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Abstract

We estimate a DSGE model where rare large shocks can occur, by replacing the

commonly used Gaussian assumption with a Student’s t distribution. Results from the

Smets and Wouters (2007) model estimated on the usual set of macroeconomic time

series over the 1964-2011 period indicate that 1) the Student’s t specification is strongly

favored by the data even when we allow for low-frequency variation in the volatility of

the shocks, and 2) the estimated degrees of freedom are quite low for several shocks that

drive U.S. business cycles, implying an important role for rare large shocks. This result

holds even if we exclude the Great Recession period from the sample. We also show

that inference about low-frequency changes in volatility — and in particular, inference

about the magnitude of Great Moderation — is different once we allow for fat tails.
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1 Introduction

Great Recessions do not happen every decade — this is why they are dubbed “great”

in the first place. To the extent that DSGE models rely on shocks in order to generate

macroeconomic fluctuations, they may need to account for the occurrence of rare but very

large shocks to generate an event like the Great Recession. For this reason, we estimate a

linearized DSGE model assuming that shocks are generated from a Student’s t distribution,

which is designed to capture fat tails, in place of a Gaussian distribution, which is the

standard assumption in the DSGE literature. The number of degrees of freedom in the

Student’s t distribution, which determines the likelihood of observing rare large shocks

(and which we allow to vary across shocks), is estimated from the data.

We show that estimating DSGE models with Student’s t distributed shocks is a fairly

straightforward extension of current methods (described, for instance, in An and Schorfheide

(2007)). In fact, the Gibbs sampler is a simple extension of Geweke (1993)’s Gibbs sam-

pler for a linear model to the DSGE framework. The paper is closely related to Chib

and Ramamurthy (2011) who, in independent and contemporaneous work, also propose a

similar approach to the one developed here for estimating DSGE models with Student’s t

distributed shocks. One difference between this work and Chib and Ramamurthy (2011)’s

is that we also allow for low-frequency changes in the volatility of the shocks, in light of

the evidence provided by several papers in the DSGE literature (Justiniano and Primiceri

(2008), Fernández-Villaverde and Rubio-Ramı́rez (2007), Liu et al. (2011), among others).1

We specifically follow the approach in Justiniano and Primiceri (2008) (henceforth, JP),

who postulate a random walk as the law of motion of the log volatilities. We show that

ignoring low-frequency movements in volatility biases the results toward finding evidence

in favor of fat tails.

We apply our methodology to the Smets and Wouters (2007) model (henceforth, SW),

estimated on the same seven macroeconomic time series used in SW. Our baseline data set

starts in 1964Q4 and ends in 2011Q1, but we also consider a sub-sample ending in 2004Q4

to analyze the extent to which our findings depend on the inclusion of the Great Recession

in our sample. We use the SW model both because it is a prototypical medium-scale DSGE

1Another difference between this paper and Chib and Ramamurthy (2011) is that Chib and Ramamurthy

use a simple three equation New Keynesian model, while we use the full Smets and Wouters (2007) model.
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model, and because its empirical success has been widely documented.2 Models that fit the

data poorly will necessarily have large shocks. We therefore chose a DSGE model that is at

the frontier in terms of empirical performance to assess the extent to which macro variables

have fat tails.

The motivation for our work arises from evidence such as that displayed in Figure 1.

The top two panels of Figure 1 show the time series of the smoothed “discount rate” and

“marginal efficiency of investment” shocks (in absolute value) from the SW model estimated

under Gaussianity. The shocks are normalized, so that they are expressed in standard

deviations units. The solid line is the median, and the dashed lines are the posterior 90%

bands. The Figure shows that the size of the shocks is above 3.5 standard deviations

on several occasions, one of which is the recent recession. The probability of observing

such large shocks under Gaussianity is very low. In addition to this DSGE model-based

evidence, existing literature shows that the unconditional distribution of macro variables

is not Gaussian (e.g., see Christiano (2007) for pre-Great Recession evidence, and Ascari

et al. (2012) for more recent work).

While the visual evidence against Gaussianity is strong, there are several reasons to

perform a more careful quantitative analysis. First, these shocks are obtained under the

counterfactual assumption of Gaussianity, that is, using a misspecified model. Second, a

quantitative estimate of the fatness of the tails is an obvious object of interest. Third, it

is important to disentangle the relative contribution of fat tails from that of (slow moving)

time-varying volatility. The bottom panel of Figure 1, which shows the evolution of the

smoothed monetary policy shocks estimated under Gaussianity (again, normalized, and in

absolute value), provides a case in point, as the clustering of large shocks in the late 70s

and 80s is quite evident.

In general, studying the importance of fat tails by looking only at the kurtosis in

the unconditional distribution of either macro variables (as in Ascari et al. (2012)) or

of estimated shocks can be misleading, because the evidence against Gaussianity can be

2 The forecasting performance of the SW model was found to be competitive in terms of accuracy relative

to private forecasters and reduced-form models not only during the Great Moderation period (see Smets

and Wouters (2007) and Edge and Gürkaynak (2010)), but also including data for the Great Recession (Del

Negro and Schorfheide (forthcoming)). In earlier drafts of this paper we used a DSGE model with financial

frictions along the lines of Bernanke et al. (1999) and Christiano et al. (2009) and found strong evidence in

favor of Student’s t distributed shocks in that setting as well.
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due to low-frequency changes in volatility. Conversely, the presence of large shocks can

potentially distort the assessment of low-frequency movements in volatility. To see this,

imagine estimating a model that allows only for slow moving time variation in volatility,

but no fat tails, in presence of shocks that fit the pattern shown in the top panel of Figure 1.

As the stochastic volatility will try to fit the squared residuals, such a model may produce a

time series of volatilities peaking around 1980, and then again during the Great Recession.

Put differently, very large shocks may be interpreted as persistent changes in volatility, when

they may in fact be rare realizations from a process with a time-invariant distribution. For

instance, the extent to which the Great Recession can be interpreted as a permanent rise

in macroeconomic volatility may depend on whether we allow for rare large shocks.

Finally, we expect that the evidence provided in this paper will be further motivation

for the study of non-linear models. First, if shocks have fat tails, linearization may sim-

ply produce a poor approximation of the full model. Second, non-linearities may explain

away the fat tails: what we capture as large rare shocks may in fact be Gaussian shocks

whose effect is amplified through a non-linear propagation mechanism. In fact, the ex-

tent to which non-linearities can alleviate the need for fat-tailed shocks to explain business

cycles could possibly become an additional metric for evaluating their usefulness. In this

regard, the results in Dewachter and Wouters (2012) are very promising. These authors

solve non-linearly a model with capital-constrained financial intermediaries and provide

very interesting evidence suggesting that the non-linear propagation of shocks may induce

outcomes that resemble those due to fat-tailed shocks in a linear model.

Our findings are the following. We provide strong evidence that the Gaussianity as-

sumption in DSGE models is counterfactual, even after allowing for low-frequency changes

in the volatility of shocks. Such strong evidence is remarkable considering that our sample

consists of macro variables only, which implies fat tails are not just a feature of financial

data, but of macro data as well. This finding is robust to excluding the Great Recession

from the sample. We follow two approaches in our analysis: comparing the fit of different

specifications using Bayesian marginal likelihoods, and inference on the posterior estimates

of the degrees of freedom of the Student’s t distribution. We demonstrate that the model fit

improves considerably if we allow for Student’s t shocks in addition to stochastic volatility.

Further, we show that the posterior estimates of the Student’s t distribution’s degrees of

freedom for some shocks are quite low, indicating a substantial degree of fat tails. From

our results, we can cluster the shocks in the model into three broad categories. Shocks
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to productivity, to the household’s discount rate, to the marginal efficiency of investment,

and to the wage markup all have fat tails, even in the case with stochastic volatility. Con-

versely, shocks to government expenditures and to price markups have posterior means for

the degrees of freedom that are somewhat high, indicating that their distribution is not far

from Gaussian, regardless of whether we allow for stochastic volatility. Finally, the degrees

of freedom for monetary policy shocks are estimated to be extremely low in the case with

constant volatility, but shift dramatically toward higher values when we allow for stochastic

volatility.

In order to evaluate the importance of fat tails in the study of the business cycle, we

consider an experiment in which we shut down the fat tails, and recreate a counterfactual

path of the economy in their absence. We show that in this case almost all recessions

in the sample would have been of roughly the same magnitude, and the Great Recession

would have been essentially a “run-of-the-mill” recession. Finally, we show that allowing

for fat tails changes the inference about slow moving stochastic volatility. Specifically, we

reevaluate the evidence in favor of the Great Moderation hypothesis, discussed for example

in JP, and find that when we consider Student’s t shocks, the magnitude of the reduction in

the volatility of output and other variables is smaller. Similarly, we show that the evidence

in favor of a permanent increase in volatility following the Great Recession is weaker when

we consider the possibility that shocks have a Student’s t distribution.

Although we show that inference about low-frequency movements in volatility is affected

by whether we allow for Student’s t shocks, we should emphasize that they capture very

different features of the data and are therefore far from being perfect substitutes. In other

words, this paper is not a horse race between stochastic volatility and fat tails. In fact, we

find that the data provide fairly strong evidence in favor of both features as long as the

sample includes both pre- and post- Great Moderation data.

The rest of the paper proceeds as follows. Section 2 discusses Bayesian inference. Sec-

tion 3 describes the model, as well as our set of observables. Section 4 describes the results.

We conclude in Section 5.



This Version: November 17, 2013 5

2 Bayesian Inference

This section begins with a description of the estimation procedure for a DSGE model with

both Student’s t distributed shocks and stochastic volatilities (which we will often refer

to as SV). The Gibbs sampler combines the algorithm proposed by Geweke (1993)’s for

a linear model with Student’s t distributed shocks (see also Geweke (1994), and Geweke

(2005) for a textbook exposition) with the approach for sampling the parameters of DSGE

models with time-varying volatilities discussed in JP. In essence, our sampler applies to

DSGE models the algorithms proposed by Chib et al. (2002) and Jacquier et al. (2004) for

combining stochastic volatility and fat tails. We mainly follow JP and Chib et al. (2002)

in using the approach of Kim et al. (1998) (henceforth, KSC) in drawing the stochastic

volatilities, but we also check the robustness of our results using the approach developed

Jacquier et al. (1994) (henceforth, JPR).

The model consists of the standard measurement and transition equations:

yt = D(θ) + Z(θ)st, (1)

st+1 = T (θ)st +R(θ)εt, (2)

for t = 1, .., T , where yt, st, and εt are n × 1, k × 1, and q̄ × 1 vectors of observables,

states, and shocks, respectively. Let p(θ) denote the prior on the vector of DSGE model

parameters θ. We assume that:

εq,t = σq,th̃
−1/2
q,t ηq,t, all q, t, (3)

where

ηq,t ∼ N (0, 1), i.i.d. across q, t, (4)

λqh̃q,t ∼ χ2(λq), i.i.d. across q, t. (5)

For the prior on the parameters λq we assume Gamma distributions with parameters λ/ν

and ν:

p(λq|λ, ν) =
(λ/ν)−ν

Γ(ν)
λ ν−1
q exp(−ν λq

λ
), i.i.d. across q. (6)

where λ is the mean and ν is the number of degrees of freedom (Geweke (2005) assumes

a Gamma with one degree of freedom). Note that the fat tails in this model affect our
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structural shocks εq,t and hence cannot interpreted as “outliers” as in standard regression

models.3 Define

σ̃q,t = log (σq,t/σq) , (7)

where the parameters {σq}q̄q=1 (the non-time varying component of the shock variances)

are included in the vector of DSGE parameters θ. We assume that the σ̃q,t follows an

autoregressive process:

σ̃q,t = ρqσ̃q,t−1 + ζq,t, ζq,t ∼ N (0, ω2
q ), i.i.d. across q, t. (8)

The prior distribution for ω2
q is an Inverse Gamma IG(νω/2, νωω

2/2), that is:

p(ω2
q |νω, ω2) =

(
νωω

2/2
) νω

2

Γ(νω/2)
(ω2
q )
− νω

2
−1 exp

[
−νωω

2

2ω2
q

]
, i.i.d. across q. (9)

We consider two types of priors for ρq:

p(ρq|ω2
q ) =


1 SV-UR

N (ρ̄, ω2
q v̄ρ)I(ρq), i.i.d. across q, I(ρq) =

 1 if |ρq| < 1

0 otherwise,
SV-S

(10)

In the SV-UR case σ̃q,t follows a random walk as in JP, while in the SV-S it follows a

stationary process as in Fernández-Villaverde and Rubio-Ramı́rez (2007). In both cases the

σq,t process is persistent: in the SV-UR case the persistence is wired into the assumed law

of motion for σ̃q,t, while in the SV-S case it is enforced by choosing the hyperparameters ρ̄

and σ̄ρ in such a way that the prior for ρq puts most mass on relatively high values of ρq. As

a consequence, σq,t and h̃q,t play different roles in (3): σq,t allows for slow-moving trends

in volatility, while h̃q,t allows for large transitory shocks. In essence, this model postulates

that there are two coexisting processes driving the volatility dynamics in the macro data,

one that is very persistent (σ̃q,t) and one that is high frequency — in our case, i.i.d. (h̃q,t).

The literature so far has focused on the former and largely ignored the latter. Of course the

i.i.d. assumption for the high frequency movements in volatility is very stark.4 In future

research it will be worth trying to relax this assumption. Considering two overlapping

3We do not have measurement errors at all in this model, let alone Student’s t ones. From looking at the

plots of the shocks in Figure 1 (and the posterior estimates of h̃t in Figure A.6) it appears that the many

large shocks coincide with macro events, and are therefore unlikely to just represent measurement error.
4There is also an ongoing debate in empirical macro on whether the low frequency movements in volatility

should be modeled using autoregressive processes or regime-switching models (e.g.,Liu et al. (2011)).
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Markov-Switching processes for the volatilities, one persistent and one transitory, is an

option.

Finally, to close the model we make the following distributional assumptions on the

initial conditions σ̃q,0:

p(σ̃q,0|ρq, ω2
q ) =

 0 SV-UR

N (0, ω2
q/(1− ρ2

q)), i.i.d. across q SV-S
(11)

where the restriction under the SV-UR case is needed to obtain identification. In the station-

ary case we have assumed that σ̃q,0 is drawn from the ergodic distribution. In the remainder

of the paper we will use the notation x1:q̄,1:T to denote the sequence {x1,1, .., x1,T , .., xq̄,T }

and, to further simplify notation if no ambiguity arises, we will often omit the 1 : q̄ subscript.

So, for instance, h̃1:T will denote {h̃1,1, .., h̃1,T , .., h̃q̄,T }.

2.1 The Gibbs-Sampler

The joint distribution of data and unobservables (parameters and latent variables) is given

by:

p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(λ1:q̄)p(ρ1:q̄|ω2

1:q̄)p(ω
2
1:q̄)p(θ), (12)

where p(y1:T |s1:T , θ) and p(s1:T |ε1:T , θ) come from the measurement and transition equation,

respectively, p(ε1:T |h̃1:T , σ̃1:T , θ) obtains from (3) and (4):

p(ε1:T |h̃1:T , σ̃1:T , θ) ∝
q̄∏
q=1

(
T∏
t=1

h̃
−1/2
q,t σq,t

)
exp

[
−

T∑
t=1

h̃q,tε
2
q,t/2σ

2
q,t

]
, (13)

p(h̃1:T |λ1:q̄) obtains from (5)

p(h̃1:T |λ1:q̄) =

q̄∏
q=1

T∏
t=1

(
2λq/2Γ(λq/2)

)−1
λ
λq/2
q h̃

(λq−2)/2
q,t exp(−λqh̃q,t/2), (14)

and p(σ̃1:T |ω2
1:q̄) obtains from expressions (8) and (11):

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄) ∝

q̄∏
q=1

(ω2
q )
−(T−1)/2 exp

[
−

T∑
t=2

(σ̃q,t − ρqσ̃q,t−1)2/2ω2
q

]
p(σ̃q,1|ρq, ω2

q ), (15)
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where

p(σ̃q,1|ρq, ω2
q ) ∝


(ω2
q )
−1/2 exp

(
− σ̃2

q,1

2ω2
q

)
, SV-UR

(ω2
q (1− ρ2

q))
−1/2 exp

(
− σ̃2

q,1

2ω2
q (1−ρ2

q)

)
. SV-S

(16)

Finally, p(λ1:q̄) =
∏q̄
q=1 p(λq|λ), p(ω2

1:q̄) =
∏q̄
q=1 p(ω

2
q |ν, ω2).

The sampler is slightly different depending on the approach for drawing the stochastic

volatilities, which are obtained from:

p(ε1:T |h̃1:T , σ̃1:T , θ)p(σ̃1:T |ρ1:q̄, ω
2
1:q̄). (17)

Section A.3 in the online appendix describes these differences, and provides the details of the

implementation under both the KSC and the JPR approaches.5 Call ϑ = {θ, s1:T , h̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, ε1:T }.

The next section shows how to draw ϑ given σ̃1:T .

2.1.1 Drawing from ϑ|σ̃1:T , y1:T

We draw from ϑ|σ̃1:T , y1:T using a sequence of conditional distributions (i.e., a Gibbs-within-

Gibbs step). These are as follows:

(i) Draw from p(θ, s1:T , ε1:T |h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished in two

steps:

(i.a) Draw from the marginal p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ), where

p(θ|h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ) ∝ p(y1:T |h̃1:T , σ̃1:T , θ)p(θ) (18)

where

p(y1:T |h̃1:T , σ̃1:T , θ) =

∫
p(y1:T |s1:T , θ)p(s1:T |ε1:T , θ)p(ε1:T |h̃1:T , σ̃1:T , θ)·d(s1:T , ε1:T )

is computed using the Kalman filter with (1) as the measurement equation

and (2) as transition equation, with

εt|h̃1:T , σ̃1:T ∼ N (0,∆t), (19)

5Note that under the KSC approach we structure the sampler as in Del Negro and Primiceri (2013).

Moreover, we follow Omori et al. (2007) in using a 10-mixture approximation, as opposed to the 7-mixture

approximation adopted in Kim et al. (1998).
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where ∆t are q̄ × q̄ diagonal matrices with σ2
q,t · h̃−1

q,t on the diagonal. The draw

is obtained from a Random-Walk Metropolis-Hastings step.6

(i.b) Draw from the conditional p(s1:T , ε1:T |θ, h̃1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is

accomplished using the simulation smoother of Durbin and Koopman (2002).

(ii) Draw from p(h̃1:T |θ, s1:T , ε1:T , σ̃1:T , λ1:q̄, ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished by draw-

ing from

p(ε1:T |h̃1:T , σ̃1:T , θ)p(h̃1:T |λ1:q̄)

∝
q̄∏
q=1

T∏
t=1

h̃
(λq−1)/2
q,t exp(−

[
λq + ε2

q,t/σ
2
q,t

]
h̃q,t/2), (20)

which implies [
λq + ε2

q,t/σ
2
q,t

]
h̃q,t|θ, ε1:T , σ̃1:T , λq ∼ χ2(λq + 1). (21)

(iii) Draw from p(λ1:q̄|h̃1:T , θ, s1:T , ε1:T , ρ1:q̄, ω
2
1:q̄, y1:T ). This is accomplished by drawing

from

p(h̃1:T |λ1:q̄)p(λ1:q̄) ∝
q̄∏
q=1

((λ/ν)ν Γ(ν))−1 [2λq/2Γ(λq/2)]−Tλ
Tλq/2+ν−1
q(

T∏
t=1

h̃
(λq−2)/2
q,t

)
exp

[
−

(
ν

λ
+

1

2

T∑
t=1

h̃q,t

)
λq

]
. (22)

This is a non-standard distribution, hence the draw is obtained from a Metropolis-

Hastings step. Following Geweke (2005), we use a lognormal proposal.

(iv) Draw from p(ω2
1:q̄, ρ1:q̄|σ̃1:T , θ, s1:T , ε1:T , h̃1:T , λ1:q̄, y1:T ) using

p(σ̃1:T |ρ1:q̄, ω
2
1:q̄)p(ω

2
1:q̄)p(ρ1:q̄|ω2

1:q̄) ∝
q̄∏
q=1

(ω2
q )
− ν+T−1

2
−1

exp

[
−
νω2 +

∑T
t=2(σ̃q,t − ρqσ̃q,t−1)2

2ω2
q

]
p(σ̃q,1|ρq, ω2

q )p(ρq|ω2
q ), (23)

where p(σ̃q,1|ρq, ω2
q ) is given by equation (16). In the SV-UR case ρq is fixed to 1, and

we can draw ω2
q (i.i.d. across q) from:

ω2
q |σ̃1:T , · · · ∼ IG

(
ν + T

2
,
1

2

(
νω2 +

T∑
t=2

(σ̃q,t − σ̃q,t−1)2 + σ̃2
q,1

))
. (24)

6In keeping with the spirit of the paper, we use a Student’s t distribution with 10 degrees of freedom, as

opposed to the customary Gaussian, as our proposal density.
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In the SV-S case the joint posterior of ρq, ω
2
q is non-standard because of the likelihood

of the first observation p(σ̃1|ρq, ω2
q ). We therefore use the Metropolis-Hastings step

proposed by Chib and Greenberg (1994). Specifically, we use as proposal density the

usual Normal-Inverse Gamma distribution, that is,

ω2
q |σ̃1:T , · · · ∼ IG

(
ν+T−1

2 , 1
2

(
νω2 +

∑T
t=2 σ̃

2
q,t + v̄−1

ρ ρ̄2 − V̂ −1
q ρ̂2

q

))
,

ρq|ω2
q , σ̃1:T , · · · ∼ N

(
ρ̂q, ω

2
q V̂q

)
, i.i.d. across q,

(25)

where ρ̂q = V̂q

(
v̄−1
ρ ρ̄+

∑T
t=2 σ̃q,tσ̃q,t−1

)
, V̂q = (v̄−1

ρ +
∑T

t=2 σ̃
2
q,t−1)−1. We then ac-

cept/reject this draw using the proposal density and the acceptance ratio

p(σ̃1, ρ
(∗)
q , ω

2 (∗)
q )I(ρ

(∗)
q )

p(σ̃1, ρ
(j−1)
q , ω

2 (j−1)
q )I(ρ

(j−1)
q )

,

with (ρ(j−1), ω
2 (j−1)
q ) and (ρ(∗), ω

2 (∗)
q ) being the draw at the (j − 1)th iteration and

the proposed draw, respectively.

3 The DSGE Model

The model considered is the one used in Smets and Wouters (2007), which is based on

earlier work by Christiano et al. (2005) and Smets and Wouters (2003). It is a medium-

scale DSGE model, which augments the standard neoclassical stochastic growth model

with nominal price and wage rigidities as well as habit formation in consumption and

investment adjustment costs. Due to space constraints, and to the fact that the model is

the same as in SW, we relegate the detailed model description to appendix A (it is also

available in Cúrdia et al. (2012), the working paper version). Since this is a paper about

shocks, we nonetheless need to describe what they are and how they enter the model.

The model has seven exogenous processes, and the shocks (εt) are innovations to these

processes. Government spending g enters the resource constraint — these are units of

output the government demands in any period but have no productive use; the discount

rate process b enters the Euler equation, and drives a wedge between the marginal utility

of consumption and the riskless real return; the “marginal efficiency of investment” (MEI)

process µ affects the rate of transformation between consumption and installed capital;

total factor productivity (TFP) z enters the production function; rm is the residual in the

policy interest-rate rule (and innovations to this process are called “policy shocks”); price
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(λf ) and wage (λg) markup shocks enter the price and wage Phillips curves, respectively.

All these shocks follow univariate AR(1) processes, with the exception of price and wage

markup shocks, which follow an ARMA(1,1) process. Innovations to the TFP process will

also affect the government spending process contemporaneously.

We collect all the DSGE model parameters in the vector θ, stack the structural shocks in

the vector εt, and derive a state-space representation for our vector of observables yt, which

is composed of the transition equation (2), which summarizes the evolution of the states

st, and the measurement equation (1), which maps the states onto the vector of observ-

ables yt, and where D(θ) represents the vector of steady state values for these observables.

Specifically, the model is estimated based on seven quarterly macroeconomic time series:

real output, consumption, investment, and real wage growth, hours, inflation, and interest

rates, all measured in percent (the data construction is the same as in SW). Section A.2

in appendix A provides further details on the data. In our benchmark specification we use

data from 1964Q4 to 2011Q1, but we also consider a variety of sub-samples. Table A.1 in

appendix A shows the priors for the DSGE model parameters, which coincide with those

used in SW.7

4 Results

This section describes our findings. First, we present the evidence in favor of Student’s t

distributed shocks. Second, we quantify the impact of rare shocks on the macroeconomy.

Third, we show the extent to which allowing for Student’s t shocks affects the inference

about time-variation in volatility. Finally, we discuss the variance decomposition for real

GDP growth. The results in Sections 4.1 through 4.4 are obtained under a specification

using i) the full sample, ii) the SV-UR assumption for the law of motion of the stochastic

volatilities, and iii) the KSC procedure for drawing the volatilities (Section A.3.1). Section

4.5 studies the robustness of the results using different assumptions and estimation ap-

proaches for the SV component, and various subsamples. There are many more objects of

interest than we have space to show and discuss here, such as the posterior estimates of the

DSGE parameters, and the time series for the time-varying volatilities σq,t, the Student’s

t components h̃q,t, and the standardized shocks ηq,t. We show these results in appendix A

7 We follow SW (but not necessarily best practice in DSGE model estimation, e.g. Del Negro and

Schorfheide (2008)) in assuming independent priors for the DSGE parameters.
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which is available online and in the working paper version (Cúrdia et al. (2012)), and we

briefly discuss them in Sections A.6 and A.7.

4.1 Evidence of Fat Tails

In the introduction we showed that shocks extracted from standard Gaussian estimation

are sometimes quite large — four standard deviations or more in size. In this section we

consider more formal evidence against Gaussianity.8 Specifically, this section addresses

two questions. First, do we still need fat-tailed shocks once we allow for low-frequency

movements in volatility? Second, which shocks are fat-tailed, and how fat are the tails?

We address these questions by: i) assessing the improvement in fit obtained by allowing for

Student’s t distributed shocks relative to both the standard model as well as models with

low-frequency movements in the volatility; ii) presenting the posterior distribution of the

degrees of freedom for each shock.

Before we delve into the results, we provide an intuitive description of the relationship

between the degrees of freedom of the Student’s t distribution and the likelihood of observing

large shocks. Recall from equation (3) that a Student’s t distributed shock εt can be

decomposed as εt = σth̃
−1/2
t ηt, where ηt is drawn from a standard Gaussian distribution (we

omit the q subscript for ease of exposition). Therefore, given σt, the chances of observing

a very large εt depend on the chances of h̃t being small. The prior for h̃t is given by

(5). If λ is high, this prior concentrates around one, and the likelihood of observing large

shocks is slim (the λ→∞ limit represents Gaussianity). As λ drops, the distribution of h̃t

spreads out and the chances of observing a low h̃t increase. The following table provides

a quantitative feel for what different λs imply in terms of the model’s ability to generate

fat-tailed shocks. Specifically, the table shows the number of shocks larger (in absolute

value) than x standard deviations per 200 periods, which is the size of our sample. The

8A referee asked to see how the specifications with Student’s t distributed shocks and stochastic volatility

deal with these large innovations — that is, whether the large |εt| is rationalized with a large σt or a large

Student’s t component h̃
−1/2
t . Figures A.6 and A.7 in the online appendix show the time series of σt and

h̃
−1/2
t and therefore address this question. Note that since the posterior estimates of the DSGE model

parameters are quite similar across specifications, as discussed in section A.6, the innovations εt are also

very similar, and provide a good basis for comparison. The figures show that the large discount rate and

MEI shocks are explained overwhelmingly as rare shocks (high values of h̃
−1/2
t , while not surprisingly the

large policy shocks in the late 70s/early 80s are due mainly to high volatility during that period (high values

of σ̃t).



This Version: November 17, 2013 13

table shows that with 9 degrees of freedom the chances of seeing even a single shock as large

as those shown in Figure 1 are not high (.28 for shocks larger than 4 standard deviations),

and become negligible for 15 or more degrees of freedom.

λ, x: 3 4 5

∞ .54 .012 1e−4

15 1.14 .13 .02

9 1.57 .28 .06

6 2.08 .54 .17

In what follows, we consider three different Gamma priors of the form (6) for the degrees of

freedom parameter λ, which capture different a priori views on the importance of fat tails.

The first prior, λ = 15, captures the view that the world is not quite Gaussian, but not too

far from Gaussianity either. The second prior, λ = 9, embodies the idea that the world is

quite far from Gaussian, yet not too extreme. The last prior, λ = 6, implies prior belief in

a model with fairly heavy tails.

The tightness of these priors depends on the degrees of freedom parameter ν in equation

(6), which we set equal to 4.9 Figure A.1 in the online appendix shows the three priors for

λ = 6, 9, and 15. Since the variance of the prior is λ2/ν, lower values of λ correspond to a

tighter prior. Note however that the prior with higher variance (λ = 15) puts most of the

mass on high values of the degrees of freedom. For instance, the prior probability put on

the regions {λ < 4}, {λ < 6}, and {λ < 9} by the λ = 15 prior is roughly 2.5%, 8%, and

22%, respectively.

With the description of the prior in hand, we are now ready to discuss our evidence

on the importance of fat tails. Table 1 shows the log-marginal likelihood — the standard

measure of fit in a Bayesian framework — for models with different assumptions on the

shocks distribution.10 We consider four different combinations: i) Gaussian shocks with

constant volatility (baseline), ii) Gaussian shocks with time-varying volatility, iii) Student’s

t distributed shocks with constant volatility, and iv) both Student’s t shocks and time-

variation in volatility (in the remainder of the paper we will sometimes refer to specifications

ii), iii) and iv) as TD, SV, and SVTD, respectively).11 Finally, our prior for the innovations

9Results obtained using ν = 1 are very similar.
10Appendix A.5 provides details on the computation of the marginal likelihood for these models.
11Here we focus on the specification where the volatilities follow a random walk (SV-UR case in equa-

tion (10)), as in JP, because this specification obtains a better fit of the data than the specification where
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in stochastic volatility is an IG prior with mode at (.01)2 and .1 degrees of freedom.12

The Gaussian/constant-volatility model is clearly rejected by the data. This is not

surprising in light of the evidence contained in JP, Fernández-Villaverde and Rubio-Ramı́rez

(2007), and Liu et al. (2011). Both the specification with SV only and those with Student’s t

shocks only perform substantially better than the Gaussian/constant-volatility specification.

Also, the log-marginal likelihoods indicate that even after accounting for fat-tailed shocks,

allowing for time-variation in the volatility improves fit: for any row in Table 1, the log-

marginal likelihood increases moving from the left (no SV) to the right (SV) column. From

the perspective of this paper, however, the main finding is provided by the fact that the fit

improves when Student’s t shocks are included, and continues to improve as the prior puts

more weight on fat tails, regardless of whether we include SV. In summary, the data strongly

favor Student’s t distributed shocks with a non-negligible degree of fat tails, whether or not

we allow for low-frequency movements in volatility.13

Our second piece of evidence comes from the posterior distribution of the degrees of

freedom λ. Table 2 shows the posterior mean and 90% bands for the degrees of freedom for

each shock, in the specifications with and without stochastic volatility. Two results emerge.

First, for quite a few shocks the estimated degrees of freedom are small, even when we allow

for low-frequency movements in volatility. Second, allowing for low-frequency movements

the volatility follow a stationary autoregressive process (SV-S case), but we discuss the results for the SV-S

case in Section 4.5.1.
12Specifically, in the IG(νω/2, νωω

2/2) prior (see equation (9)) we set νω/2 = .1 and choose ω2 so that

the mode, given by νωω
2/2

1+νω/2
, equals (.01)2. It is well known that when ω2 is very low, as is the case here,

designing a prior that is not too informative is challenging. In Monte Carlo experiments we found that using

very low degrees of freedom (νω/2 = .1) led to good performance regardless of whether the true value of ω2

was 10−4, 10−3, or 10−2, and therefore settled on this value. Figure A.2 in the appendix A provides a plot

of the prior distribution for ω2.
13The difference in log-marginal likelihoods between the Gaussian/constant-volatility model and the SV

model only is much larger than the difference in log-marginal likelihoods between any of the Student’s t

specification and the corresponding specification (for the same prior) with SV. This finding is robust across

SV specifications and estimation procedures, as discussed in Section 4.5. This suggests that there is some

substitutability between the two features (SV and Student’s t) in terms of fitting the data. However, the two

features cannot be complete substitutes — one captures low frequency movements in volatility, the other

very high frequency ones. Hence we should not be surprised that the data favor specifications with SV even

for relatively low values of λ. Nonetheless, as the λ = 15 specification is closer to the Gaussian one than,

say, the λ = 6 specification, we would have expected the difference between the case without SV and the

case with SV to be larger for λ = 15 than for λ = 6, and we find this is not the case.
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in volatility substantially changes the inference about the degrees of freedom for some of

the shocks, implying that this feature is necessary for a proper assessment of how fat-tailed

macroeconomic shocks are.

As for the first result, Table 2 shows that four shocks have a mean below 6 for the best-

fitting prior on the degrees of freedom according to the log-marginal likelihood criterion

(λ = 6). For priors with higher λ the posterior mean degrees of freedom for these four

shocks increases, but this is mostly because the posterior distribution becomes more skewed

to the right (that is, it places some mass on higher values for λ). Still, for many shocks the

posterior distribution puts sizable mass on the {λ < 6} region even for λ = 15, and in quite

a few cases the 5th percentile of the posterior distribution barely changes as a function of

λ. In any case, the substantive results on the importance of fat tails for macroeconomic

fluctuations and on the inference about time variation in volatility are by and large the same

regardless of the choice of λ, as we discuss below. The shocks with the fattest tails (lowest

posterior degrees of freedom) are those affecting the discount rate (b), TFP (z), the marginal

efficiency of investment (µ), and the wage markup (λw) processes. Not surprisingly, these

shocks are the usual suspects as key drivers of business cycles (see SW, Justiniano et al.

(2009)).

As for the result that allowing for low-frequency movements in volatility substantially

changes the inference about the degrees of freedom, the monetary policy shock rm is a case

in point. Its estimated degrees of freedom are very low when one ignores time variations in

volatility apparent in Figure 1. In the specification ignoring time-variation in volatility, the

model interprets the large shocks of the late seventies/early eighties as evidence of fat tails.

Once these secular changes in volatility are taken into account, the posterior estimates of

the degrees of freedom increase substantially. What is the intuition for this finding? The

posterior distribution of h̃t, which determines how fat the tails are, is given by (21):[
λ+ ε2

t /σ
2
t

]
h̃t | θ, ε1:T , σ̃1:T , λ ∼ χ2(λ+ 1).

For a given value of σt, a larger estimated shock εt implies a smaller posterior value of

h̃t. Not surprisingly, large shocks are interpreted by the model as evidence for fat tails.

However, the shock is standardized by σt: if a large shock occurs during a period where

all shocks tend to be large, it is discounted, and the posterior value of h̃t may not be

particularly small.14

14Consistent with the intuition given above, the posterior mean of λ increases for all shocks (for given
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4.2 Large Shocks and Macroeconomic Fluctuations

We have shown that quite a few important shocks in the SW model have fat tails. What

does this mean in terms of business cycle fluctuations? This section tries to provide a

quantitative answer to this question by performing a counterfactual experiment. Recall

again from equation (3) that εt = σth̃
−1/2
t ηt. Therefore, once we compute the posterior

distribution of εt (the smoothed shocks) and h̃t, we can purge the Student’s t component

from εt using ε̃t = σtηt. We can then compute counterfactual histories that would have

occurred had the shocks been ε̃t instead of εt. All these counterfactuals are computed for

the best fitting model: SVTD(λ = 6).

The left panel of Figure 2 shows these counterfactual histories for output, consumption,

and investment growth. For all plots the magenta solid lines are the median counterfactual

paths, the magenta dashed lines represent the 90% bands, and the solid black lines represent

the actual data. The right panel uses actual and counterfactual histories to compute a

rolling window standard deviation, where each window contains the prior 20 quarters as

well as the following 20 quarters, for a total of 41 quarters. These rolling window standard

deviations are commonly used measures of time-variation in the volatility of the series. The

difference between actual and counterfactual standard deviations measures the extent to

which the change in volatility is accounted for by fat-tailed shocks.15

The left panels suggest that fat-tailed shocks account for a non negligible part of fluc-

tuations in the three variables. For output growth, the Student’s t component accounted

for a sizable fraction of the contraction in output growth during the Great Recession. In

particular, if the fat tail component were absent the Great Recession would have been of

about the same size as milder recessions, such as the 1990-91 recession. In general, without

the fat-tailed component of the shocks all recessions (with the exception of the 2001 reces-

sion) would be of roughly the same magnitude in terms of output growth.16 Figures A.3

prior) when we include time-variation in volatility, with the exception of the MEI(µ) shock, for which it

remains virtually the same.
15 The distribution of h̃t is non-time varying. However, since large shocks occur rarely, they may account

for changes in the rolling window volatility. Note that in the counterfactual we “kill” the fat tails without

keeping the overall volatility of the process constant — the purpose is just to showcase the importance of

rare shocks. So one should not interpret the counterfactual rolling window standard deviations as measures

of “true” underlying volatility.
16Dewachter and Wouters (2012) solve non-linearly a model with capital-constrained financial intermedi-

aries. They back out from the data a process for total factor productivity and feed this process into their
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and A.4 in appendix A of the paper show that these results are robust to the choice of λ,

the prior mean for the degrees of freedom of the Student’s t distribution.

Further, the rolling window standard deviation shown in the right panel shows that the

Student’s t component explains a non-negligible part of changes in the realized volatility in

the data. One can interpret this evidence as saying that the ’70s and early ’80s were more

volatile than the Great Moderation period at least in part because rare shocks took place.17

Similar conclusions apply to the decomposition of consumption and investment growth

(middle and bottom panels, respectively). It is notable that in the case of investment, and

to a lesser extent of consumption, the rolling-window volatility computed from the data

has spiked up recently to levels near those prior to the Great Moderation. When we take

the Student’s t component into account, however, the recent increase in the rolling-window

volatility appears much milder.

4.3 Student’s t Shocks and Inference about Time-Variation in Volatility

This section discusses the extent to which accounting for fat tails makes us reevaluate the

magnitude of low-frequency changes in volatility. The point that inference about stochastic

volatility changes when one accounts for rare large shocks is not new, and is made quite

eloquently in Jacquier et al. (2004). Inference about the stochastic volatility is conducted

using state-space methods under the KSC procedure, where

log(σ−2h̃tε
2
t + c) = 2σ̃t + η∗t ,

is the measurement equation (with c a small constant), and equation (8) is the transition

equation. Intuitively, the estimated time-varying volatilities will try to fit the time series

log(σ−2h̃tε
2
t + c). Since this quantity depends on ε2

t , the model will interpret changes over

time in the size of the squared shocks ε2
t as evidence of time variation in the volatilities σ̃t.

In a world with fat tails, ε2
t will vary over time simply because h̃t changes. If one ignores

non-linear model. They then compare the path of several variables under the non-linear and linear solution

methods. These two paths for investment growth look strikingly similar to the actual (for the non-linear

method) and counterfactual (for the linear method) paths of investment growth in Figure 2, suggesting that

the non-linear propagation of shocks may induce outcomes that resemble those due to fat-tailed shocks in a

linear model.
17For example at the peak of the volatility in 1978, the rolling window standard deviation of output

growth is about 1.25 in the data, but once we shut down the Student’s t component it drops to 0.90, which

is a reduction of about 28% in volatility.
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variations in h̃t by assuming Gaussian shocks, one may obtain the wrong inference about

the time variation in the σts. For instance, one may conclude that the Great Recession

signals a permanent change in the level of macroeconomic volatility, when in fact it may be

(at least in part) the result of a particularly large realization of the shocks.

Does all of this matter in practice? An implication of stochastic volatility is that the

model-implied variance of the endogenous variables changes over time. Therefore, rather

than looking at the posterior estimates of the stochastic volatility component for individual

shocks we focus here on the time-variation of the standard deviation of output and consump-

tion.18 Specifically, Figure 3 shows the model-implied volatility of output and consumption

growth, as measured by the unconditional standard deviation of the series computed at

each point in time t assuming that the standard deviations of the shocks is going to remain

equal to the estimated value of σq,t = σqe
σ̃q,t forever after (that is, abstracting from the fact

that σ̃q,t+s, for s > 0, will be affected by future volatility shocks according to equation (8);

this is the same object computed in Figure 5 of JP).

In the top panel, the red line shows this measure for the SV only specification, while

the black lines show this volatility for the SVTD(λ = 6) specification. As in the other plots,

the solid line is the posterior median and the dashed lines correspond to the 90% bands

around the median. For both variables the model-implied volatility is generally higher when

we account for fat-tailed shocks, which is intuitive. However, the difference between the

models is not constant over time. At the peak of the high-volatility period (late 70s and

early 80s), the two models agree. However, during the Great Moderation the model that

does not allow for fat-tailed shocks seems to overestimate the decline in macroeconomic

volatility.

The middle panel of Figure 3 hones in on this finding. This panel shows the posterior

distribution of the ratio of the volatility in 1981 (roughly, the peak of the volatility series)

relative to the volatility in 1994 (roughly, the bottom) for output and consumption growth,

respectively. The red and black bars are for the SV only and SVTD(λ = 6) specifications,

respectively. Numbers greater than one indicate that volatility was higher in 1981 relative to

1994. There is no doubt that this is the case, as both histograms are well to the right of one.

However, the magnitude of the decrease in volatility depends on whether or not we allow

18Figure A.7 in appendix A shows the posterior estimates of the shocks εq,t (in absolute value) and the

shock volatilities σq,t in the SV only and SVTD specifications.
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for fat-tailed shocks. The posterior distribution for the ratio of the output growth volatility

in 1981 relative to the volatility in 1994 in the estimation with Student’s t shocks is smaller

relative to the case with Gaussian shocks. The median is 1.3 in the former, compared to

1.7 in the latter. For the red bars, most of the mass is to the right of 1.5, implying that

volatility dropped by more than one third between 1981 and 1994. The converse holds for

the black bars, which show a smaller decline in volatility. This same pattern is also evident

for the consumption growth. Figures A.3 and A.4 in appendix A show that these results

are virtually identical for different choices of λ, the prior mean for the degrees of freedom

of the Student’s t distribution.

As a result of the Great Recession there has been an increase in volatility in many

macroeconomic variables since 2008, as measured by the rolling window standard deviations

shown in Figure 2. To what extent does this increase reflect a permanent increase in the

volatility of the underlying shocks, and, potentially, the end of the Great Moderation?19

The bottom panels of Figure 3 show the ratio of the volatility in 2011 (end of the sample)

relative to the volatility in 2005 (pre-Great Recession) for output and consumption growth,

respectively, with numbers greater than one indicating a permanent rise in volatility. Under

the model with time-varying volatility and Gaussian shocks, the probability that volatility

in both output and consumption has increased after the Great Recession is quite high.

The probability of the ratio being below one is 17% and 18% for output and consumption

growth, respectively. The model that has Student’s t shocks in addition to time-varying

volatility is less confident: the probability of the ratio being below one increases to 31%

in the case of output, and 33% in the case of consumption growth. Moreover, this model

implies that if such an increase took place, it was fairly modest, with most of the mass

below 1.25.

4.4 Variance Decomposition

Table 3 shows the relative contribution of the different shocks to the unconditional variance

of real GDP growth, for the specification with both stochastic volatility and Student’s t

components (with λ = 6). Since volatility is time-varying, we compute the unconditional

19Clark (2009) also investigates the end of the Great Moderation using a univariate model with time-

varying coefficients and innovaltion volatilities, and finds that the implied unconditional volatility of several

macroeconomic variables incresaed notably during the Great Recession. Barnett and Chauvet (2008) also

discuss the possibility that the Great Moderation period is over.
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variance at each point in time t assuming that the time-varying component of the standard

deviations of the shocks is going to remain equal to the estimated value of σt forever after, as

we did in the previous section. The table shows the relative contribution of each structural

shock to this unconditional variance at five different points in time: 1964Q4 (beginning of

sample), 1981Q1 (peak of the high volatility period), 1994Q1 (great moderation), 2007Q1

(pre-great recession) and 2011Q1 (end of sample). In sum, we find that the shocks that

are most important for explaining real GDP growth are those that exhibit fat tails, like the

discount rate (b), marginal efficiency of investment (µ), and TFP (z) shocks.20

4.5 Robustness

This section discusses the robustness of our results to different assumptions and estimation

approaches for the stochastic volatility component, and to different sub-samples. The results

are shown in appendix A. The lesson from these robustness exercises is that the two main

results of the paper, namely i) there is strong evidence in favor of Student’s t distributed

shocks, and ii) accounting for fat tails changes the inference about low frequency movements

in volatility, are very robust.

4.5.1 Robustness to Different Estimation Approaches and Assumptions for the

Stochastic Volatility Component

Results using the JPR algorithm are quite different from those obtained with the KSC

algorithm in terms of the inference about stochastic volatility. Table A.18 shows the log-

marginal likelihoods under this approach, and they are markedly higher for all SV speci-

fications than those computed using the KSC approach (Table 1). Inference about time-

variation in volatility is also quite different, as reported in the bottom panel of Figure A.8

for output growth, especially as far as the spike in volatility in the late 70s and early 80s

is concerned. As a result of this spike, the ratios are much larger for both the SV only

and the SVTD specifications. The difference between results under the JPR and KSC al-

gorithm are puzzling, considering that the model/prior specification is identical, and that

both estimations appeared to have converged.21 In spite of these differences, the results are

20Table A.4 in appendix A shows the variance decomposition for the other specifications (Gaussian, TD

only, and SV only).
21Section A.8 discusses the convergence results for the KSC algorithm, which are available in appendix A.

Convergence results for the JPR algorithm are available upon request.
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very robust as far as the message of this paper is concerned. Table A.18 shows that the

model’s fit improves sizably by allowing for fat tailed shocks, and that best specification is

still the one with the lowest prior for the degrees of freedom (λ = 6). Table A.19 shows

that the inference about the degrees of freedom of the Student’s t distribution are virtu-

ally identical to those reported for the KSC algorithm for the best specification. The top

panel of Figure A.8 shows that the importance of Student’s t distributed shocks in terms of

output growth fluctuations is the same as that computed under the other algorithm. The

bottom panel shows that allowing for Student’s t shocks changes the inference about the

size of fluctuations in volatility, perhaps even more than under the alternative algorithm.

Figuring out which algorithm, JPR or KSC, proves most reliable for macro applications is

arguably an important issue to sort out for applied macroeconomists, but is not the goal of

this paper.

We also investigated robustness of the results to the SV-S specification, where following

a referee’s suggestion we use a prior for ρq with ρ̄ = .6 and v̄ρ = (.2)2/ωq
2.22 Table A.20

shows that the log-marginal likelihood results for the SV-S specification are worse than

those for the SV-UR, and that allowing for fat tails improves the model’s fit considerably.

The results under this specification are largely in line with those of the baseline.23

4.5.2 Sub-sample Analysis

Does evidence in favor of fat-tailed shocks depend on whether the Great Recession is in-

cluded in the estimation sample? In order to address this question, we re-estimated the

model for the sub-sample ending in the fourth quarter of 2004 — the end date of the sample

used in JP.24 Table A.23 shows in columns two and three the log-marginal likelihood for all

the specifications considered above but estimated on the shorter sub-sample. The results

22We also tried a prior for ρq that does not depend on ωq, i.e., N (.6, (.2)2), and obtained very similar

results.
23Table A.22 shows the posterior estimates of the degrees of freedom of the Student’s t distribution;

Figure A.9 is the analog of Figure A.8 for this specification; Table A.22 shows the posterior estimates of

the SV persistence parameter ρq. It is worth noting that there are sizable differences across specifications

in the marginal likelihood improvement due to having SV on top of Student’s-t shocks: this improvement is

of the order of roughly 11, 47, and 5 log points for the baseline, JPR, and SV-S specifications, respectively

(see tables 1), A.18, and A.20)
24Note that our model, data, and prior on ω2 differ from JP in important ways, hence we would not expect

to replicate their results.
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for this sub-sample are in line with the results for the full sample: including Student’s t

distributed shocks improves fit, regardless of whether we also consider stochastic volatil-

ity, and the lower the prior mean for the degrees of freedom the higher the log-marginal

likelihood we obtain. The posterior means of the degrees of freedom of the Student’s t

distribution (Table A.24) are also mostly in line with those for the full sample. The top

panel of Figure A.10 shows the importance of Student’s t distributed shocks in terms of

output growth fluctuations. The results again agree with those for the full sample. The

bottom panels of Figure A.10 provide evidence regarding time-variation in volatility. It

appears that for the short sample this is more muted than for the full sample, although the

result that accounting for fat tails leads to less volatile estimates of the low-frequency SV

process still holds.25 Figure A.11 reproduces some of the results in Figure A.10 using the

JPR algorithm. We find more evidence of time variation in volatility using this algorithm,

as we did for the full sample, but the results concerning the importance of fat tails are

unchanged.26

We also investigate how much the results depend on the period of high volatility ex-

perienced in the late 1970s by focusing on two sub-samples starting in the Great Moder-

ation period: 1984Q1 and 1991Q4. Table A.23 shows in columns four through seven the

log-marginal likelihoods for these sub-samples. Again, we find that having Student’s t dis-

tributed shocks improves fit, regardless of whether we also consider stochastic volatility; and

the lower the prior mean for the degrees of freedom the higher the log-marginal likelihood

we obtain. The posterior means of the degrees of freedom of the Student’s t distribution

(Tables A.26 and A.27) are mostly consistent with previous results, and the top panels of

Figures A.14 and A.15 show that the impact of fat-tailed shocks on output fluctuations is

in line with the results of the full sample. Adding stochastic volatility does not substan-

tially improve the fit, if at all, in these sub-samples. This suggests that, even if the Great

25Figures A.12 and A.13 provide the posterior for h̃
−1/2
q,t and σq,t, respectively, for this sub-sample. These

figures broadly look consistent with those for the full sample, i.e. they appear to be the decomposed version

of Figures A.6 and A.7, respectively.
26Note that under the KSC algorithm the extent to which the Great Moderation is overstated by excluding

Student t shocks is sensitive to the sample. This is simply because under this algorithm we do not find much

time variation in volatility even in the SV-only case for the sample ending in 2004. However, under the JPR

algorithm time variation in volatility is much more pronounced also for this shorter sample, and therefore

including Student t shocks makes more of a difference in terms of assessing the magnitude of the Great

Moderation.
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Recession is included in the sample, most of the evidence in favor of stochastic volatility

for the full sample is due to the shift in volatility from the late 1970s to the 1990s. The

bottom panels of Figures A.14 and A.15 are consistent with this view, as they show little

evidence of changes in volatility for output growth.

5 Conclusions

We provide strong evidence that the Gaussianity assumption in DSGE models is coun-

terfactual, even after allowing for low-frequency changes in the volatility of shocks. It is

important to point out a number of caveats regarding our analysis. First, we allow for

excess kurtosis but not for skewness. The plots in in Figure 1 make it plain that most large

shocks occur during recessions, implying that skewness may also be an salient feature of the

shocks distribution. Müller (forthcoming) describes some of the dangers associated with

departures from Gaussianity when the alternative shock distribution is also misspecified.

Importantly for our analysis, not allowing for skewness may lead to an underestimation of

the importance of fat tails during recessions, as we only estimate the average amount of

kurtosis. Second, we allow for permanent (random walk) and i.i.d (Student’s t distribution)

changes in the variance of the shocks. These assumptions are convenient, but also extreme.

Our main point is that together with low-frequency changes in the standard deviation of

shocks, there are also short run spikes in volatility. So far, the literature for the U.S. has

mainly focused on the former phenomenon; in this paper we emphasize the latter. Still, in

future research it may be important to relax the assumption that these short run spikes

are identically distributed over time. Third, in order to study the full implications of fat-

tailed shocks on the macroeconomy we need to use non linear models, as we discuss in the

introduction.27 Finally, we have not investigated the implication of allowing for fat tails in

terms of forecasting. Do DSGE models with Student’s t shocks have a superior forecasting

performance relative to models with Gaussian shocks in terms of root mean squared errors?

Or are the gains in marginal likelihood mainly reflected in an improved precision of the

forecast distribution? We leave these important extensions for future research.

27The optimal policy response to rare large shocks is another important issue that deserves attention.

The financial econometrics literature has studied the implication of alternative hedging strategies vis-á-vis

fat-tailed shocks (e.g., Bos et al. (2000)).
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Table 1: Log-Marginal Likelihoods

Constant Volatility Stochastic Volatility

Gaussian shocks

-1117.9 -1083.7

Student’s t distributed shocks

λ = 15 -999.8 -994.0

λ = 9 -990.6 -972.2

λ = 6 -975.9 -964.2

Notes: The parameter λ represents the prior mean for the degrees of freedom in the Student’s t distribution.
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Table 2: Posterior of the Student’s t Degrees of Freedom

Without Stochastic Volatility With Stochastic Volatility

λ = 15 λ = 9 λ = 6 λ = 15 λ = 9 λ = 6

Government (g) 9.9 7.3 5.9 11.4 8.3 7.6
(3.2,16.8) (3.1,11.5) (2.9,8.9) (5.5,24.0) (3.6,13.1) (3.6,11.5)

Discount (b) 4.4 4.1 3.9 5.5 4.6 5.3
(2.3,6.4) (2.3,5.9) (2.3,5.5) (2.5,8.4) (2.4,6.7) (2.6,7.9)

MEI (µ) 9.9 7.5 6.0 9.2 7.2 6.1
(3.3,16.5) (3.2,11.8) (2.9,9.0) (3.2,15.3) (3.1,11.2) (3.0,9.3)

TFP (z) 6.0 4.8 4.2 7.5 5.5 5.6
(2.1,10.2) (2.1,7.5) (2.1,6.2) (2.5,12.9) (2.3,8.7) (2.5,8.6)

Price Markup (λf ) 11.1 8.0 6.5 12.3 9.4 8.2
(3.7,18.7) (3.4,12.7) (3.1,9.9) (4.2,20.5) (3.9,14.8) (3.9,12.3)

Wage Markup (λw) 9.5 7.3 6.1 10.8 8.1 6.9
(3.5,15.4) (3.3,11.3) (3.1,9.0) (3.9,17.9) (3.5,12.7) (3.4,10.3)

Policy (rm) 3.4 3.2 3.1 8.2 5.9 8.1
(1.9,5.0) (1.9,4.6) (1.8,4.3) (2.3,14.6) (2.2,9.8) (3.9,12.2)

Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter.

Table 3: Variance Decomposition for Real GDP Growth

g b µ z λf λw rm

σ1964 0.179 0.439 0.087 0.163 0.037 0.017 0.079

σ1981 0.204 0.348 0.074 0.101 0.032 0.022 0.220

σ1994 0.179 0.394 0.108 0.142 0.039 0.046 0.092

σ2007 0.167 0.370 0.104 0.149 0.046 0.056 0.109

σ2011 0.167 0.360 0.102 0.148 0.048 0.051 0.123

Notes: The table shows the relative contribution of the different shocks to the unconditional variance of real GDP,

for the specification with stochastic volatility and Student’s t distributed shocks. Since volatility is time-varying

we evaluate this contribution at different points in time assuming that volatility will be fixed at that period’s level

from then on: 1964 (beginning of sample), 1981 (peak of the high volatility period), 1994 (great moderation), 2007

(pre-great recession) and 2011 (end of sample).
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Figure 1: Smoothed Shocks under Gaussianity (Absolute Value, Standardized)
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Notes: The solid line is the median, and the dashed lines are the posterior 90% bands. The vertical shaded regions

identify NBER recession dates.
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Figure 2: Counterfactual evolution of output, consumption and hours worked when the

Student’s t distributed component is turned off, estimation with Student’s t distributed

shocks and stochastic volatility.
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Figure 3: Time-Variation in the unconditional standard deviation of output and consump-

tion; models estimated with and without the Student’s t distributed component.
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Notes: Black line in the top panel is the unconditional standard deviation in the estimation with both stochastic
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