Long run inflation expectations

Jonas Fisher, Leonardo Melosi and Sebastian Rast

Mark W. Watson: Remarks

March 31, 2023

π process:

$$\pi_t = \overline{\pi}_t + \pi_t^{Stat}$$

- $\overline{\pi}_t$ is a random walk with RW stochastic volatility
- π_t^{Stat} is a TV ARMA(1,1) also with stochastic volatility

Forecaster i

• Information

$$s_t(i) = \begin{bmatrix} s_{1,t} = \pi_t = \overline{\pi}_t + \pi_t^{Stat} \\ s_{2,t}(i) = \overline{\pi}_t + \alpha(i)v_{c,t} \\ s_{3,t}(i) = \overline{\pi}_t + v_t(i) \end{bmatrix}$$

• Goal

$$\overline{\pi}_{t|t}(i) = E(\overline{\pi}_t | \{s_k(i)\}_{k=1}^t, \theta(i))$$

where θ are the (time invariant) parameters indexing the stochastic process.

Data:

$$\pi_t, \overline{\pi}_{t|t}(i)$$
 for $t = 1, ..., T$ and $i = 1, ..., N$

Interesting objects:

$$N^{-1} \sum_{i} \overline{\pi}_{t|t}(i) - E(\overline{\pi}_{t} | \{\pi_{k}\}_{k=1}^{T})$$
$$\frac{\partial E(\overline{\pi}_{t} | \{s_{k}(i)\}_{k=0}^{t})}{\partial (shocks)} \quad (\text{'Impulse Responses'})$$
$$N^{-1} \sum_{i} \overline{\pi}_{t|t}(i) = f(shocks_{1:t}) \quad (\text{'Historical Decompositions'})$$

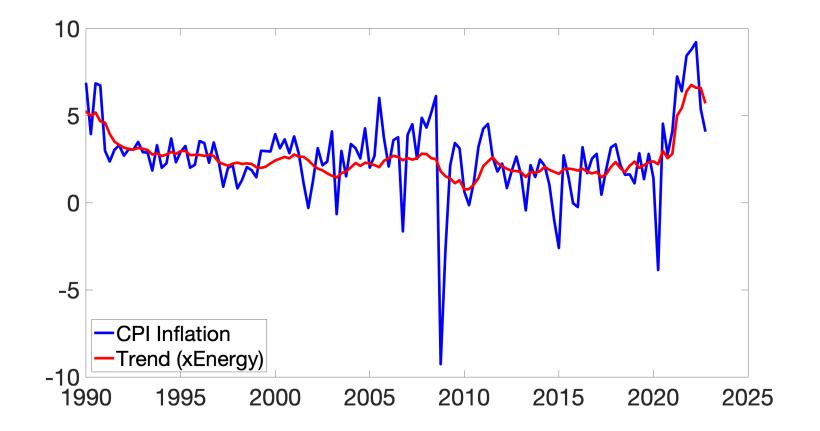
Paper's Contributions:

- 1. Model
- 2. Sophisticated Implementation
- 3. Empirical Results

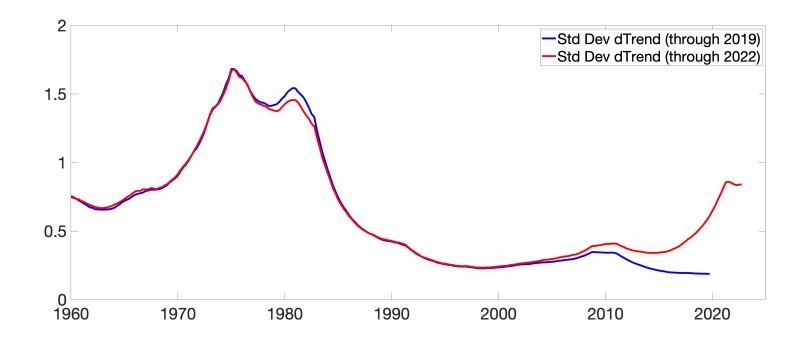
Model:

$$\pi_t = \overline{\pi}_t + \pi_t^{Stat}$$

• $\overline{\pi}_t$ is a random walk with RW stochastic volatility; π_t^{Stat} is a TV white noise also with stochastic volatility



$$\pi_t = \overline{\pi}_t + \pi_t^{Stat}$$
$$StdDev(\Delta \overline{\pi}_t) = \sigma_{\Delta \overline{\pi}}$$



 $\sigma_{\Delta \overline{\pi}}$ and Long-Run Expectations (Beveridge-Nelson Arithmetic in time-invariant linear models)

- $\Delta \pi_t$: Change in inflation
- z_t vector of other variables that might be informative about future values of π
- Suppose

$$\left[\begin{array}{c} \Delta \pi_t \\ z_t \end{array}\right] = C(L)\varepsilon_t$$

• Let

$$\pi_t^{LR} = \pi_t^{BN} = \lim_{k \to \infty} \pi_{t+k|t}$$

Then

$$-\pi_t^{BN} \text{ is a martingale} \qquad \Delta \pi_t^{LR} = e_1' C(1) \varepsilon_t$$
where $e_1 = [1, 0, 0, ..., 0]'$.
$$- \text{ And} \qquad var(\Delta \pi_t^{LR}) = e_1' C(1) \Sigma_{\varepsilon} C(1)' e_1 = var^{LR} (\Delta \pi_t) \stackrel{model}{=} var(\Delta \overline{\pi}_t)$$

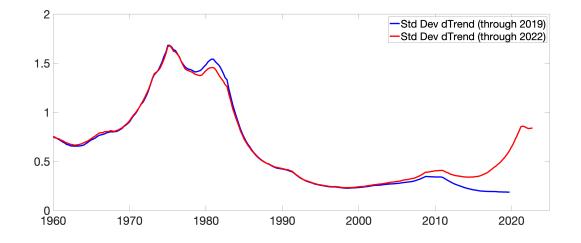
• Thus: Forecasters with different z's will have different long-run forecasts $(\pi_t^{LR} = \lim_{k \to \infty} \pi_{t+k|t})$... but the variances of the change in forecasts will be identical.

2 Implications:

1. We can learn about $var^{LR}(\Delta \pi_t) \stackrel{model}{=} var(\Delta \overline{\pi}_t)$ from $var(\Delta \pi_t^{LR})$

2. Differences across time or forecaster in $var(\Delta \pi_t^{LR})$ are associated with differces in $var^{LR}(\Delta \pi_t) \stackrel{model}{=} var(\Delta \overline{\pi}_t)$.

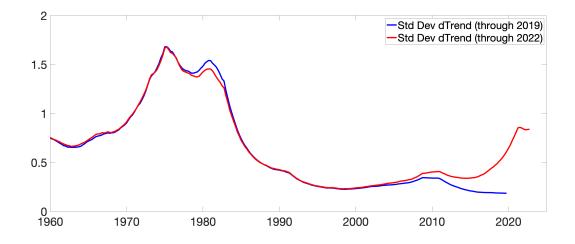
We can we learn about $var^{LR}(\Delta \pi_t) \stackrel{model}{=} var(\Delta \overline{\pi}_t)$ from $var(\Delta \pi_t^{LR})$



Standard Deviation of $\Delta \pi_{it}^{LR}$ (pooled over forecasters)

Time Period	number of obs	$\hat{\sigma}_{\Delta\pi^{LR}}$
1991-2010	1714	0.27
2011-2019	1028	0.32
2020-2022		
2021-2022		

We can we learn about $var^{LR}(\Delta \pi_t) \stackrel{model}{=} var(\Delta \overline{\pi}_t)$ from $var(\Delta \pi_t^{LR})$



Standard Deviation of $\Delta \pi_{it}^{LR}$ (pooled over forecasters)

Time Period	number of obs	$\hat{\sigma}_{\Delta\pi^{LR}}$
1991-2010	1714	0.27
2011-2019	1028	0.32
2020-2022	219	0.30
2021-2022	134	0.32

Differences across time and forecaster in $var(\Delta \pi_t^{LR})$

Forecaster i

• Information

$$s_t(i) = \begin{bmatrix} s_{1,t} = \pi_t = \overline{\pi}_t + \pi_t^{Stat} \\ s_{2,t}(i) = \overline{\pi}_t + \alpha(i)v_{c,t} \\ s_{3,t}(i) = \overline{\pi}_t + v_t(i) \end{bmatrix}$$

• Stochastic volatility with different information:

$$\sigma_{\Delta \overline{\pi}}^2(t) = [var(\Delta \overline{\pi}_t)]$$

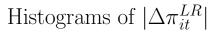
Forecaster i: $[\sigma_{\Delta \overline{\pi}}^2(t)|s_t(i), s_{t-1}(i), ...]$

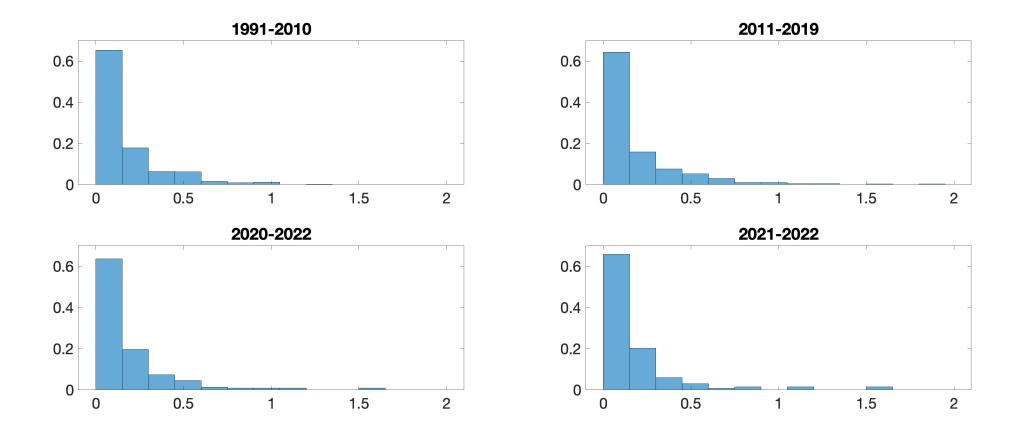
• These differences will be reflected in

 $\operatorname{Var}(\Delta \pi_{it}^{LR})$

- Are there differences across i in $Var(\Delta \pi_{it}^{LR})$?
- Have these differences increased recently?
- Problem .. limited data for each forecaster ... observations not independent over i, etc.

One look at data: Histogram of $|\Delta \pi_{it}^{LR}|$ over different time periods. (Disagreement .. fat tails?)





Wrapping up:

FMR Inflation model

$$\pi_t = \overline{\pi}_t + \pi_t^{Stat}$$
$$\overline{\pi}_t = \overline{\pi}_{t-1} + \sigma_{\overline{\pi},t}\nu_t$$
$$\ln(\sigma_{\overline{\pi},t}) = \ln(\sigma_{\overline{\pi},t}) + e_t$$

Data

- Inflation Data: significant recent increase in $\sigma_{\overline{\pi},t}$
- Long-run Expectations Data: little change in $\sigma_{\overline{\pi},t}$