Monetary Policy and The Maturity Structure of Public Debt

Michele Andreolli
London Business School

12 May 2022
Advances in Fixed Income and Macro-Finance Research
BoC and FRBSF workshop
Motivation

- Does the maturity of public debt matter for monetary policy transmission?
Motivation

- Does the maturity of public debt matter for monetary policy transmission?
- Ambiguous ex-ante: valuation, rollover, higher fiscal spending.
- High debts following Covid and heterogeneous maturity.
This Paper

- Propose metric to study insurance properties of long debt.
- Test conditional effect of public debt maturity on monetary policy transmission on US and UK data.
This Paper

- Propose metric to study insurance properties of long debt.
- Test conditional effect of public debt maturity on monetary policy transmission on US and UK data.
- Narrative account of maturity choices. Exogenous with respect to the monetary policy cycle.
- Model with financial accelerator and primary market friction.
- Friction microfounded and estimated with novel high frequency identification.
Main Results

- Monetary policy is twice as effective on output when debt is very short term.
- No differential effect on inflation across maturities.
Main Results

- Monetary policy is twice as effective on output when debt is very short term.
- No differential effect on inflation across maturities.
- Monetary policy tightening with higher debt duration: government borrows less, corporates borrow more at a cheaper rate and invest more.

⇒ *Financing channel* of monetary policy.
Main Results

- Monetary policy is twice as effective on output when debt is very short term.
- No differential effect on inflation across maturities.
- Monetary policy tightening with higher debt duration: government borrows less, corporates borrow more at a cheaper rate and invest more.

⇒ Financing channel of monetary policy.

- Direct evidence: exogenous decrease in public debt supply decreases government and corporate yields.
Main Results

- Model matches empirical result with small friction.
- Complementarity between financial accelerator and primary market friction.
- Maturity is key.
- Increasing rates is not as costly to fight inflation with long maturity.
- Segmented asset markets are crucial for transmission of monetary policy.
Literature

- State dependent effect of monetary policy and debt maturity: (Ippolito, Ozdagli and Perez-Orive, 2018; Darmouni, Giesecke and Rodnyansky, 2020; Jungherr et al., 2020; Bräuning, Fillat and Wang, 2020; Fabiani, Falasconi and Heineken, 2021; Calza, Monacelli and Stracca, 2013; Garriga, Kydland and Šustek, 2017; Beraja et al., 2019; Wong, 2021; Auclert, 2019; Sterk and Tenreyro, 2018).

- Public debt supply and asset prices: (Vayanos and Vila, 2021; Greenwood, Hanson and Stein, 2010; Greenwood and Vayanos, 2010, 2014; Greenwood, Hanson and Stein, 2015; Krishnamurthy and Vissing-Jorgensen, 2012)

- Interaction between public debt and monetary regimes: (Hall and Sargent, 2011; Giannitsarou and Scott, 2008; Hilscher, Raviv and Reis, 2021; Krause and Moyen, 2016; Leeper, 1991; Cochrane, 2001, 2020)

- Public debt maturity and distortionary taxes: (Bohn, 1988; Missale, 1997; Angeletos, 2002; Faraglia, Marcet and Scott, 2010; Faraglia et al., 2013, 2018; Debortoli, Nunes and Yared, 2017; Bhandari et al., 2017, 2021; Bigio, Nuño and Passadore, 2019).

- Long maturity debt in macro models: (Kydland, Rupert and Šustek, 2016; Gomes, Jermann and Schmid, 2016; Hatchondo and Martinez, 2009; Arellano and Ramanarayanan, 2012; Krause and Moyen, 2016)

- Financial accelerator: (Bernanke, Gertler and Gilchrist, 1999; Christiano, Motto and Rostagno, 2014; Dmitriev and Hoddenbagh, 2017)
Duration-to-GDP

- Take one country with 100% of public debt to GDP and no further financing needs.
- 1 percentage point permanent increase in interest rates.

<table>
<thead>
<tr>
<th>Debt Maturity</th>
<th>New Debt Market Value</th>
<th>Debt Servicing Cost Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 years</td>
<td>90% of GDP</td>
<td>0% of GDP</td>
</tr>
<tr>
<td>Overnight</td>
<td>100% of GDP</td>
<td>10% of GDP</td>
</tr>
</tbody>
</table>

- **Definition** Duration-to-GDP: how much the market value of public debt to GDP declines following a one percent increase in interest rates.
- **Proposition:** If change is permanent, duration-to-GDP is the NPV of debt servicing costs savings compared with overnight debt on existing debt.

\[
DurGDP_t = \sum_{j=1}^{\infty} \frac{j}{12} q_{t,j} b_{t,j} \frac{GDP_t}{GDP_t}
\]
Duration-to-GDP in the US

- Long regimes.
- Negatively correlated with UK measure
- Build from bond data: marketable, held by the private sector.
- Alternative duration metrics
Narrative Account of Maturity Choices in the US

- Political and legal constraint made the maturity structure choices *exogenous* with respect to the monetary policy cycle.
- In 1918, a law instituted a 4.25% rate ceiling on long bonds.
- Gradual repeal from the early 70s up to 1988.
- Change in objective in 1993 (more focus on costs) and in mid aught (more focus on insurance).
Empirical Methodology

- Non-linear univariate local projections à la Jordà.
- Reduced form regressions

\[y_{t+h} = \beta_{0,h} + \beta_{1,h} Shock_t + \beta_{2,h} Shock_t DurGDP_{t-1} + \beta_{3,h}(L)' W_t + \varepsilon_{t+h} \]

- Identification of monetary policy shocks: narrative, high frequency, and recursive.
Baseline Results US

\[y_{t+h} = \tilde{\beta}_{0,h} + \tilde{\beta}_{1,h} Shock_t + \tilde{\beta}_{3,h}(L)' W_t + \varepsilon_{t+h} \]

\[y_{t+h} = \beta_{0,h} + \beta_{1,h} Shock_t + \beta_{2,h} Shock_t DurGDP_{t-1} + \beta_{3,h}(L)' W_t + \varepsilon_{t+h} \]
$y_{t+h} = \beta_{0,h} + (\beta_{1,h} + \beta_{2,h} DurGDP_{t-1})' W_t + \varepsilon_{t+h}$

$y_{t+h} = \beta_{0,h} + \beta_{1,h} Shock_t + \beta_{3,h}(L)' W_t + \varepsilon_{t+h}$
Baseline Results US

\[y_{t+h} = \tilde{\beta}_{0,h} + \tilde{\beta}_{1,h} Shock_t + \tilde{\beta}_{3,h}(L)^t W_t + \varepsilon_{t+h} \]

\[y_{t+h} = \beta_{0,h} + \beta_{1,h} Shock_t + \beta_{2,h} Shock_t DurGDP_{t-1} + \beta_{3,h}(L)^t W_t + \varepsilon_{t+h} \]
Sensitivity

- Quarterly results.
- Econometric Method:
 - LP-IV results.
 - Lag-Augmentation.
- Measuring debt maturity:
 - Macaulay duration.
 - Inclusion of inflation linked debt.
 - Face Value Debt.
 - Also FED Holdings.
 - Long debt over GDP.
 - Smooth Transition.
- Identification of monetary policy:
 - High frequency identification.
 - No Recursiveness assumption.
 - Recursive/Cholesky identification.
- Identification of maturity structure:
 - Narrative Account.
 - Confounding factors and IV approach.
Economic Mechanism

- Government has a relative windfall following rate hike with more long duration debt.
- Budget constraint implies: reduce borrowing and/or increase the primary deficit.
Economic Mechanism

- Government has a relative windfall following rate hike with more long duration debt.
- Budget constraint implies: reduce borrowing and/or increase the primary deficit \rightarrow in the data.
Economic Mechanism

- Government has a *relative* windfall following rate hike with more long duration debt.
- Budget constraint implies: *reduce borrowing* and/or increase the primary deficit \rightarrow in the data.
- *Financing* channel:
Economic Mechanism

- Government has a *relative* windfall following rate hike with more long duration debt.
- Budget constraint implies: **reduce borrowing** and/or increase the primary deficit → in the data.
- *Financing* channel:

 ![Diagram showing the economic mechanism](image)

 - Government Borrowing ↓
 - Non-Financial Corporates
 - Debt Issuance ↑
 - Debt Cost ↓
 - direct crowding-out in debt markets
Economic Mechanism

- Government has a relative windfall following rate hike with more long duration debt.
- Budget constraint implies: reduce borrowing and/or increase the primary deficit → in the data.
- Financing channel:

 Government Borrowing ↓

 Non-Financial Corporates

 Debt Issuance ↑
 Debt Cost ↓

 Investment Leverage ↑

 Output ↑

 direct crowding-out in debt markets
Model of the Financing Channel

- Build on New Keynesian model with financial accelerator, from Bernanke, Gertler and Gilchrist (1999).
 - Firms’ balance sheets matter.
 - Mapping between spreads, leverage, and investment.
Model of the Financing Channel

- Build on New Keynesian model with financial accelerator, from Bernanke, Gertler and Gilchrist (1999).
- Long maturity fixed nominal interest rate government debt.
 - Parsimonious and keep track of only 2 state variables.
 - Good fit on data.
Model of the Financing Channel

- Build on New Keynesian model with financial accelerator, from Bernanke, Gertler and Gilchrist (1999).
- Long maturity fixed nominal interest rate government debt.
- Financial friction on primary market dealers.
 - Congestion effects.
 - Microfounded.
 - Estimated with new high frequency identification on exogenous public debt supply shocks.
Model of the Financing Channel

- Build on New Keynesian model with financial accelerator, from Bernanke, Gertler and Gilchrist (1999).
- Long maturity fixed nominal interest rate government debt.
- Financial friction on primary market dealers.
- Counterfactual analysis.
 - Effect of contractionary monetary policy shock.
 - Compare short (1 quarter) vs long (4 years) maturity regimes.
Model Results

- Prove in close form duration-to-GDP equivalence.
 - Market value \leftrightarrow debt servicing costs.
 - For a permanent increase in interest rates, duration-to-GDP measures:
 1. Decline in market value in public debt to GDP.
 2. Net present value of debt servicing cost saving to GDP that the current maturity allows on existing debt compared to a one period debt maturity.
Model Results

- Prove in close form duration-to-GDP equivalence.
- With low maturity debt more amplification.
Model Results

- Prove in close form duration-to-GDP equivalence.
- With low maturity debt more amplification.
- Complementarity between primary market friction and financial accelerator.
 - Small primary market friction in partial equilibrium
 - Large macro effects in general equilibrium.
Model Results

- Prove in close form duration-to-GDP equivalence.
- With low maturity debt more amplification.
- Complementarity between primary market friction and financial accelerator.
- Maturity is key.
 - Experiment: fix debt, vary maturity.

<table>
<thead>
<tr>
<th>Debt (% of GDP)</th>
<th>Maturity</th>
<th>Difference in output</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>From 4 years to 1 quarter</td>
<td>31%</td>
</tr>
</tbody>
</table>
Model Results

- Prove in close form duration-to-GDP equivalence.
- With low maturity debt more amplification.
- Complementarity between primary market friction and financial accelerator.
- Maturity is key.
 - Experiment: fix debt, vary maturity.
 - If we fix maturity, how much do we need to vary debt to obtain same difference?

<table>
<thead>
<tr>
<th>Debt (% of GDP)</th>
<th>Maturity</th>
<th>Difference in output</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>From 4 years to 1 quarter</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>4 years</td>
<td>31%</td>
</tr>
</tbody>
</table>
Model Results

- Prove in close form duration-to-GDP equivalence.
- With low maturity debt more amplification.
- Complementarity between primary market friction and financial accelerator.
- Maturity is key.
 - Experiment: fix debt, vary maturity.
 - If we fix maturity, how much do we need to vary debt to obtain same difference?

<table>
<thead>
<tr>
<th>Debt (% of GDP)</th>
<th>Maturity</th>
<th>Difference in output</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% From 0% to 700%</td>
<td>From 4 years to 1 quarter, 4 years</td>
<td>31% 31%</td>
</tr>
</tbody>
</table>
Conclusion

Public debt maturity matters for monetary policy
Conclusion

Public debt maturity matters for monetary policy

What? From long to short debt: monetary policy on output x2. Impact on activity, not on price level.
Conclusion

Public debt maturity matters for monetary policy

<table>
<thead>
<tr>
<th>What?</th>
<th>From long to short debt: monetary policy on output $\times 2$. Impact on activity, not on price level.</th>
</tr>
</thead>
</table>
Conclusion

Public debt maturity matters for monetary policy

<table>
<thead>
<tr>
<th>What?</th>
<th>From long to short debt: monetary policy on output ×2. Impact on activity, not on price level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>So what?</td>
<td>With longer maturity, not as costly to increase rates on output. Segmented asset markets are crucial for monetary policy.</td>
</tr>
</tbody>
</table>
Thank You!

Jungherr, Joachim, Matthias Meier, Timo Reinelt, and Immo Schott. 2020. “Corporate Debt Maturity Matters For Monetary Policy.”

