference in the GDP deflator, log real GDP per capita,

and the log ratio of household net worth from the Financial Accounts of the United States

(formerly Flow of Funds) to nominal GDP.31 Our monetary shock series is equal to the OLS

point estimates of monetary shocks as implied by the Gertler & Karadi SVAR-IV, estimated

only for scheduled FOMC meetings. We use data from 1980Q3 to 2015Q3, and estimate

the impulse response functions using a recursive VAR with the identified shock ordered first

(Plagborg-Møller & Wolf, 2021).

31In Figure B.2 we plot W ≡ log(PW/PY ) + log(Y ), where PW is nominal net worth, PY is nominal
GDP and Y is real GDP.
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Figure B.3: Initial response of consumption to a $500 fiscal stimulus payment across the income
distribution. The figure includes general equilibrium effects where monetary policy is assumed to
follow a simple interest rate rule it = 3

2πt + 1
8yt.

B.2 Additional optimal policy results

We here collect some figures that supplement the quantitative optimal policy analysis pre-

sented in Section 5.4.

Distributional effects of stimulus checks. Stimulus checks and interest rate cuts

have the same effects on aggregate output and inflation (Wolf, 2021), but they differ substan-

tially in their cross-sectional incidence. Figure 2 in the main text shows the model-implied

incidence profile of interest rate cuts; Figure B.3 here does the same for stimulus checks. As

expected, the incidence profile here is strongly downward-sloping: the consumption of poor

households responds the most, reflecting their high MPCs and low overall income.

Stabilizing consumption at the bottom. What happens if monetary policy is used

to stabilize consumption of poor households in the face of our distributional shock mt? In

Figure B.4 we plot the implications of following a monetary policy targeting rule that adds

a distributional consideration to the dual mandate targeting rule that seeks to stabilize
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Figure B.4: Simulation of income distribution shock using ad hoc policy rule that stabilizes the
consumption of households with low wealth and low income. The bottom panel shows the con-
sumption of wealthy households increases substantially under this rule leading output and inflation
to exceed their targets.

the consumption of households with low wealth and low income.32 As the figure shows,

output and inflation exceed the dual-mandate targets and the consumption of high-wealth

households is substantially above the steady state level.

32The targeting rule is π̂t + 1
η̄ (ŷt − ŷt−1) + 1

2 ĉ
Low
t = 0, where cLow

t is the aggregated consumption of
households with income in the bottom third of the income distribution and wealth below the median.
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C Computational appendix

This appendix provides supplementary information on our computational approach. We

compute sequence-space transition paths using the methodology developed in Auclert et al.

(2021), as discussed further in Appendix C.1. Our computation of the inequality term in

the full Ramsey loss function is described in Appendix C.2.

C.1 General equilibrium transition paths

The baseline constraints (2) in our linear-quadratic policy problem in Section 2 are expressed

in sequence space. To compute the corresponding constraints (17) - (18) for our “HANK”

model, we thus follow the computational techniques of Auclert et al. (2021) to compute the

required sequence-space Jacobian matrices. In particular, our computation of the C• maps

in the augmented HANK “IS curve” (18) leverages the so-called “fake news” algorithm.

For computation of the alternative (but equivalent) constraint formulations (21) - (32)

in impulse response space, we follow McKay & Wolf (2021) and proceed as follows. First,

we close the model with arbitrary policy rules for the two instruments iii and τττx, subject

only to the requirement that the two rules induce a unique equilibrium. We then compute

impulse responses of all policy targets to the full menu of contemporaneous and news shocks

to those two policy rules. Now denote the impulse response matrix of some variable xi to

shocks to the rule for instrument zj by Θ̃xi,zj , and similarly write Θ̃xi,εq for responses to

non-policy shocks εq under the (arbitrary) baseline rule. Finally write Θ̃zj ,zj for the impulse

response matrix of the instrument itself. We then define Θxi,zj ≡ Θ̃xi,zjΘ̃
−1
zj ,zj

and similarly

Θxi,εq ≡ Θ̃xi,εqΘ̃
−1
zj ,zj

. The results in McKay & Wolf (2021) imply that the resulting impulse

responses are independent of the chosen baseline policy rule.

C.2 Inequality term

The inequality term says that the planner would like to stabilize a very large number of

targets—one for each history ζ. Both for intuition and for computation, it is useful to observe

that these consumption shares will only fluctuate if the inputs to the household’s decision

problem fluctuate. By our discussion of the consumption-savings problem in Section 3.1,

those inputs include total labor income (equal to yyy), the return on bonds (rrr), transfers (τττx

and τττ e), and the inequality shock (mmm). In this section we leverage this insight to recast the

problem of stabilizing consumption shares as one of stabilizing the inputs to the household
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consumption-savings decision, thus giving the representation in (33), couched in terms of a

small number of aggregates rather than a distribution of histories.

Reformulating the inequality term. Let xxx ≡ (rrr′, yyy′, τττ ′x, τττ
′
e,mmm

′)′ be the stacked se-

quences of inputs to the household problem. Our goal is to show that there is symmetric

matrix Q such that
∞∑
t=0

βt
∫
ω̂t(ζ,xxx)2

ω̄(ζ)
dΓ(ζ) = x̂xx′Qx̂xx+O(||x̂xx||3),

where here we have been explicit that the consumption shares at date t depend on the full

sequences of inputs xxx. To arrive at this representation, consider a first-order approximation

to the time-t consumption share of individuals with history ζ:

ω̂t(ζ,xxx) ≈ Ωt(ζ)x̂xx

where the derivative Ωt(ζ) will be defined formally below. This yields

ω̂t(ζ
t,xxx)2

ω̄(ζt)
= x̂xx′

Ωt(ζ
t)′Ωt(ζ

t)

ω̄(ζt)︸ ︷︷ ︸
≡Qt(ζt)

x̂xx+O(||x̂xx||3).

We then integrate across histories and take the discounted sum across time to arrive at

∞∑
t=0

βt
∫
ω̂t(ζ

t,xxx)2

ω̄(ζt)
dΓ(ζt) = x̂xx′

(
∞∑
t=0

βt
∫
Qt(ζ

t)dΓ(ζt)

)
︸ ︷︷ ︸

≡Q

x̂xx+O(||x̂xx||3),

giving the desired representation. We have thus arrived at a representation that almost fits

into our general linear-quadratic set-up of Section 2.1, the sole difference being that the

objective function features a non-diagonal quadratic form. To extend our optimal policy

results to this more general case, we consider the same problem as in Section 2.1, but

replacing the diagonal loss function (1) by the more general (non-diagonal) expression

L ≡ 1

2
xxx′Pxxx, (C.1)

The corresponding necessary and sufficient first-order conditions yield the more general op-

timal policy targeting rule

Θ′xzPxxx = 0
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and the optimal instrument path

zzz∗ ≡ −
(
Θ′x,zPΘx,z

)−1 ×
(
Θ′x,zPΘx,ε · εεε

)
Evolution of consumption shares. We now explain the first-order approximation of

consumption shares

ω̂t(ζ
t) ≈ Ωt(ζ

t)xxx

that we used above. Let ct(ζ
t,xxx) be the consumption in date t after history ζt with the input

sequences given by xxx, and similarly let at(ζ
t,xxx) be the savings chosen in date t. Also let ζt

be the date-t value of the idiosyncratic state. Using the standard recursive representation of

the household’s problem, we can write these choices in terms policy functions, f and g, that

take as their arguments assets at−1(ζt−1) and the current shock ζt, so we have

ct(ζ
t,xxx) = ft

(
at−1(ζt−1,xxx), ζt,xxx

)
(C.2)

at(ζ
t,xxx) = gt

(
at−1(ζt−1,xxx), ζt,xxx

)
. (C.3)

We now consider a first-order approximation to f and g around xxx = x̄xx:

ct(ζ
t,xxx) ≈ c̄(ζt) +

dct(ζ
t,xxx)

dxxx
x̂xx

at(ζ
t,xxx) ≈ ā(ζt) +

dat(ζ
t, x̄xx)

dxxx
x̂xx.

The derivatives that appear here are total derivatives with respect to xxx, including both the

effect on the policy rule at date t and the effect on assets at−1(ζt−1,xxx). The derivatives are

evaluated at the steady-state inputs x̄xx and the level of assets that an individual with history

ζt would have if the inputs x remained at steady state forever, which we denote by ā(ζt−1).

To calculate these derivatives, we differentiate (C.2) and (C.3):

dct(ζ
t, x̄xx)

dxxx
=
∂ft (āt−1(ζt−1), ζt, x̄xx)

∂a

dat−1(ζt−1, x̄xx)

dxxx
+
∂ft (āt−1(ζt−1), ζt, x̄xx)

∂xxx
(C.4)

dat(ζ
t, x̄xx)

dxxx
=
∂gt (āt−1(ζt−1), ζt, x̄xx)

∂a

dat−1(ζt−1, x̄xx)

dxxx
+
∂gt (āt−1(ζt−1), ζt, x̄xx)

∂xxx
. (C.5)

The partial derivative
∂ft(āt−1(ζt−1),ζt,x̄xx)

∂a
is the marginal propensity to consume for an indi-

vidual with states (āt−1(ζt−1), ζt) in the stationary equilibrium, and
∂gt(āt−1(ζt−1),ζt,x̄xx)

∂a
is the

marginal propensity to save. Similarly, the partial derivative
∂ft(āt(ζt−1),ζt,x̄xx)

∂xxx
is the derivative
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of the consumption policy rule with respect to the input sequences for an individual with

the same states, and
∂gt(āt(ζt−1),ζt,x̄xx)

∂xxx
is the analogous derivative of the savings policy rule.

We discuss below how to compute these derivatives. Given that they have been recovered,

it remains to move from consumption levels to consumption shares :

ωt(ζ
t,xxx) ≡ ct(ζ

t,xxx)∫
ct(ζt,xxx)dΓt(ζ)

≈ ω̄t(ζ
t) +

1

c̄

dct(ζ
t,xxx)

dxxx
x̂xx−

∫
c̄(ζt)

c̄2

dct(ζ
t,xxx)

dxxx
dΓ(ζt)x̂xx.

Ωt(ζ
t) is then given by

Ωt(ζ
t) ≡ 1

c̄

dct(ζ
t,xxx)

dxxx
−
∫
c̄(ζt)

c̄2

dct(ζ
t,xxx)

dxxx
dΓ(ζt). (C.6)

Computing Q. To compute Ωt(ζ
t) and so Q, the key challenge is to arrive at the deriva-

tives in (C.2) - (C.3). To do so we begin by simulating a history ζt for t = 0, 1, ..., T in a

stationary equilibrium (i.e. with xxx = x̄xx). At each date along this simulation, we recover

the required partial derivatives as follows. The marginal propensities to consume and save

can be computed by standard methods. For the derivatives of the policy rules, we use the

fact that the derivatives with respect to past prices are zero and the derivatives with respect

to current and future prices only depends on the number of periods until the price change

occurs. This allows us to compute all the derivatives by perturbing prices at a single date

and iterating backwards in time using a single loop from T to 0 (see Auclert et al., 2021).

With the partial derivatives in hand, we then construct dct(ζt,x̄xx)
dxxx

and dat(ζt,x̄xx)
dxxx

by iterating

(C.4)-(C.5) forward starting with da−1(ζ−1,x̄xx)
dxxx

= 0. This initial condition reflects the fact that

assets (before interest) entering date 0 are pre-determined with respect to the prices in xxx

that apply from date 0 onwards.

Given those derivatives, we can recover Ωt(ζ) and thus get Qt(ζ
t) as well as Q itself.

Impulse response representation. Using (C.4), (C.5), and (C.6), we can write ωt(ζ)

as a linear function of the aggregate variables contained in xxx. Since each ωt(ζ) is linearly

related to xxx, and since we can recover the entries of xxx as a function of (yyy,πππ, iii, τττx,mmm) (by

Lemma 1), we recover the impulse response representation in (31).
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D Proofs and auxiliary lemmas

D.1 Proof of Lemma 1

We begin the proof by re-stating and slightly simplifying the definition of an equilibrium in

Definition 1. We first repeat the Phillips curve in stacked form:

Πππ̂ππ = Πyŷyy + ψεεε, (D.1)

where

Ππ =


1 −β 0 · · ·
0 1 −β · · ·
0 0 1 · · ·
...

...
...

. . .

 , Πy = κI.

Turning to the demand side, we re-write (10) as

ŷyy = Cyŷyy + Crr̂rr + Cxτ̂ττx + Ceτ̂ττ e + Cmm̂mm, (D.2)

where we have used the equilibrium relationships ĉt = ŷt, wt/pt = 1 and ŷt = ̂̀
t, and write

Cy = C` = Cw/p. Next, using (13) and (14), we write the relationships between asset prices

and rates of return as

r̂0 = r0(π̂0, ŷ0, q̂0) (D.3)

r̂rr+1 = r+1(̂iii, π̂ππ) (D.4)

and

q̂qq = q(π̂ππ+1, ŷyy+1, r̂rr+1) (D.5)

Finally, we combine the government budget constraint (15) and the law of motion for gov-

ernment debt (16) and solve for τe,t to obtain

τ̂ττ e = τe(ŷyy, τ̂ττx, π̂ππ, q̂qq). (D.6)

Our first auxiliary result is that, given the shocks (mmm,εεε) and policy choices (iii, τττx), a list

(yyy,rrr, τττ e,πππ,qqq) is part of an equilibrium if and only if (D.1) - (D.6) hold. To show this we need

to check the conditions of Definition 1: requirements 1 - 3 and goods market clearing hold
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by the construction of (D.2); requirement 4 is re-stated in (D.1); requirement 5 is imposed

by (D.6); requirement 6 is imposed by (D.3)-(D.5); and finally, bond market clearing holds

by Walras’ Law.

We now simplify this characterization of equilibria further to arrive at Lemma 1. The

key step in the argument is to solve out the asset-pricing and government financing rules

and plug them into (D.2). First, given π̂ππ and îii, we can recover r̂rr+1 from (D.4). We can thus

recover q̂qq from (D.5), and so finally we get r̂0 from (D.3). Second, given ŷyy, τ̂ττx, π̂ππ and q̂qq, we

can recover τ̂ττ e from (D.6). We can thus write

ŷyy = Cyŷyy + Crr̂rr(ŷyy, π̂ππ, îii) + Cxτ̂ττx + Ceτ̂ττ e(ŷyy, π̂ππ, îii, τ̂ττx) + Cmmmm

and so

ŷyy = [Cy + CrRy + CeTy]︸ ︷︷ ︸
C̃y

ŷyy + [CrRπ + CeTπ]︸ ︷︷ ︸
C̃π

π̂ππ + [CrRi + CeTi]︸ ︷︷ ︸
C̃i

îii+ [Cx + CeTx]︸ ︷︷ ︸
C̃x

τ̂ττx + Cmmmm (D.7)

where T• and R• are derivative matrices for the maps r̂rr(•) and τ̂ττ e(•). (D.7) embeds (13),

(14) and (D.6). We have thus reduced the equilibrium characterization from statements

about (yyy,rrr, τττ e,πππ,qqq) to statements about (yyy,πππ), establishing the claim.

D.2 Proof of Proposition 1

In light of Lemma 1, we can re-state the optimal policy problem as minimizing (20) subject

to the two constraints (D.1) and (D.7). This problem gives the following necessary and

sufficient first-order conditions:

λπWπ̂ππ + Π′πWϕϕϕπ − C̃ ′πWϕϕϕy = 000 (D.8)

λyWŷyy − Π′yWϕϕϕπ + (I − C̃ ′y)Wϕϕϕy = 000 (D.9)

−C̃ ′iWϕϕϕy = 000, (D.10)

where ϕϕϕπ and ϕϕϕy are sequences of Lagrange multipliers on the two constraints. The proof of

Proposition 1 proceeds by guessing (and then verifying) that ϕϕϕy = 000. Under this assumption,

we can combine (D.8) - (D.9) to get

λππ̂ππ + λyW
−1Π′π(Π′y)

−1Wŷyy = 000
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It is straightforward to verify that this can be re-written as

λππ̂ππ +
λy
κ


1 0 0 . . .

−1 1 0 . . .

0 −1 1 . . .
...

...
...

. . .

 ŷyy = 000 (D.11)

But this is just (24), with the conclusion following for t = 0 since ŷ−1 = 0 (as the economy

starts from steady state). It now remains to verify the guess that ϕϕϕy = 000. For this, consider

some arbitrary (mmm,εεε), and let (ŷyy∗, π̂ππ∗) denote the solution of the system (D.1) and (D.11)

given (mmm,εεε). Plugging into (D.7) and re-arranging:

ŷyy∗ − C̃yŷyy∗ − C̃ππ̂ππ∗ − Cmmmm︸ ︷︷ ︸
demand target

= C̃îiii (D.12)

It thus remains to show that condition (23) is precisely sufficient to ensure that we can always

find îii such that (D.12) holds. To see this, note that the left-hand side of (D.12) is an excess

demand term: supply ŷyy∗ vs. demand C̃yŷyy∗ + C̃ππ̂ππ∗ + Cmmmm. The fact that the two terms have

the same net present value follows from the integrated household and government budget

constraint. To see this formally, note that the supply term has net present value

∞∑
t=0

(
1

1 + r̄

)t
ȳŷt (D.13)

For the demand term, aggregation of the household budget constraint across all households

gives

ct + at = (1 + rt)at−1 + (1− τy)yt + τxt + τet

and so

∞∑
t=0

(
1

1 + r̄

)t
c̄ĉt =

∞∑
t=0

(
1

1 + r̄

)t
{(1 + r̄)ār̂t + (1− τy)ȳŷt + τ̄xτ̂xt + τ̄eτ̂et} (D.14)

Doing the same for the government budget constraint, we get

∞∑
t=0

(
1

1 + r̄

)t
{(1 + r̄)ār̂t + τ̄xτ̂xt + τ̄eτ̂et} =

∞∑
t=0

τyȳŷt (D.15)

62



Combining (D.15) and (D.14), we get (D.13), as claimed. This completes the argument.

D.3 Proof of Proposition 2

Let Ut denote the time-t flow utility of the Ramsey planner. To derive the second-order

approximation to the social welfare function, it is convenient to begin by writing Ut in terms

of log deviations of ct and `t from steady state:

Ut =

∫
ϕ(ζ)

(
c̄eĉtωt(ζ)

)1−γ − 1

1− γ
dΓ(ζ)− ν

(
¯̀e

̂̀
t

)
. (D.16)

Our objective is to construct a second-order approximation of (D.16). Similar to the analysis

in Woodford (2003), our strategy is to consider an efficient steady state, allowing evalua-

tion of Equation (D.16) to second order using only a first-order approximation of aggregate

equilibrium dynamics.

Optimality of the steady state requires that the weighted marginal utility of consumption

is equalized across histories:

ϕ(ζ)c̄1−γω̄(ζ)−γ = ūcc̄ ∀ζ

for some constant ūc. Rearranging, we can write this as

ϕ(ζ)1/γ = c̄ω̄(ζ)ū1/γ
c ∀ζ

Furthermore imposing that consumption shares integrate to 1 yields∫
ϕ(ζ)1/γdΓ(ζ) = c̄ū1/γ

c . (D.17)

Combining the previous two equations, we can recover consumption shares as a function of

planner weights:

ω̄(ζ) =
ϕ(ζ)1/γ∫

ϕ(ζ)1/γdΓ(ζ)
∀ζ

For future reference it will furthermore be useful to define

Ξ ≡
(∫

ϕ(ζ)1/γdΓ(ζ)

)γ
= ϕ(ζ)ω̄(ζ)−γ ∀ζ. (D.18)

With these preliminary definitions out of the way, we can begin constructing the second-
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order approximation of (D.16). Differentiating Ut with respect to ĉt, we find that

∂U

∂ĉt
=

∫
ϕ(ζ)(c̄ω̄(ζ))1−γdΓ(ζ)

= c̄1−γΞ

where the second line follows from the definition of Ξ and some algebra. Notice that the

definition of Ξ and (D.17) together imply that Ξ = ūc/c̄
−γ so Ξ is the ratio of the (common)

marginal utility of consumption as evaluated by the planner and the marginal utility of

aggregate consumption used by the labor union to value income gains.

Next we have
∂U

∂ ̂̀t = −ν`(¯̀)¯̀.

It follows from the steady state version of equation (A.2) that Ξc̄−γ = ν`. As the steady-state

resource constraint is c̄ = ȳ = ¯̀, it follows that ∂U
∂ĉt

+ ∂U

∂ ̂̀t = 0, corresponding to efficiency of

the total level of aggregate economic activity.

Differentiating Ut with respect to the consumption shares ωt(ζ) we have

∂U

∂ωt(ζ)
= ϕ(ζ)c̄1−γω̄(ζ)−γdΓ(ζ)

= c̄1−γΞdΓ(ζ)

Turning to second order terms, we begin again with the total level and cross-sectional

split of consumption. We find

∂2Ut
∂ĉ2

t

= (1− γ)Ξc̄1−γ

∂Ut
∂ωt(ζ)2

= −γc̄1−γ Ξ

ω̄(ζ)
dΓ(ζ)

∂2Ut
∂ĉt∂ωt(ζ)

= (1− γ)Ξc̄1−γdΓ(ζ)

For hours worked we have

∂2U

∂ ̂̀2t = −ν``(¯̀)¯̀2 − ν`(¯̀)¯̀

We can now put everything together, giving the following second-order approximation of
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time-t planner utility (D.16):

Ut ≈ Ū + c̄1−γΞĉt − ν`(¯̀)¯̀̀̂
t

+
1

2
(1− γ)Ξc̄1−γ ĉ2

t −
1

2

[
ν``(¯̀)¯̀2 + ν`(¯̀)¯̀

] ̂̀2
t −

1

2
γc̄1−γΞ

∫
ω̂(ζ)2

ω̄(ζ)
dΓ(ζ)

+c̄1−γΞ

∫
ω̂t(ζ)dΓ(ζ) + (1− γ)c̄1−γΞĉt

∫
ω̂t(ζ)dΓ(ζ)

Since consumption shares integrate to 1, it follows that
∫
ω̂t(ζ)dΓ(ζ) = 0, and so all terms

in the last row are zero. We now wish to evaluate the remaining terms to second order. To

begin, note that the resource constraint and production function give

ĉt = ŷt = ̂̀
t − d̂t

where the last term reflects the efficiency loss from wage dispersion. Substituting this in for̂̀
t everywhere we have

Ut ≈ Ū + c̄1−γΞĉt − ν`(¯̀)¯̀
(
ĉt + d̂t

)
+

1

2
(1− γ)Ξc̄1−γ ĉ2

t −
1

2
(φ+ 1) ν`(¯̀)¯̀(ĉt + d̂t)

2 − 1

2
γc̄1−γΞ

∫
ω̂(ζ)2

ω̄(ζ)
dΓ(ζ)

where we have used the definition of φ. To simplify this expression further, impose the

aggregate resource constraint ĉt = ŷt, use that c̄1−γΞ = ν`(¯̀)¯̀, and finally note that all

higher-order price dispersion terms can be ignored to second order. We thus get

Ut ≈ Ū − ν`(¯̀)¯̀d̂t −
1

2
ν`(¯̀)¯̀(γ + φ)ŷ2

t −
1

2
γν`(¯̀)¯̀

∫
ω̂(ζ)2

ω̄(ζ)
dΓ(ζ)

The last step in the derivation is to express d̂t in terms of the history of inflation, closely

following the arguments in Woodford (2003). Recall that the dispersion term is defined as

dt ≡
∫ (

wkt
wt

)−ηt
dk

=

∫ (
eŵkt

wt

)−ηt
dk,

where we have defined ŵkt as the log of wkt. Taking a second-order approximation around

65



ŵkt = w̄t ≡ Ek [logwkt] and εt = η̄ yields

d̂t ≈
∫
−ε(ŵkt − w̄t) +

1

2

[
η̄2(ŵkt − w̄t)2 − 2(ŵkt − w̄t)ε̂t

]
dk

=
η̄2

2
Vark [ŵkt]

where we have simplified using that fact that, at our expansion point, there is no dispersion

in wkt, so eŵkt = w̄t∀k. Next we use the Calvo structure to rewrite the definition of dt as

dt = θ

∫ (
wkt−1

wt−1

)−ηt
dk (1 + πt)

ηt + (1− θ)
(

1

1− θ
− θ

1− θ
(1 + πt)

ε−1

)ε/(ε−1)

A second-order approximation of this expression (around a zero-inflation steady state) yields

d̂t ≈ θ
ε̄2

2
Vark [ŵkt−1] +

θη̄

2(1− θ)
π̂2
t

≈ θd̂t−1 +
θη̄

2(1− θ)
π̂2
t .

Solving backwards:

d̂t ≈ θt+1d̂−1 +
θη̄

2(1− θ)

t∑
s=0

θt−sπ̂2
s (D.19)

We can now return to the problem of the planner. Using our results so far, we can write

planner preferences as

∞∑
t=0

βtUt ≈ −ν`(¯̀)¯̀
∞∑
t=0

βt
[
d̂t +

1

2
(γ + φ) ŷ2

t +
γ

2

∫
ω̂(ζt)2

ω̄(ζt)
dΓ(ζt)

]

Note that π̂2
t affects d̂t, βd̂t+1, · · · by θη̄

2(1−θ) (1, βθ, · · · ) so the discounted sum is θη̄
2(1−θ)(1−βθ) .

Using this we have

∞∑
t=0

βtUt ≈ −ν`(¯̀)¯̀
∞∑
t=0

βt
[

θη̄

2(1− θ)(1− βθ)
π̂2
t +

1

2
(γ + φ) ŷ2

t +
γ

2

∫
ω̂(ζ)2

ω̄(ζ)
dΓ(ζ)

]
= − ν`(¯̀)¯̀θη̄

2(1− θ)(1− βθ)

∞∑
t=0

βt
[
π̂2
t +

κ

η̄
ŷ2
t +

κγ

(γ + φ) η̄

∫
ω̂(ζt)2

ω̄(ζt)
dΓ(ζt)

]
, (D.20)

where we have used the definition of κ = (φ+ γ)(1− θ)(1− βθ)/θ.

66



D.4 Auxiliary lemma for Proposition A.1

We here establish that, under Assumptions A.1 to A.3, changes in nominal interest rates

do not affect the distribution of consumption shares. We proceed in two steps. First, we

show that consumption dispersion is unaffected by changes in real interest rates and output

that satisfy particular conditions. Second, we establish that changes in the monetary policy

stance induce changes in real interest rates and output that satisfy precisely those conditions.

Throughout, our arguments closely follow Werning (2015).

Lemma D.1. Suppose that Assumptions A.1 to A.3 hold, and consider paths (rrr,yyy,mmm,τττx)

such that m̂mm = τττx = 000 and, for all t = 0, 1, 2, . . . ,

y−1
t = β̃(1 + rt+1)y−1

t+1, (D.21)

where β̃ ≡ (1 + r̄)−1. Then the distribution of consumption shares remains constant at its

steady state distribution: ωt(ζ) = ω̄(ζ) for all t and ζ.

Proof. We will rewrite the household budget constraint using several substitutions. Real

aggregate labor income is equal to aggregate output, i.e., `twt/pt = yt. The government

budget constraint is r̄ytb̄ + τe,t = τyyt, where b̄ is the constant level of government debt

outstanding (measured as a number of bonds whose price will fluctuate), and we can use

this to substitute out for τe,t. Putting the pieces together, the household budget constraint

(8) becomes

ait + cit = (1 + rt)ait−1 + Φ(ζit, m̄)yt − r̄ytb̄eit, (D.22)

where we have used eit = Φ(ζit, m̄). In this budget constraint, ait is the value of savings

measured in terms of the final good. Re-write this as ait = qtbit where bit is the number of

perpetuities purchased by the household, each of which trades at a price of qt (denominated

in final goods). Similarly (1+ rt)ait−1 is the value of asset position at the start of the period,

which we can re-write as (1 + rt)ait−1 = r̄yt/ȳbit−1 + qtbit−1, where the first term is the

“coupon” and the second term is the value of the previously held assets. Combining the

asset-pricing relationship (13) and the aggregate Euler equation (D.21), we have

qt
yt

= β̃

(
r̄

ȳ
+
qt+1

yt+1

)
.

Provided that steady state real rates are positive, we have that β̃ < 1 and so we can solve

forward to find qt = β̃r̄(yt/ȳ)/(1 − β̃) = yt/ȳ. After substituting for ait and ait−1, the
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household budget constraint becomes

yt
ȳ
bit + cit = (1 + r̄)

yt
ȳ
bit−1 +

(
1− r̄b̄

)
Φ(ζit, m̄)yt. (D.23)

Letting z denote an arbitrary realization of ζit, we will now re-state the household

consumption-savings problem in recursive form. We have

Vt(b, z) = max
b′≥0

log
[
(1 + r̄)b+

(
1− r̄b̄

)
Φ(z, m̄)− b′

]
+ log

(
yt
ȳ

)
+ βE [Vt+1(b′, z′)]

If Vt+1 is of the form Vt+1(b, z) = Ṽ (b, z) + Bt+1 for some sequence Bt+1, then the Bellman

equation above can be written as

Vt(b, z) = max
b′≥0

log [(1 + r̄)b+ (1− r̄ā) Φ(z, m̄)− b′] + βE
[
Ṽ (b′, z′)

]
+Bt, (D.24)

where Bt = log(yt/ȳ) + βBt+1. As there is no time-varying aggregate variable apart from

Bt, Vt satisfies the same functional form as Vt+1. By induction, all previous value functions

satisfy this form. Using the steady-state value function to start the induction (i.e., we start

at the steady-state value function Ṽ (b, z) and Bt = 0), we can conclude from (D.24) that the

optimal decision rule for b′ as a function of (b, z) will be constant across time. This constant

decision rule and a stable process for the evolution of z′ implies the distribution of (b′, z′)

is unaffected. It follows from (D.23) that the optimal consumption decision rule will scale

with yt = ct. This scaling implies consumption shares are constant and equal to their steady

state values.

As a final step, it remains to relate this recursive formulation of the household decision

problem to the histories of idiosyncratic events. To this end, note that we can write the

consumption share as a function of the state variables associated with that history:

ωt(ζ) =
c(b(ζ), z(ζ))

c̄
, (D.25)

where c(b, z) is the steady state consumption function, b(ζ) is the steady state bond holdings

of a household with history ζ and z(ζ) is the most recent event in the history ζ. (D.25) holds

for any paths (rrr,yyy,mmm,τττx) such that (D.21) holds and m̂mm = τττx = 000.
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D.5 Proof of Proposition A.1

It remains to show that changes in nominal interest rates induce paths of rrr and yyy that

satisfy (D.21) (since by linearity we already have m̂mm = τττx = 000). But this follows directly

from Werning (2015), as our model economy with Assumptions A.1 to A.3 satisfies the

conditions of his result (i.e., acyclical risk and acyclical liquidity). We furthermore note that

our special case is isomorphic to the incomplete markets model that appears in Section IIIB

of Farhi & Werning (2019).33 We refer the reader to Werning (2015) for the formal proof.

D.6 Proof of Corollary A.1

By (4) we can write the optimal monetary policy rule as

Θ′π,iWπ̂ππ +
κ

η̄
Θ′y,iWŷyy = 000 (D.26)

It follows from (D.1) that

ΠπΘπ,i = ΠyΘy,i (D.27)

and so we can re-write (D.26) as

π̂ππ +
κ

η̄

1

κ


1 0 0 . . .

−1 1 0 . . .

0 −1 1 . . .
...

...
...

. . .

 ŷyy = 000 (D.28)

giving (A.5).

D.7 Proof of Corollary A.2

We have already shown that the optimal monetary rule is given as (A.5). Since (D.1) also

implies that

ΠπΘπ,τx = ΠyΘy,τx (D.29)

33The model in Farhi & Werning (2019) specifies a particular AR(1) process for idiosyncratic income risk
for the sake of computing numerical solutions. We leave the process more general. The important aspect is
that risk is not affected by monetary policy (see Werning, 2015).
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we can use the same steps as in the proof of Corollary A.1 to rewrite the first two terms in

(34) as

Θ′π,τxWπ̂ππ +
κ

η̄
Θ′y,τxWŷyy = π̂ππ +

1

η̄


1 0 0 . . .

−1 1 0 . . .

0 −1 1 . . .
...

...
...

. . .

 ŷyy.

Imposing (A.5) sets these terms to zero, so Corollary A.2 follows.
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