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Abstract

Recent research shows that several DSGE models provide a closer fit to the data under adaptive

learning. This paper extends this research by introducing adaptive learning in the model of Krusell

and Smith (1998) with uninsurable idiosyncratic risks and aggregate uncertainty. The first contribution

of this paper establishes that the equilibrium of this framework is stable under least-squares learning.

The second contribution consists of showing that bounded rationality enhances the ability of this

model to match the distribution of wealth in the US. Learning increases significantly the Ginis

of wealth and income because of the opposite effects on consumption of capital-rich and capital-

poor agents. The third contribution is an empirical exercise that shows that a calibrated learning

process concerning the aggregate capital stock increases the income (wealth) Gini coefficient by

8.9% (8.8%) in a period of 28 years. Overall, these findings suggest that adaptive learning has

important distributional repercussions in this class of models.
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1 Introduction

Expectations play a crucial role in representative-agent macroeconomic models. This paper extends

the study of the role of expectations to the incomplete-markets model with uninsured idiosyncratic

risk and aggregate uncertainty of Krusell and Smith (1998). In a heterogeneous-agent economy,

agents must form expectations about the aggregate capital stock because this quantity has an

immediate effect on their budget constraints through the determination of returns to productive

factors. The main objective of this paper is to examine the effects of learning about the aggregate

capital level on the endogenous distribution of wealth. I find that boundedly-rational expectations

on the stock of aggregate capital significantly increase wealth and income inequality due to the

opposite effects on optimal consumption levels of capital-rich and capital-poor agents. Through

a calibration exercise I show that a one-standard deviation change to the expected capital stock

increases the Gini coefficients of income and wealth by an average of 6.652% and 6.533% respectively

in the first 4 years, and by an additional 2.266% and 2.226% in the successive 24 years. Furthermore

these increases in inequality are very persistent, taking much longer to subside than to emerge.

The notion of macroeconomic fluctuations driven by expectations dates back to Pigou (1926)

who suggests that expected gains in total factor productivity cause aggregate investment to rise,

and therefore boost economic activity. Pigou’s compelling insight hinges on the assumption that

all agents in the economy respond to an expectational shock in an identical fashion – in other

words, the argument uses a representative-agent logic. Yet, in the presence of a non-degenerate

distribution of wealth in the economy, it is not straightforward to apply Pigou’s logic to understand

the consequences of an expectational shock regarding aggregate investment on economic outcomes.

To see this point, consider the consumption-saving decision of an agent whose income depends on

wages and interest payments. With competitive factor markets, diminishing marginal returns, and

complementary factors of production, an increase in expected aggregate investment produces two

distinct effects on the budget constraint of a non-representative agent. First, the complementarity

of production factors implies that the increase in the stock of capital causes the expectation of wages

to increase, thus expanding the agent’s intertemporal budget set. This is a positive impact from the

point of view of the agent. Second, higher expected investment implies a decrease in the expected
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rental rate of capital. Thus, there is also a negative impact on the agent’s budget set.1 Which one

of these two effects dominates depends (among other factors) on the amount of capital owned by

a particular agent: the economic significance of the second negative effect is higher for capital-rich

than for capital-poor agents. This implies that although agents are otherwise identical, in response

to an expected increase in aggregate investment, the capital-rich ones save more, while the capital-

poor ones save less. Consequently the distribution of wealth becomes more unequal, while its first

moment may either increase or decrease, depending on the initial distribution of capital. This

paper develops and demonstrates this intuition using the standard heterogeneous-agent economy

of Krusell and Smith (1998).

This paper contributes to three strands of the learning literature. First, Packalén (2000) and

Evans and Honkapohja (2001) study the learnability of RBC-type models, and Evans and Honkapohja

(2003), and Bullard and Mitra (2002) study the learnability of new-Keynesian models. These studies

assume complete markets, and the learnability of equilibria of incomplete-markets DSGE models

has not been established before. Second, the present work is also related to the line of research on

the effects of learning on macroeconomic aggregates in general equilibrium models. Bullard and

Duffy (2001) and Williams (2003) find that least-squares learning does not produce strong effects on

the aggregate dynamics of various log-linearized representative-agent models. In contrast, Eusepi

and Preston (2011) study the model of Beaudry and Portier (2007) under adaptive learning and find

that bounded rationality yields a closer match to US data on output, consumption, and investment.

Similarly, citeAevans2005monetary find that in an economy in which the monetary authority follows

a Taylor rule, learning increases the volatility of the macroeconomic aggregates. Branch and Evans

(2011) show that asset price bubbles may arise under least squares learning when agents estimate

the risk-return tradeoff from data on past prices. Consistently with this literature, I find that

adaptive learning produces closer match to the data along the unexplored dimension of the wealth

and income distributions.

Third, this paper is related to the literature on heterogeneous expectations. Kurz (1994) provides

a theoretical motivation to models with heterogeneous expectations, and Evans and Honkapohja

(1996) give sufficient conditions for global convergence of heterogeneous-expectations economies to

1 This argument presumes that the agent has a positive net worth.
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a rational-expectations equilibrium. Brock and Hommes (1997), Brock and Hommes (1998), and

Branch and McGough (2008) show that expectations heterogeneity can account for very complex

(chaotic) dynamics in various asset pricing models. Branch and Evans (2006) study situations

in which expectations resulting from misspecified models may coexist in equilibrium. Branch and

McGough (2011) show that business cycle fluctuations are amplified in the presence of heterogeneous

expectations. The approach followed in this paper is original in the sense that while expectations

are shared by all the agents in the economy (and therefore expectations are not heterogeneous) the

common expectational operator interacts significantly with the endogenously determined wealth

distribution and therefore the consequences of bounded rationality are different on different agents.

This modeling of the formation of expectations is motivated empirically by the substantial revisions

that aggregate investment data are routinely subjected to, which imply both an objective uncertainty

surrounding the real-time information on aggregate capital, as well as an economy-wide common

learning process concerning these data.

In this paper, the key driver of the changes in the distribution of wealth is the inverse expected

comovement of wages and capital rental rates. This negative correlation has been introduced by

previous literature in at least three different ways. Kumhof and Rancière (2010) consider a shock

to the bargaining power of separate categories of agents. Ŕıos-Rull and Santaeulalia-Llopis (2010)

introduce a stochastic parameter controlling the labor share of output in the production function.

Graham and Wright (2010) and Shea (2012) assume that agents learn about factor payments by

using information provided by the relative markets. I adopt a fourth possibility, consisting of

changing the agents’ expectation of the aggregate capital stock. This strategy is parsimonious

since adaptive learning affects the linear regression model that the agents of this model economy

are already assumed to use to form expectations. For this reason I use the algorithm originally

proposed by Krusell and Smith (1998), even though more recent alternatives have been proposed in

the literature, see for example Algan, Allais, and Den Haan (2008), Reiter (2009), Kim, Kollmann,

and Kim (2010), Den Haan and Rendahl (2010), Young (2010), and Maliar, Maliar, and Valli (2010).

In the previous literature on heterogeneous-agents economies there are two alternative approaches

to obtain a more unequal distribution of wealth in this model. First Krusell and Smith (1998)

themselves address this issue by introducing additional heterogeneity in the agents’ discount factors.
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Alternatively, Chang and Kim (2006) obtain high wealth inequality –without this additional layer of

heterogeneity– by calibrating the agents’ income process on the basis of the Panel Study of Income

Dynamics. Here, I find that expectations on factor payments are an additional source of wealth

and income inequality that had not been identified before.

The paper proceeds as follows: section 2 outlines the model and establishes the stability under

learning of the baseline equilibrium of Krusell and Smith (1998). Section 3 studies the behavior

of the model under learning and section 4 illustrates the economic intuition behind the results

of section 3. Section 5 presents a calibration that assesses the empirical relevance of bounded

rationality for the observed increase in income inequality in the US in the past 28 years. Section 6

concludes.

2 The Model

The model economy is the same as in Krusell and Smith (1998). There is a continuum (measure

one) of infinitely-lived agents with constant relative-risk-aversion time-separable utility function

U0 = E
∑∞
t=0

c1−ηt

1−η , where η is the risk-aversion parameter and cit is consumption during period t.

The aggregate production function is Yt = ztK
α
t L

1−α
t , where Kt is time-t aggregate capital, Lt is

aggregate labor, α is the capital share of output, and zt is the aggregate productivity parameter

following a two-state Markov process (zt ∈ {zg, zb}) with known probabilities. Factors markets are

competitive so that wages and real interest rates (gross of depreciation δ) are

wt(µt, lt, zt) = (1− α)zt

(
µt
lt

)α
(1a)

rt(µt, lt, zt) = αzt

(
µt
lt

)(α−1)

(1b)

where µt denotes average capital holdings and lt denotes the employment rate at time t. Agent

i ∈ [0, 1] is exposed to uninsurable idiosyncratic Markov shocks εit ∈ {0, 1} where εit = 0 means that

i is unemployed at time t. The idiosyncratic shocks are correlated with aggregate productivity and

the laws of large numbers imply that the measure of the employed is perfectly correlated with the

aggregate shock (lt ∈ {lg, lb}). The distribution of agents over capital holdings and employment
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states at time t is trivially defined over a sigma algebra containing all the possible realizations of

kit (individual capital holdings) and εit.

Following Krusell and Smith (1998), average capital ownership µt is used as a sufficient proxy

for the entire distribution of wealth. The agent’s dynamic problem is

vi(kit, ε
i
t;µt,zt) = max

kit+1,c
i
t

{
ci

1−η
t

1− η
+ βE

[
vi(kit+1, ε

i
t+1;µt+1, zt+1)|εit, zt

]}
(2)

subject to:

cit+k
i
t+1 = r(µt, lt, zt)k

i
t + w(µt, lt, zt)ε

i
t + (1− δ)kit (2a)

log µt+1 =

 a0 + a1 logµt, if zt = zg

c0 + c1 logµt, otherwise
(2b)

kit+1 ≥ −κ (2c)

the transition probabilities

Equations (2a) and (2c) are the budget and credit constraints respectively (κ ≥ 0 is an exogenous

parameter.) Constraint (2b) is the equation used by the agents to forecast the next-period level of

aggregate capital, which is information relevant for the calculation of the optimal consumption plan.

In the following I refer to the free parameters of equation (2b) (a0, a1, c0, and c1) as the expectational

parameters. Their equilibrium values (denoted a∗0, a∗1, c∗0, and c∗1 respectively) are determined to

deliver the best forecast of aggregate capital in a mean-squared error sense, consistent with a log-

linear AR(1) econometric specification. The algorithm used to solve the model involves these steps:

(1) guess initial values for the expectational parameters, (2) determine the policy function through

a value-function iteration algorithm, (3) simulate a long panel with many agents and aggregate

their decisions, (4) use the ordinary-least-squares estimator on the aggregated simulated data to

evaluate the best-fitting expectational parameters, (5) if the initial guess is different from the OLS

estimates, update the expectational parameters in the direction suggested by the estimates and

repeat from step (2).

Tables 1, and 2 show the parameterization adopted by Krusell and Smith (1998) and Table 3

reports a few statistics resulting from the application of the algorithm outlined above. The average
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β = 0.99, δ = 0.025
η = 1, α = 0.36

zg = 1.01, zb = 0.99
lg = 0.32, lb = 0.30

Tab. 1: Parameterization following the baseline Krusell and Smith (1998). The calibration of the
parameters lg and lb may appear different from the values reported for unemployment
rates of 4% and 10% during, respectively, expansions and recessions. Nevertheless, careful
analysis of the computer code implementing the baseline model, reveals that agents are
assumed to inelastically supply 1

3 units of time to the labor markets in each period. In
other words lg and lb are expressed here in units of time rather than as employment rates.


πgg00 πgg01 πgb00 πgb01

πgg10 πgg11 πgb10 πgb11

πbg00 πbg01 πbb00 πbb01

πbg10 πbg11 πbg10 πbb11

 =


0.2927 0.5834 0.0938 0.0313
0.0243 0.8507 0.0091 0.1159
0.0313 0.0938 0.5250 0.3500
0.0021 0.1229 0.0389 0.8361



Tab. 2: Transition probabilities. The subscripts of each entry indicate the aggregate transition
(first two characters) and the individual transition (the following two digits). For example
πgb01 is the probability that a currently unemployed agent finds a job when the economy
transitions from high productivity to low productivity.

Variable average st.dev.

µ 11.60 0.2692
µg 11.67 0.2584
µb 11.52 0.2591
σ 7.361 0.2244
σg 7.375 0.2206
σb 7.348 0.2273
a∗0 0.0924 -
a∗1 0.9633 -
c∗0 0.0826 -
c∗1 0.9652 -

Tab. 3: Summary statistics for the economy at the stochastic equilibrium; µ and σ denote the
mean and standard deviation of the cross sectional distribution of capital averaged over
10,000 periods; the subscripts b and g denote recessions and expansions respectively. The
standard errors of the expectational parameters are unreported since the precision of these
estimates can be made arbitrarily small by increasing the length of the simulation.
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level of capital during expansions is slightly higher than during recessions, and wealth is tightly

distributed around the mean in both phases of the business cycle. The values of the expectational

parameters reported in Table 3 are self-confirming: when agents adopt the log-linear forecasting

model, their aggregate behavior produces data that, when used to estimate the best fitting log-

linear AR(1) model, confirms the agents’ initial beliefs.2 Clearly, the standard deviation of the

distribution of wealth is too small to match the Gini coefficients observed in any real economy.

2.1 E-Stability

I depart now from Krusell and Smith (1998) and I modify their baseline framework by assuming

that agents do not know the equilibrium values of the aggregate capital process (i.e. a∗0, a∗1,

c∗0, and c∗1 from Table 3) but rather that they use regression analysis on past data to estimate

them. Equation (2b) shows that the uncertainty about the equilibrium values of the expectational

parameters directly translates into uncertainty about the equilibrium process governing the evolution

of the aggregate stock of capital. The specification of the regression used by the agents, together

with the current estimates for its parameters, are known in the learning literature as the agents’

Perceived Law of Motion (PLM). Each agent’s saving-consumption plan obviously depends on their

PLM, and the resulting choices, once aggregated, determine the economy’s Actual Law of Motion

(ALM). Thus, the learning process can be conceptualized as a recursion between the PLM and the

ALM: the time- t PLM determines the ALM which, in turn, produces the new data with which

the new PLM at time t + 1 is estimated. Letting Φt ≡ [â0,t â1,t ĉ0,t ĉ1,t]
′ be the vector of the

time-t estimates of the expectational parameters, the learning process is represented by a sequence

{Φt} in the parameter space, that evolves according to an unknown map denoted by T . This map

depends both on the behavior of the aggregate economy as well as on the learning algorithm. Under

2 Defining the equilibrium reported in Table 3 as a rational expectations equilibrium may be incorrect.
In fact, the behavior of this model could be different when the consumption function is obtained through
different representations of the state space. For this reason, the classification that best suits this equilibrium
is that of a Restricted Perception Equilibrium proposed by Evans and Honkapohja (2001) and Sargent
(2001). Such an equilibrium requires that the economic agents choose the best parameterization possible,
within a limited set of expectational models and that the parameter values are self-confirming according to
some metric.
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least-squares learning the agents use the following recursion to update their estimates

Φt = Φt−1 + γtR
−1
t y′t−1[lnµt − yt−1Φt−1] (3a)

Rt ≡ Rt−1 + γt(y
′
t−1yt−1 −Rt−1) (3b)

where yt = [Ig Ig lnµt−1 Ib Ib lnµt−1], Ig is a dummy equal to 1 if zt = zg (Ib = 1 − Ig), and

{γt}∞t=0 is known as “gain sequence” i.e. a positive non-increasing sequence of real numbers such

that
∑
γt = ∞ and

∑
γ2
t < ∞.3 Using the notation introduced in this section, an equilibrium of

the learning process satisfies the condition Φ∗ = T (Φ∗).

When agents are learning about the structure of the economy, there exists an endogenous

interaction between the current estimates of the expectational parameters and the process that

generates the data used to update those estimates. An exogenous change to the expected future

capital stock, triggers changes in the economy’s aggregate saving rate, which leads in turn to changes

to capital accumulation and these new data are then used by the agents to revise their expectations.

Accordingly, the evolution of agents’ expectations is endogenous to the model and in general, it

is by no means obvious that the learning process should (a) converge, or (b) if it does converge,

whether the convergence point is located at the equilibrium reported in Table 3. Precisely because

such convergence criteria are not automatically satisfied, learning has been used as an equilibrium

selection device – see, for example, Evans and Honkapohja (2001) – under the point of view that

equilibria the are not stable under learning are less likely to be empirically relevant. Evans and

Honkapohja (2001) also provide necessary and sufficient conditions for the local convergence to an

equilibrium of a learning process of the kind considered here. These conditions – known as the

E-stability principle – require that the matrix of first derivatives of T evaluated at an equilibrium

Φ∗ (denoted DT |Φ∗ in the following) has eigenvalues with real parts less than one, in which case

the equilibrium is locally asymptotically stable under learning.

In the heterogeneous-agents economy with aggregate shocks the T -map cannot be pinned down

analytically and consequently the evaluation of its matrix of first derivatives must be conducted

3 I use dummies in the regression to keep the notation to a minimum. The matrix R is block diagonal
by construction, and allowing this type of heteroskedasticity in the regressions allows the estimation of a
specification of the form (2b) with a more compact notation.
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numerically. This is done by initially setting the PLM at the equilibrium values reported in Table

3 and first increasing and then decreasing each parameter by a small quantity. The resulting

pair of policy functions is used to perform two long Monte-Carlo simulations (a substantial initial

portion of the data is discarded to ensure ergodicity). The resulting ALMs are estimated from

the data generated in this way. The ratios of the changes in the estimates relative to the small

initial changes in the PLM provide a numerical estimate of one of the rows of DT |Φ∗ . A detailed

step-by-step description of the algorithm used to differentiate the map T is given in the appendix.

Application of this algorithm yields the following numerical evaluation of the matrix of interest

DT |Φ∗ =


2.6 −1.7 3.4 −1.9

13.7 −6.7 18.1 −8.3

2.9 −1.7 3.1 −1.8

14.2 −6.7 17.7 −8.2

 .

The biggest eigenvalue of this matrix has a real part equal to -0.12, indicating that – according to

the E-stability principle – the equilibrium Φ∗ is locally asymptotically stable under learning.

3 The Dynamics Under Learning

Having established the equilibrium stability under least-squares learning, I study now the model in a

neighborhood of the equilibrium expectational parameters in the parameter space. More specifically

I first investigate how sensitive are the model’s dynamics to small perturbations of the expectational

parameters, and subsequently I study how different are the learning dynamics from the equilibrium.

3.1 Calibration of the learning process

Answering the two questions posed above requires the preliminary specification of what constitutes

a reasonable deviation of the expectational parameters from the equilibrium values. In order to

provide an answer, I exploit the link between the expectational parameters and the expected stock of

capital in the next period. Since agents use an AR(1) regression, their expectation of the aggregate

capital stock changes in the same direction of the change in any of the expectational parameters.
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Therefore it is possible to map uncertainty about the equilibrium values of the expectational parameters

to and from uncertainty about the aggregate capital stock.

To estimate a confidence interval around the aggregate capital stock I use real-time quarterly

data on real gross nonresidential private investment in the US (series RINVBF from the Philadelphia

Federal Reserve Bank.) The data set includes 188 vintages of data as available in each quarter from

1965:Q2 to 2012:Q2. Each vintage starts in 1947:Q1, with a only a handful of exceptions: five

vintages start in 1959:Q1, five start in 1959:Q3, and one starts in 1987:Q1. To avoid normalization

issues, I drop these eleven vintages and I normalize to 100 the figure for 1947:Q1 in the remaining

177 vintages. For each quarter from 1965:Q2 on, I estimate the aggregate capital by summing the

investment data in the preceding quarters, net of depreciation, by using all the available vintages.4

I repeat this calculation by using all the available vintages that include that particular quarter, and

this procedure yields a time series of revisions to the aggregate capital stock available at a given

point in time. I then calculate the standard deviation of these revisions and I divide this number

by the initial figure. Repeating this set of calculations for each quarter, it emerges that for the

median quarter, the successive revisions of the initial estimate of the capital stock are within a one

standard-deviation confidence interval of ±5.88%.5

3.2 Expectational Sensitivity Analysis

I study now the model’s response to changes in the expectational parameters that imply estimation

errors of plus/minus one and two standard deviations of the long-run equilibrium capital stock,

according to the calibration discussed above.6 The graphs in Figure 1 show the ergodic distributions

of a few key statistics produced by the model under expectations that are excessive in a range of

plus/minus two standard deviations from the equilibrium values. The top panel in Figure 1 shows

the ergodic distributions of the capital stock. Notably, there is a negative relationship between the

values of the expectational parameters and the capital stock. The bottom two panels show the

4 This is a reasonable estimate of the capital stock. With the depreciation rate calibrated at 2.5%, the
share of capital in each vintage that is accounted for by this calculation is 99.5% or more.

5 An alternative calibration procedure based on Ŕıos-Rull and Santaeulalia-Llopis (2010) and yielding a
comparable confidence interval is given in the appendix.

6 Experimentation reveals that the exact way in which the expectational change is introduced – say
increasing a1 without altering a0, c0, or c1, or vice versa – does not alter the results of this section in any
way.
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Fig. 1: Effects on the ergodic wealth distribution of changes in aggregate capital expectations. The
horizontal axis indicates the various cases relative to the expected long-run capital level, for
example the bars corresponding to E[k] + 1SD pertain to the case in which agents expect
a long-run level of capital that is one standard deviation above the equilibrium value.
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ergodic distributions of the Gini coefficients of wealth and income. With respect to this latter two

it is possible to notice an increasing non-linear relationship with the bias in the expected capital

levels.7 Also, the two Ginis are very similar, which is unsurprising since in this model income

differences originate from idiosyncratic wage earnings and wealth ownership. Figure 1 shows that

excessive expectations for the capital stock have a strong effect on the model’s behavior, and in

particular on the distribution of wealth. Figure 2 breaks down the changes in the distribution

of wealth by quintiles. Clearly, wealth moves upwards when aggregate capital expectations are

excessive: the increase in the share of the top quintile of the distribution of income is gained at the

expense of the lower quintiles. Furthermore, in the last panel of Figure 2 one can see that most of

the additional share of income earned by the highest quintile is indeed driven by the top percentile

of the distribution of income, who experience a spectacular increase in their share of income relative

to all other agents in the economy. Overall, this evidence suggests that learning has the potential

to produce significant changes to the model’s dynamics, provided that the learning process sojourns

long enough in a region of the parameter space that causes an overestimation of the capital stock.

Furthermore, the changes in the distribution of income induced by excessive capital expectations

match qualitatively well the trends in the US data, where income concentrates towards the top of

the distribution.

3.3 The Learning Dynamics

Figure 3 shows a long simulation of the model under learning after initializing the expectations to

be one standard deviation above equilibrium. As expected from the verification of E-stability, the

economy eventually converges to the equilibrium. This simulation uses the following gain sequence

γt+1 =
γt

γt + 1
, given γ0 = 10−4 (4)

which is a standard choice in the learning literature (see for example Evans and Honkapohja, 2001,

Chapter 15). At the beginning of the simulation, the majority of the agents react to the the high

expected level of aggregate capital by decreasing savings (this is studied thoroughly in section 4) and

7 The asymmetry in Figure 1 depends on the fact that the autoregressive coefficients in equations (2b)
are very close to one.
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Fig. 2: Average changes in the shares of income earned by each quintile of the distribution of
income corresponding to near-equilibrium expectations. The unit of measure of the vertical
axes are percentage points.



4 The Economic Intuition 15

increasing consumption immediately. This causes in turn a drop in the capital accumulation process

which increases the interest rate. This significantly increases the income of a minority of wealthy

agents and they respond by accumulating more capital. In the mean time, the learning dynamics

converge back to the equilibrium dynamics, and once the expectational parameters are close enough

to the equilibrium values, the wealthier (poorer) agents revert towards more (less) consumption,

and the wealth distribution converges back to the equilibrium process. Overall, figure 3 shows that

learning has important effects on the distribution of wealth (the Gini coefficient increases by 50%

in this example) and that the inequality produced in this manner is extremely persistent. While

the expectational parameters converge to their equilibrium values at the expected rate of
√
t, the

distribution of wealth remains more unequal than at the equilibrium for a long time. One crude

measure of this persistence is given by comparing the 254 periods it takes for capital to first return

within the two-standard-deviation range of the ergodic process to the 10,335 periods for the Gini

of wealth to do the same – about 40 times longer.

4 The Economic Intuition

I argue in this section that the behavior of the model illustrated in section 3 can be rationalized

by the opposite effects on expected wages and rental rates, resulting from an overestimation of

the capital stock. To facilitate exposition, I will denote with Eo an expectational operator that

yields an overestimation of future capital levels. The application of Eo to equations (1) implies

that the expected wage rate is higher, and the return rate to capital lower than under equilibrium

expectations (denoted with E∗). These changes in expected returns to productive factors can be

usefully decomposed into substitution and wealth effects. First, higher expected wages have a

positive wealth effect on current consumption. Second, the expected decrease in the interest rates

further increases consumption through the substitution effect. Third, the expected decrease in

rental rates produces a wealth effect that may either increase or decrease consumption depending

on each agent’s net worth: an agent with positive net assets faces a negative wealth effect, while one

with negative net assets faces a positive wealth effect.8 All three effects work in the same direction

8 Logarithmic preferences and market completeness imply that the income and substitution effects offset
each other exactly for every agent. However, under incomplete markets, Aiyagari (1994) and Huggett (1993)
show that the interest rate is lower than the rate of time preference.
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for agents with negative net worth and therefore their current consumption increases when Eo is

used instead of E∗. The net effect of Eo on the consumption of agents with positive net worth is

ambiguous since the first wealth and substitution effects are balanced by the third wealth effect.

As one considers richer and richer agents, the amount of income earned by renting capital becomes

more and more significant, relative to the income earned by offering labor services. Accordingly,

it is intuitive to speculate that there must exist a critical threshold of wealth above (below) which

Eo has a negative (positive) net effect on the agent’s expected permanent income. The following

Proposition refprop:incomeEffects proves that this threshold exists, and furthermore that it is

positive and finite. The proof, as given below, is somewhat simplified by the assumption that Eo

is a point-expectational operator.9 A proof for the general case is given in the appendix.

Proposition 1. An agent with point expectational operator Eo will anticipate higher permanent

income than an identical agent with equilibrium expectations E∗ if and only if

kit+1 < ψEoµt+1 (5)

where ψ = Et

[
zt+1ε

i
t+1

lαt+1

]
/Et

[
zt+1

lα−1
t+1

]
, and Et is the operator consistent with the probabilities reported

in Table 2.

Proof: Household i’s income at t+ 1 is given by

yit+1 ≡ zt+1α

[
µt+1

lt+1

]α−1

kit+1 + zt+1(1− α)

[
µt+1

lt+1

]α
εit+1

the assumption of point expectations implies that Eo[µαt+1] = [Eoµt+1]α. Therefore, the time-t

expectation for yit+1, conditional on the current aggregate and individual states, can be written as

EtE
o[yit+1] =

∑
s∈{b,g}

Pztzs

(
zsα

[
Eoµt+1

ls

]α−1

kit+1 + zs(1− α)

[
Eoµt+1

ls

]α
πztsεit1

)
9 A point expectational operator pertains to a degenerate probability distribution that places a unit mass

of probability on a single event. Point expectations correspond to the situation in which agents believe to
know with certainty the relevant variables. This is an accurate approximation for the purpose of applying
this proposition to the simulations summarized in Figure 1 since the standard errors of the regressions run
by the agents are extremely small, consistently with Krusell and Smith (1998).
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where Pztzg and Pztzb are the probabilities that the aggregate state transitions from zt to zg and zb

respectively, and and πztsεt1 are the probabilities that agent i is employed at t+ 1 conditional on εit

and the aggregate state transition. These probabilities are found in Table 2, and they are assumed

to be known by the agents. Now, calculate the effect of a change expected level of average capital

at t+ 1 on expected income

∂EtEo[yit+1]

∂Eoµt+1
= α(1− α)Eoµα−2

t+1

{
−kit+1Et

[
zt+1

lα−1
t+1

]
+ Eoµt+1Et

[
zt+1ε

i
t+1

lαt+1

]}

This expression shows that the necessary and sufficient condition for a marginal increase in the

expected aggregate capital level (µt+1) to increase expected personal income (∂EtE
o[yit+1]/∂Eoµt+1 >

0) is kit+1 < ψEoµt+1.

�

Proposition 1 implies that a high expectation of future capital affects the expected income of agents

asymmetrically across a critical wealth threshold. Those agents above the threshold expect lower

income in the future, and since they are dynamic optimizers that seek to smooth consumption, they

decrease current consumption thus saving more and accumulating more wealth. On the contrary,

those agents below the critical threshold expect higher income in the future, hence they consume

more presently and end up owning less wealth. The polarization of wealth and income then arises

as a direct consequence of these considerations.10

I conclude this section by explaining the decreasing relationship between the stock of capital

and the changes of expectations as shown in the top panel of Figure 1. The decrease in average

capital corresponding to the increase in expected capital takes place because the equilibrium ergodic

distribution of wealth does not feature very rich agents: at the equilibrium, the wealthiest percentile

owns about 3 times the average capital, no agent receives as much income from interest payments

as from wages, and the top 0.1 percentile earns five times more from labor than from capital.

These figures are consistent with the standard deviations reported in Table 3. Accordingly, the vast

majority of agents are likely to be located below the threshold identified in Proposition 1. This

10 Notice that both classes of agents behave sub-optimally, and therefore it is not obvious to state which
group suffers the most in terms of foregone welfare.
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implies that expectation that overestimate aggregate capital, have a negative effect on the savings

of most agents, which explains the decreasing relation between the expectational parameters and

the mean of the distribution of wealth.

4.1 Self-Insurance and Precautionary Savings

In this model, the agents are exposed to uninsurable shocks and therefore they accumulate extra

capital (precautionary savings) as a form of self-insurance against prolonged spells of unemployment.

However, the demand for precautionary savings is unlikely to drive the increased dispersion of

the distribution of wealth. There are two reasons for not considering precautionary savings in

this discussion. First, Aiyagari (1994) and Dıaz, Pijoan-Mas, and Rıos-Rull (2003) argue that

precautionary savings account only for a small proportion of total wealth in this type of models, and

therefore consumption smoothing and intertemporal substitution motives dominate the dynamics

of individual savings decisions. Second, changes to expectations of the kind considered in this

paper, will push precautionary savings in the same direction independently of wealth. When agents

have high expectations for aggregate capital, the stochastic environment appears more favorable

because the positive payoff (the wage in case of employment) is expected to increase, and the

probabilities do not change. Furthermore, as interest payments decrease, capital accumulation

becomes a less effective form of self-insurance, and therefore the net effect on precautionary savings

is unambiguously negative, independent of the agent’s individual level of wealth. Opposite and

symmetric considerations apply to the case in which agents underestimate aggregate capital.

5 An Empirical Application

This section presents a calibrated learning process yielding an estimate of the effect of boundedly

rational expectations for aggregate capital on income inequality over a number of time periods that

correspond to 28 years of real time. The time window is chosen to allow for a direct comparison with

the Report by the Congressional Budget Office (2011), documenting significant increases in income

inequality in the US from 1979 to 2007. Since the evolution of the expectational parameters is

endogenous it is possible that the learning dynamics bring the expectational parameters to regions

of the parameter space that are not acceptable on the basis of prior restrictions. For example,
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values for a1 or c1 exceeding or equal to one are not consistent with the existence of a stationary

equilibrium.11 To overcome this problem, it is not uncommon in the learning literature to invoke

a “projection facility,” i.e. a mechanism according to which the agents ignore estimates that they

know to be impossible. It turns out that if the initial expectations are not too far from the

equilibrium values it is possible to avoid using a projection facility, and for this reason I initiate the

simulations of this section at parameter values implying an overestimation of the capital stock by

by one standard deviation (i.e. +5.88% of the ergodic equilibrium value).

The gain sequence is given by the recursion of equation (4) and the initial value of this sequence

(γ0) must be calibrated. This free parameter controls the speed with which agents learn the equilibrium

law of motion of the economy or, equivalently, the speed with which they reach equilibrium expectations.

As the empirical counterpart to the changes in expectations are the measurement errors in the

aggregate stock of capital, my strategy for calibrating γ0 consists of requiring that its value is

chosen so that the biases in the expected level of capital evolve in a way that is similar to the

evolution of the revisions to aggregate capital stock, as calculated with the procedure of section 3.

This strategy may be implemented by either looking at one-period-ahead conditional expectations

biases, or by looking at long-run unconditional biases. Focusing on long-run expectations is clearly

preferable since agents are dynamic optimizers. Accordingly, I define the variable

log biast =
1

2

[
â0,t

1− â1,t
− a∗0

1− a∗1

]
+

1

2

[
ĉ0,t

1− ĉ1,t
− c∗0

1− c∗1

]

to measure the magnitude of the deviation of the unconditional expectations of long-run capital

from the equilibrium value. (The factors of 1
2 are due to the fact that the probabilities of Table 2

imply that the unconditional probability of a positive productivity shock is the same as that of a

negative shock.) The learning schedule is then required to be such that the partial autocorrelation

diagram of the series {biast} is similar to the partial autocorrelation diagram of the revisions to

estimates of the capital stock. Figure 4 reports the partial autocorrelation function of the variable

biast averaged over one hundred simulations with γ0 = 2.25× 10−2. The second panel of Figure 4

shows the partial autocorrelation function of the revisions of the estimated capital stock for quarter

11 The special case in which a1 and c1 are simultaneously equal to one and a0 = −c0 is instead acceptable
as it does not imply explosive aggregate capital. It is straightforward to argue that the probability of the
learning algorithm to reach exactly these estimates is infinitesimal.
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Fig. 4: Left: partial autocorrelation function for the average bias across the 100 Monte
Carlo replications. Right: partial autocorrelation function for the time-series of the
revisions of the estimated aggregate capital stock available in quarter 3 of 1990.
This autocorrelation function is typical.

3 of 1990. This quarter is typical and the picture would be nearly identical with most other quarters

or their average.

How much income inequality can be generated by the expectational channel identified in this

paper, assuming that agents overestimate the stock of capital by one-standard deviation, and learn

according to the calibrated learning schedule, over a period of time of the 28 years? A Monte

Carlo strategy with 100 repetitions is adopted to answer this question, and the results can be

viewed as estimates of the impulse response functions following a one-time-period one-standard-

deviation change to the estimated stock of aggregate capital. The results of these simulations are

illustrated in Figure 5 and in Table 4. With the notable exception of the fourth quintile, the model

successfully matches the direction (although not the magnitude) of the change for each quintile

of the income distribution. Furthermore, the model seems to better capture the dynamics of the

income distribution at the lower three quintiles, while it overpredicts the change in the share of

the top 80th to 99th percentiles, and it grossly underpredicts the increase in the share of income

of the top percentile. One likely factor accounting for this failure is the US tax system, whose

progressivity decreases sharply at the higher end of the income distribution. As mentioned above,

the results shown in Table 4 do not capture fully the changes in the data and this can be explained

on several grounds. First, these results pertain to a one-time, one-standard-deviation change to
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Fig. 5: Changes in the shares of income earned by each quintile in 112 periods in the model
following a one standard-deviation increase in the expected capital stock.

expected capital and implementing the more canonical two-standard-deviations case would surely

help the model to predict more extreme changes, at an unfeasibly high computational cost.12 And

second, no one factor in isolation is likely to explain by itself the trends in these data, as indicated

by the existence of a large literature on the distributions of wealth and income.

Quintiles
1st 2nd 3rd 4th 80-99% top 1%

Data -2% -3% -2.2% -2.1% 0.5% 9.4%
Model -0.4735% -0.4528% -0.4216% 0.0503% 1.0705% 0.2204%

Model/Data 0.2368 0.1509 0.1916 2.1410 0.0234

Tab. 4: Comparison to the US data of the changes in the shares of income predicted by
the model after a one-standard-deviation increase in expected aggregate capital.

Figure 6 shows the responses of the expectational parameters with the two-standard deviations

bounds. The resulting series for the variable biast is shown on the right of Figure 6. Figure 7

12 At the two standard deviation level most simulations need to be discarded as the expectational
parameters often drift to unacceptable regions of the parameter space.
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Dependent Variable

Income
Gini

Income
Gini

Wealth
Gini

Wealth
Gini

Income
Share
0-20%

Income
Share
0-20%

Income
Share
20-40%

Income
Share
20-40%

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 7.7673 8.0046 13.0798 13.2850
0.0064 0.0483 0.0041 0.0297

Time(1-112) 0.0763 0.0750 -0.0010 -0.0016
0.0005 0.0005 0.0001 0.0001

Time(1-16) 0.4033 0.3964 -0.0265 -0.0196
0.0217 0.0218 0.0050 0.0031

N 11300 1700 11300 1700 11300 1700 11300 1700
R2 0.6600 0.7570 0.6525 0.7481 0.0092 0.2038 0.0526 0.2698

Dependent Variable
Income
Share
40-60%

Income
Share
40-60%

Income
Share
60-80%

Income
Share
60-80%

Income
Share
80-99%

Income
Share
80-99%

Income
Share
Top 1%

Income
Share
Top 1%

(9) (10) (11) (12) (13) (14) (15) (16)

Intercept 17.8603 17.9903 23.7768 23.7182 34.1851 33.7530 3.3309 3.2530
0.0020 0.0118 0.0022 0.0155 0.0086 0.0623 0.0014 0.0096

Time(1-112) -0.0028 -0.0005 0.0046 0.0012
0.0000 0.0000 0.0001 0.0000

Time(1-16) -0.0125 0.0063 0.0443 0.0076
0.0012 0.0016 0.0064 0.0010

N 11300 1700 11300 1700 11300 1700 11300 1700
R2 0.4159 0.4865 0.0161 0.1231 0.0998 0.3004 0.1948 0.3437

Tab. 5: Standard errors reported under the estimates. All figures are significant at the 1%
level. Income and Wealth Gini are expressed as percent deviations from ergodic
equilibrium values.

reports the responses of the income shares and the income and wealth Ginis, and it shows that the

changes produced by adaptive learning persist long after the expectational parameters are close to

equilibrium values. Jointly, these graphs are consistent with an overestimation of the capital stock

and with the intuition presented in section 3.

Figure 7 also shows that, except for the share of income earned by the third quintile (which

displays a steady and prolonged decline), most of the effects of the excessive expectations are

produced quickly. For example, 75% of the peak effect on the income Gini is produced in the first
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Fig. 6: Time paths of the expectational parameters and of the implied bias in unconditional
capital expectations, with the two-standard deviation bounds.

16 time periods. For this reason, in order to assess the statistical significance and magnitude of the

effect of a one-standard deviation change in expected aggregate capital, I use regression analysis

both over the entire sample of 112 time periods (28 years) and over a shorter 16-periods (4 years)

window. Table 5 shows the results of regressing the changes of wealth and income Ginis (regressions

1 through 4) and income shares by quintile on a deterministic trend (regressions 5 through 16). This

analysis uncovers that the effects documented are statistically significant in all cases considered in

the sample produced via Monte Carlo replications. The model is at odds with the data only in

relation to the change in the fourth quintile of the income distribution (-2.1% according to CBO

estimates), where it predicts a small but significant decrease in the full time period considered

(regression 11), while also predicting an initial increase (regression 12). Columns (1) through (4)

of Table 5 show that the average effect of a one-standard deviation overestimation of the capital

stock is to increase the Gini of income (wealth) by .0763% (.075%) per quarter, for a cumulative

average increase of 8.918% (8.759%) over 28 years. In the first 4 years instead, the average increase

in the Ginis are respectively .4033% and .3964% per quarter, totaling 6.652% and 6.533%.
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Fig. 7: Responses of the income shares of each quintile with the two-standard deviations
bounds. At the bottom, the response of the income and wealth Gini coefficients.
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6 Conclusion

The study of dynamic stochastic general equilibrium models under learning has proved to be a

productive exercise towards the goal of capturing several features of the data produced by real

economies, both qualitatively and quantitatively. Until now, the effects of adaptive learning in

DSGE models featuring incomplete markets have not been studied. From a theoretical point of

view this gap is noticeable because one of the reasons why markets may be incomplete is precisely

the limit to the computational ability of the agents engaging in economic activity. From the

empirical point of view, this work shows that – consistently with the existing literature on the

effects of learning in a variety of different models – learning gives the model studied here a better

match to the empirical distributions of wealth and income.
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Appendices

A General Proof of Proposition 1

Proposition 2. An agent with expectational operator Eo will anticipate higher personal income in

the future if and only if

kit+1 < −
(1− α)Et

[
zt+1ε

i
t+1

lαt+1

]
Cov∗[µt+1, µ

α
t+1]

αEt

[
zt+1

lα−1
t+1

]
Cov∗[µt+1, µ

α−1
t+1 ]

(6)

Proof: Household i’s expected income is

EtE
o[yit+1] = P1zgαE

o

[
µt+1

lg

](α−1)

kit+1 + P1zg(1− α)Eo
[
µt+1

lg

](α)

P 1
1

+P2zbαE
o

[
µt+1

lb

](α−1)

kit+1 + P2zb(1− α)Eo
[
µt+1

lb

](α)

P 1
2
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where P1 = Pztzg , P 1
1 is prob. i is employed conditional on the aggregate transition being zt → zg.

P2 = 1− P1 = Pztzb .

EtE
o[yit+1] = P1zgαl

1−α
g kit+1E

o
[
µα−1
t+1

]
+ P1zg(1− α)l−αg P 1

1E
o[µαt+1]

+P2zbαl
1−α
b kit+1E

o
[
µα−1
t+1

]
+ P2zb(1− α)l−αb P 1

2E
o[µαt+1]

= αkit+1E
o[µα−1

t+1 ]Et

[
zt+1

lαt+1

]
︸ ︷︷ ︸

X1

+(1− α)Eo[µαt+1]Et

[
zt+1ε

i
t+1

lαt+1

]
︸ ︷︷ ︸

X2

A change in the agent’s regression parameters will change the mean of the normal probability

distribution function used by the agents to perform forecasts. Conditional on time t information I

will denote the conditional mean with µ∗. That is

µ∗ =


ea0µa1t if zt = zg

ec0µc1t if zt = zb

The effect of optimistic expectations is singled out by calculating

∂EtE
o[yit+1]

∂µ∗
= αkit+1X1

∂Eo[µα−1
t+1 ]

∂µ∗
+ (1− α)X2

∂Eo[µαt+1]

∂µ∗

So one needs to calculate
∂Eo[µαt+1]

∂µ∗

∂Eo[µαt+1]

∂µ∗
=

∂

∂µ∗

∫
xα

1√
2πσ

exp

[
− (x− µ∗)2

2σ2

]
dx

=

∫
xα

(x− µ∗)
σ2

1√
2πσ

exp

[
− (x− µ∗)2

2σ2

]
dx

=
1

σ2

[∫
xα+1φ(x)dx− µ∗

∫
xαφ(x)dx

]

=
1

σ2

(
Eo[µα+1

t+1 ]− µ∗Eo[µαt+1]
)
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And similarly
∂Eo[µα−1

t+1 ]

∂µ∗
=

1

σ2

(
Eo[µαt+1]− µ∗Eo[µα−1

t+1 ]
)

Now consider the two random variables X = µt+1 and Y = Xα−1. Obviously X and Y are not

independent and exploiting the fact that Cov[X,Y ] = E[XY ]−E[X]E[Y ] one sees that
∂Eo[µα−1

t+1 ]

∂µ∗ =

Cov∗[µt+1, µ
α−1
t+1 ]/σ2. With a similar line of reasoning it is possible to show that setting Y = Xα

the relationship Cov[X,Y ] = E[XY ]− E[X]E[Y ] yields

∂Eo[µαt+1]

∂µ∗
=
Cov∗[µt+1, µ

α
t+1]

σ2

Finally the condition
∂EtE

o[yit+1]

∂µ∗ > 0 requires

αkit+1X1Cov
∗[µt+1, µ

α−1
t+1 ] > −(1− α)X2Cov

∗[µt+1, µ
α
t+1]

kit+1 < −
(1− α)X2Cov

∗[µt+1, µ
α
t+1]

αX1Cov∗[µt+1, µ
α−1
t+1 ]

where the reversal of the direction of the inequality sign is necessary because Cov∗[µt+1, µ
α−1
t+1 ] < 0.

This is because µα−1
t+1 is a decreasing function of µt+1. Finally, since µαt+1 is an increasing function of

µt+1, the quantity on the RHS is positive. This proves that optimism about the capital accumulation

process implies a higher personal income for agent i if and only if i is not “too wealthy.”

�

The Algorithm for Calculating DT

The matrix of first derivatives of the T map is derived numerically, by changing the PLM and

deriving the implied ALM. The following steps describe the algorithm to derive the matrix of first

derivatives of the T map at the equilibrium.

1. Set ι = 1 and pick a small constant ϑ.

2. Set Φ = [a∗0 a
∗
1 c
∗
0 c
∗
1]′, and let Φ[ι] denote the ι-th element of Φ. Set Φ[ι] = Φ[ι] + ϑ.

3. Using a value function iteration algorithm derive the policy function f̂+
ι .
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4. Using 5000 agents, run a 210,000-periods long Monte Carlo experiment using f̂+
i to simulate

the economy.

5. Drop the first 200,000 periods of the simulation and use OLS on the remaining sample to

obtain an estimate of the ALM: (a0)+
ι , (a1)+

ι , (c0)+
ι , and (c1)+

ι

6. Set Φ = [a∗0 a
∗
1 c
∗
0 c
∗
1]′ and Φ[ι] = Φ[ι]− ϑ. Repeat Steps 3, 4, and 5 but this time denote the

implied ALM as (a0)−ι , (a1)−ι , (c0)−ι , and (c1)−ι

7. Populate the ι-th row of DT as follows

DTι =

[
(a0)+

ι − (a0)−ι
2ϑ

(a1)+
ι − (a1)−ι

2ϑ

(c0)+
ι − (c0)−ι

2ϑ

(c1)+
ι − (c1)−ι

2ϑ

]

8. If ι < 4 set ι = ι+ 1 and repeat from Step 2.

The matrix reported in the main text is derived by using ϑ = 0.0001, which is appropriate when

numbers are have a double precision representation in the computer.

Least Squares Learning Algorithm

The simulation of the model under least-squares learning is implemented in these steps.

1. Choose an in initial point in the parameter space Φ0 and initial distribution of wealth Γ0, a

simulation length T , and the number of agents N .

2. Choose a constant γ0 and calculate the gain γt = γt−1

1+γt−1
for t = 1, 2, . . . , T .

3. Set t = 0

4. Solve the dynamic program (2).

5. Draw an aggregate shock and N idiosyncratic shocks. Use the policy obtained in step 4 to

determine the individual saving decisions, and aggregate them to obtain µt+1.

6. Use equations (3) to update Φt.

7. Set t = t+ 1 and repeat from step 4 until t = T .
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The initial distribution of wealth Γ0 is the equilibrium distribution corresponding to Table 3. The

initial values for the expectational parameters imply an overestimation of the long run capital of

+5.88%. Also, this algorithm requires the initialization of the matrix R0 for the application of the

recursive least squares algorithm, as it can be seen from equations (3). I use the variance-covariance

matrix of a regression specified as in (2b) run on equilibrium data.

An alternative calibration procedure

Deviations from equilibrium values of the expectational parameters in equation (2b) imply that

the agents have a bias in their expectations of future stock of capital. An alternative way to

think of shocks to capital levels as a source of randomness, is through shocks to the elasticity of

output to labor (or share of labor’s output, in competitive factor pricing models). I now show

that the assumed production function allows to consider expectations about aggregate capital and

investment as expectations on a stochastic labor share of output, with the same effect on factors

payments.

To facilitate the exposition I suppose now that agents overestimate the capital stock. Such

an expectational shock enters in the model exclusively through the intertemporal consumption

decisions of the agents. More specifically, only the budget constraints (2a) are affected through

the expected payments to productive factors i.e. through the functions w and r. Because w is

an increasing function of capital, a higher expected future capital stock implies a higher expected

future wage rate. Conversely, since r is a decreasing function of the capital stock, high expectations

for it imply low expected future capital rental rates. Such a divergent effect on interest rates and

wages can also be produced through a stochastic shock to the labor share of output of the kind

considered by Ŕıos-Rull and Santaeulalia-Llopis (2010) who postulate a production function of the

following form

Yt = ztK
α−ζt
t L1−α+ζt

t (7)

where ζt is a covariance-stationary zero-mean random variable.13 A production function such as (7),

and competitive factor markets can be used to show that a positive value of ζt increases wages and

13 Ŕıos-Rull and Santaeulalia-Llopis (2010) consider a production function that allows for population and
labor-augmenting technology growth.
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decreases interest rates. The equivalence with a stochastic capital shock can also be seen directly

by rewriting the production function (7) in the following equivalent form

Yt = zt(xtKt)
αL1−α

t (8)

where xt is a random variable defined as follows

xt ≡
(
µt
lt

)ζt/α
(9)

where the timing of the shocks is such that the time-t capital-to-labor ratio (µt/lt) is a predetermined

variable when ζt is realized. Equation (8) shows that from the viewpoint of a non-representative

agent, a stochastic capital stock has the same effects on the budget constraints as a stochastic labor

share of output. Ŕıos-Rull and Santaeulalia-Llopis (2010) use US data to estimate a VAR in the

Solow residual and the random variable ζ introduced above. They report the following estimates

(standard errors below the coefficients)

ln zt = 0.952 ln zt−1 −0.004 ζt−1

(0.023) (0.043)

ζt = 0.050 ln zt−1 +0.931 ζt−1

(0.011) (0.019)

(10)

and the variance-covariance matrix Σ of the residuals is reported to be

Σ =

 0.006752 −0.0001

− 0.003042


These estimates show that the two types of shocks have weak cross-effects on each other. The effect

of ζt−1 on the current value of the aggregate productivity shock is not statistically significant, while

zt−1 has a significant impact on ζt. Since the magnitude of this effect is trivial compared to the

autoregressive component, I consider these two shocks as (approximately) linearly independent. The

variance-covariance matrix reported above shows that the normal range of variation of innovations

to ζ is about 45% of that of innovations to ln z. According to the parameterization of Tables 1 and 2
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the (unconditional) standard deviation of ln z is 0.01. Using the definition of the random variable x

in equation (9), and the unconditional averages reported in Table 3, turns out that the one-standard-

deviation interval (−0.0045, 0.0045) for ζ maps to an (average) one-standard-deviation confidence

interval for x of (0.9557, 1.0463). In other words, according to estimates reported by Ŕıos-Rull

and Santaeulalia-Llopis (2010), on average the effect on wages and rental rates produced by a one-

standard-deviation shock to the labor share of output, are equivalently produced by changes in the

levels of capital of around ±4.5%.

By using directly the stochastic labor share of output that corresponds to the shocks in expected

capital, it is possible to give the core intuition analyzed in this paper most simply: when redistribution

from capital to labor is expected –as opposed to it actually taking place– the households that rely

on labor as their primary source of income expect a windfall which they start spending presently.

Instead those households that earn the larger share of income from interest payments expect smaller

disposable income, and therefore they cut their consumption. Again, inequality is the consequence

of such expectations.


