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π process:

πt = πt + πStatt

• πt is a random walk with RW stochastic volatility

• πStatt is a TV ARMA(1,1) also with stochastic volatility
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Forecaster i

• Information

st(i) =

 s1,t = πt = πt + πStatt

s2,t(i) = πt + α(i)vc,t
s3,t(i) = πt + vt(i)



• Goal

πt|t(i) = E(πt|{sk(i)}tk=1, θ(i))

where θ are the (time invariant) parameters indexing the stochastic process.
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Data:

πt, πt|t(i) for t = 1, ..., T and i = 1, ..., N

Interesting objects:

N−1
∑
i

πt|t(i)− E(πt|{πk}Tk=1)

∂E(πt|{sk(i)}tk=0)

∂(shocks)
(‘Impulse Responses’)

N−1
∑
i

πt|t(i) = f (shocks1:t) (‘Historical Decompositions’)

Paper’s Contributions:

1. Model

2. Sophisticated Implementation

3. Empirical Results
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Model:

πt = πt + πStatt

• πt is a random walk with RW stochastic volatility; πStatt is a TV white noise also with

stochastic volatility
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πt = πt + πStatt

StdDev(∆πt) = σ∆π
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σ∆π and Long-Run Expectations (Beveridge-Nelson Arithmetic in time-invariant linear models)

• ∆πt: Change in inflation

• zt vector of other variables that might be informative about future values of π

• Suppose [
∆πt
zt

]
= C(L)εt

• Let

πLRt = πBNt = lim
k→∞

πt+k|t

Then

– πBNt is a martingale

∆πLRt = e′1C(1)εt

where e1 = [1, 0, 0, ..., 0]′.

– And

var(∆πLRt ) = e′1C(1)ΣεC(1)′e1 = varLR(∆πt)
model

= var(∆πt)

• Thus: Forecasters with different z’s will have different long-run forecasts (πLRt = limk→∞ πt+k|t)

... but the variances of the change in forecasts will be identical.
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2 Implications:

1. We can learn about varLR(∆πt)
model

= var(∆πt) from var(∆πLRt )

2. Differences across time or forecaster in var(∆πLRt ) are associated with diffences in

varLR(∆πt)
model

= var(∆πt).
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We can we learn about varLR(∆πt)
model

= var(∆πt) from var(∆πLRt )

Standard Deviation of ∆πLRit (pooled over forecasters)

Time Period number of obs σ̂∆πLR

1991-2010 1714 0.27

2011-2019 1028 0.32

2020-2022

2021-2022
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We can we learn about varLR(∆πt)
model

= var(∆πt) from var(∆πLRt )

Standard Deviation of ∆πLRit (pooled over forecasters)

Time Period number of obs σ̂∆πLR

1991-2010 1714 0.27

2011-2019 1028 0.32

2020-2022 219 0.30

2021-2022 134 0.32
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Differences across time and forecaster in var(∆πLRt )

Forecaster i

• Information

st(i) =

 s1,t = πt = πt + πStatt

s2,t(i) = πt + α(i)vc,t
s3,t(i) = πt + vt(i)



• Stochastic volatility with different information:

σ2
∆π(t) = [var(∆πt)]

Forecaster i: [σ2
∆π(t)|st(i), st−1(i), ...]

• These differences will be reflected in

Var(∆πLRit )
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• Are there differences across i in Var(∆πLRit )?

• Have these differences increased recently?

• Problem .. limited data for each forecaster ... observations not independent over i, etc.
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One look at data: Histogram of |∆πLRit | over different time periods. (Disagreement .. fat tails?)

Histograms of |∆πLRit |
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Wrapping up:

FMR Inflation model

πt = πt + πStatt

πt = πt−1 + σπ,tνt

ln(σπ,t) = ln(σπ,t) + et

Data

• Inflation Data: significant recent increase in σπ,t

• Long-run Expectations Data: little change in σπ,t
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