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T Pprocess:

Ty = Ty + met

e T, is a random walk with RW stochastic volatility

o 771 is a TV ARMA(1,1) also with stochastic volatility



Forecaster 1

e Information

S1p =T =T + wtsmt
si(1) = | s94(1) =T + a(i)vey

e Goal
Tie(i) = E(T|{s1(2) }o1, 0(1))

where 6 are the (time invariant) parameters indexing the stochastic process.



Data:
m, (i) fort =1, Tandi=1,...,N

Interesting objects:
- Z Tt (4 Wt’{ﬂk}k )

OE(m|{sk(4) o)
d(shocks)

(‘Impulse Responses’)

- Z T(i) = f(shocksyy)  (‘Historical Decompositions’)

Paper’s Contributions:
1. Model
2. Sophisticated Implementation

3. Empirical Results



Model:

Ty =Ty + o

o 7 is a random walk with RW stochastic volatility; 2% is a TV white noise also with

stochastic volatility
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Ty =y + o

StdDev(AT;) = oax
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O A7 and Long-Run Expectations (Beveridge-Nelson Arithmetic in time-invariant linear models)

A Change in inflation

e 2; vector of other variables that might be informative about future values of m
e Suppose

A

[ i ] = O(L)&
<t
o Let
7TtLR = WFN = lim 74y
k— 00
Then

— 78N is a martingale

where e; = [1,0,0,...,0]".

— And
var(ATER) = ¢ C(1)2.0(1) er = var™®(Am;) "2 var(AT)

e Thus: Forecasters with different z’s will have different long-run forecasts (7rtLR = limp o0 Tripft)

... but the variances of the change in forecasts will be identical.



2 Implications:

1. We can learn about var®®(Am) model var(ATy) from var(AnH)

2. Differences across time or forecaster in wvar(AnH?) are associated with diffences in
model —
vart®(Am) =" var(AT).



We can we learn about var®®(Am;) el var(AT;) from var(Amxk?)
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Standard Deviation of Ak (pooled over forecasters)

Time Period | number of obs | 05 Lr

1991-2010 1714 0.27
2011-2019 1028 0.32
2020-2022

2021-2022




We can we learn about var®®(Am;) moget var(AT;) from var(Amxk?)

2

—Std Dev dTrend (through 2019)
—Std Dev dTrend (through 2022)
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Standard Deviation of Ak (pooled over forecasters)

Time Period | number of obs | 6 5. zr

1991-2010 1714 0.27
2011-2019 1028 0.32
2020-2022 219 0.30

2021-2022 134 0.32




Differences across time and forecaster in var(Ari%)

Forecaster 1

e Information

Sip = T =Ty + mptat
St(i) = 827t(2.) = %t + Ck(i)?)at

s34(1) = T + vy(4)

e Stochastic volatility with different information:

oa=(t) = [var(AT,)]

T

Forecaster i: [0a=(t)]5:(1), si—1(4), ...]

e These differences will be reflected in

Var(AﬁZ.LtR)
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e Are there differences across i in Var(ArL#)?

e Have these differences increased recently?

e Problem .. limited data for each forecaster ... observations not independent over i, etc.
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One look at data: Histogram of |A7L%| over different time periods. (Disagreement .. fat tails?)
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Wrapping up:

FMR Inflation model

Ty =Ty + o

Tt = Tt—1+ Oz tVt

In(oz;) = In(ozy) + e

Data

e Inflation Data: significant recent increase in oz

e Long-run Expectations Data: little change in o7,
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