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Abstract

A guiding principle for the adaptive learning approach of bounded rational-
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better satisfies this requirement. We assume agents observe the same informa-
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1 Introduction

At the beginning of the rational expectations revolution in the 1970s and 80s, adaptive

learning was primarily used as a device to understand how agents learn to possess

the knowledge required for rational expectations (RE).1 Subsequent research, however,

demonstrates that not all rational expectations equilibrium (REE) can be learned (see

Evans and Honkapohja, 2001, for a survey). Burgeoning research in this area and

recent development in the economy have motivated economists to reassess the role of

learning in macroeconomic models. More and more researchers are now willing to accept

adaptive learning as an independent, competing approach to model agent expectations.

The RE assumption is “implausibly strong,”2 it is argued, for it fails to recognize the

cognitive and information limitations real life agents face. Rational agents not only

know the correct form of the structural model, the values of parameters, and the true

distributions of exogenous processes, but also can form accurate expectations based

on such information. The promise of the learning approach is to o↵er a more realistic

way to formulate expectations. The guiding principle is “cognitive consistency,” which

requires that learning agents be no more knowledgeable than real-life economists. In

econometric learning, for example, agents are modeled as econometricians who form

expectations by estimating and updating a subjective forecasting model in real time.

The approach is appealing as it can potentially capture how economic forecasting works

in real life.

Our observation is that much of current research in adaptive learning still falls

short of satisfying the cognitive consistency principle. There are at least two reasons

why the rationality assumption is deemed “implausibly strong.” One is the behavioral

1Key papers include Bray (1982), Evans (1985), Lucas (1986), and Marcet and Sargent (1989),
among others.

2The quotation is from Evans and Honkapohja (2011). See the same paper for a survey of recent
research that treats learning as a competing approach for modeling agent expectations.
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assumption that rational agents are aware of the equilibrium dynamics of the economy

almost immediately. This issue has been dealt with extensively by the adaptive learning

approach. A typical learning agent does not know the equilibrium law of motion of the

economy and have to learn about them with econometric techniques. The second reason

is that rational agents are able to observe variables that real-life agents cannot observe.

This issue has not been studied nearly as much as the first, and as a consequence, the

cognitive consistency requirement is often compromised.

One such information assumption is routinely made in the learning literature but is

conspicuously at odds with reality: agents can observe the entire state of the economy.

By “state of the economy,” we mean the state vector of a dynamic general equilibrium

model, which includes not only “state variables” such as capital stocks and monetary ag-

gregates, but also exogenous variables and processes which constitute the fundamental

driving force of economic fluctuations. Examples of the latter would include technol-

ogy shocks, shocks to potential GDP, consumer preference shocks, and shocks to the

marginal cost of production. The question is, when we model agents as econometricians,

is it plausible to assume that they can observe these variables?

Consider technology shocks. In practice, econometricians do not observe such shocks

directly. What they do observe are estimates of input and output data, which are of-

ten subject to various degrees of inaccuracy themselves. For example, one crucial

input is capital stock, but measures of capital stock are not easily obtained, because

their estimation requires compilations of other data as well as sophisticated estimation

techniques (Schreyer and Webb, 2006). Estimates of technology shocks are also model-

dependent: di↵erent modeling assumptions can lead to dramatically di↵erent estimates.

For instance, King and Rebelo (1999) find that with the assumption of varying cap-

ital utilization, estimated technology shocks have a much smaller variance and lower

chances of technological regress than conventional measures. Due to these di�culties,

3



econometricians rarely consider technology shocks as an observable variable. Next con-

sider shocks to the output gap, an important exogenous variable in the popular new

Keynesian model. In order to calculate this gap, the potential level of GDP must be

estimated first. But its estimates are often inaccurate due to possible structural breaks

in employment and production. For this reason, econometricians usually do not treat

shocks to output gaps as a known variable. Similar arguments can be made about other

commonly used variables in the state vector, such as preference shocks and cost-push

shocks.

The consequence of assuming observability for the state vector is that in models of

learning, agents can run regressions that are beyond the capability of real-life econo-

metricians. Consider a generic linear model:

y

t

= µ+ME

t

y

t+1 + Pv

t

, (1)

v

t

= ⇢v

t�1 + e

t

, (2)

where y
t

is a vector of endogenous variables, v
t

is a vector of serially correlated exogenous

processes, e
t

represents i.i.d. white noises, and the rest are parameters. A “minimum

state variable” (MSV) rational expectations solution is in the form

y

t

= ↵ + �v

t

, (3)

along with (2), where ↵ and � are vectors of parameters.

If the assumption is that agents can observe the state vector v
t

, then they are able

to learn (2) accurately as the equation does not involve any expectations. Moreover,

the agents’ perceived law of motion (PLM) is often modeled as being consistent with

the MSV solution form:

y

t

= a

t�1 + b

t�1vt, (4)
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where a
t�1 and b

t�1 are parameter vectors that agents update in real time. Agents will

then use this equation to make forecasts of the future.

Thus, agents are able to use the state vector as right-hand-side variables in their

regression analysis, and their forecast equation consists only of those state variables.

This is where the model and reality diverge. Real-life econometricians rarely have the

luxury of an observable state vector, and their forecast equations consist primary of

past values of endogenous variables. In fact in the time series econometrics literature,

considerable research has been devoted to designing techniques that can obtain param-

eter estimates when the state vector is not observable. The Kalman filter, for example,

is the canonical device to deal with this situation. When econometricians estimate

dynamic general equilibrium models, the variables that they decide to be unobservable

and must be inferred with the Kalman filter are precisely those included in the state

vector (see, for example, Ireland (2004) and Schorfheide (2013), among many others).3

This “cognitive inconsistency” exists in a large number of research papers of learning,

including some that have made milestone contributions in the discipline. Does this

inconsistency matter? Is the assumption of full observability a harmless abstraction

from reality, or does it have significant impact on learning dynamics? The goal of this

paper is to investigate this issue and explore a new approach to abridge the gap between

adaptive learning and cognitive consistency. We do this by imposing two realistic

information limitations on learning agents: one, they do not observe the state vector,

and two, they do not possess an infinite series of the past values of endogenous variables.

(They can observe past values of all endogenous variables. Our only requirement is

that the length of their dataset is not infinity.) With these limitations, agents face

a signal extraction problem: they must use available data to infer the nature of the

3Our example is a simple one. In richer models of learning, the forecasting equation can include
other variables such as lagged endogenous variables. However, the key issue is whether or not the
vector of exogenous shocks enters the PLM. As long as this vector enters agents’ forecast equations,
the divergence between reality and model assumptions remains.
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unobservables.

There are, however, many ways to solve a signal extraction problem. We need a

tractable and parsimonious solution method that is consistent with the adaptive learn-

ing framework. To this end we draw on the methodology developed by Marcet and

Sargent (1989). Marcet and Sargent (1989)’s primary goal is to study the convergence

of recursive least square learning to an REE when there is private information. In their

setup, there are two types of agents who can only observe a distinct subset of the state

vector. The agents are aware that some variables are hidden from them, and they need

to extract information from the observables. To do this, they run finite order vector

autoregressions (VAR) and use the estimated equations to forecast future endogenous

variables. Marcet and Sargent (1989) prove that under certain conditions the learn-

ing process converges, and the resulting REE is a “limited information equilibrium.”

Our objective is quite di↵erent from theirs, as we are not interested in heterogeneous

agents or private information. Nevertheless, we note that in their model, it is variables

from the state vector that are unobservable – a critical feature that we require for our

environment. This makes it possible for us to adopt their method to handle our in-

formation extraction problem. Indeed, we show that our model can be conveniently

formulated as a special case of the Marcet and Sargent model, in which all agents are

identical, and all state variables are hidden. Our approach leads to an equilibrium that

is similar to Marcet and Sargent’s limited information equilibrium, but is conceptually

di↵erent. Their equilibrium is essentially an REE with private information. Learning

helps explaining how agents learn to reach the REE. In our model, the REE is the stan-

dard minimum state variable (MSV) solution. Limited information only becomes an

issue when learning is considered, as we require the learning agents to possess no more

observations than real-life econometricians. In other words, our limited information

equilibrium only exists under bounded rationality. We call this equilibrium “limited
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information learning equilibrium.”

The learning agents’ beliefs are characterized by stationary processes such as finite

order VARs, as in Marcet and Sargent (1989). An immediate question is which belief

function should prevail. To answer it, we turn once again to the cognitive consistency

principle, and ask what econometricians do in practice. Our conclusion is that agents

should use statistical standards, such as the Bayesian information criterion (BIC) or

likelihood ratio tests, to “select” a model. These statistical standards are typically

constructed to pick the best specification among many to maximize the probability of

recovering the true model, thus capturing the problem faced by our learning agents.

Our decision to include a model selection device is inspired by recent works of Branch

and Evans (2007) and Cho and Kasa (2011), who consider similar situations where

agents have multiple models and must select one for learning.

We emphasize that a key assumption of our approach is that agents do not ob-

serve an infinite series of past endogenous variables. We make this assumption for two

reasons. One, if agents possess infinite data, and if there is a representative agent,

then under certain conditions, the signal extraction process can fully recover the true

values of the state vector, and the full information REE can be revealed (see Fernandez-

Villaverde et al., 2007). This is uninteresting to us, because the assumption of infinite

data availability violates the cognitive consistency principle and defeats our purpose of

modeling real-life econometricians. What we are interested in is a truly limited infor-

mation economy, in which a representative agent must use finite data to infer about the

fundamentals of the economy. Two, the finite data assumption captures another aspect

of reality: econometricians are constantly evaluating the possibility of time-varying sys-

tem dynamics and structural breaks. Consequently, they may not want to use old data

even when such data are available. For example, economists typically do not employ

data from the Great Depression era when forecasting modern economic performances,
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largely because enough structural changes have taken place which render old data not

very useful.

After obtaining some theoretical results, we consider an application. Our economy

is the standard reduced-form new Keynesian model. We compute the limited infor-

mation learning equilibrium of this model, and compare the model’s implications with

those of the full-information model. Our study leads to some interesting conclusions.

It is well known that in a full information REE, the standard new Phillips curve does

not include any lagged terms of inflation, and the model cannot generate the level of

inflation persistence that we observe in the data (Fuhrer, 2009). Empirical researchers

often include a lagged term in the Phillips Curve to fit the data better. Considerable

amount of theoretical work has also been done to try to derive a Phillips Curve with

lagged terms. In our model, the Phillips curve remains a standard one, but the actual

law of motion of the economy includes lagged terms of inflation. The reason is that

agents use past inflation data to infer about the state vector and form forecasts of fu-

ture values. The feedback from agents’ forecast to the actual law of motion generates

inflation persistence. Moreover, the level of inflation persistence is significantly higher

than that in the model with full information. We thus uncover an intrinsic mecha-

nism of inflation persistence – persistence which arises from interactions between the

information extraction process and the model structure itself.

In our model, agents select the number of VAR lags endogenously. With finite

data, the model that survives the BIC test is often the one that strikes a good balance

between accuracy and parsimony. For example, when the sample size matches that

of real-life macro dataset, agents often select short belief functions such as an AR(1)

in a standard new Keynesian model. This leads to model dynamics that are distinct

from full information models. The optimal lag becomes a function of sample sizes,

which are in turn a↵ected by agents’ beliefs about the degree of time variation in the
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data. Thus, the model’s dynamics has a self-confirming nature. Our analysis also

provides a justification for using simple “misspecified” belief functions for boundedly

rational agents. Most researchers argue for simple belief functions on the ground that

they are consistent with experimental or survey results (Adam, 2007). Our analysis

demonstrates that even agents who are equipped with complex statistical tools may

choose simple belief functions, simply because with finite data, these functions perform

the best statistically.

Our application demonstrates that if we impose cognitive consistency and require

agents not to possess knowledge of the entire state vector, the dynamics of the economy

di↵er considerably from that of full observability. We believe this is an indication that

this line of research is valuable, and should be extended to study many macroeconomic

issues.

2 Related Literature

Earlier works in the literature consider signal extraction problems in dynamic macro

models. In his path-breaking paper that laid the foundation for rational expectations,

Muth (1961) notes that in a Cob-web model, it is possible that the exogenous variable

is not observed by agents. He states that “if the shock is not observable, it must be esti-

mated from the past history of variables that can be measured.” In Lucas (1975), agents

do not observe the state of the economy, and must use observable variables to infer it.

Consequently serially uncorrelated shocks propagate through the economy slowly and

generates persistence. Townsend (1983) studies a model in which heterogeneous agents

possess di↵erent information about the state vector, and must use available informa-

tion to learn about the forecasts of other agents. In Marcet and Sargent (1989), agents

use recursive learning techniques to extract information from observable endogenous
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variables. If the learning process converges, the economy will converge to a limited in-

formation equilibrium. Their work is perhaps the first important paper that considers

the signal extraction problem for adaptive learning agents. A common feature of these

models is that the source of information – the endogenous variables – is determined

itself by the information extraction problem that the agents must solve.

Recent years have seen a revival of research in the area of incomplete information

and signal extraction. Gregoir and Weill (2007), Hellwig (2006), Pearlman and Sargent

(2005), and Rondina and Walker (2011) are just a few examples of a large of number of

papers devoted to this area of research. Most of this research focuses on understanding

the characteristics of rational equilibrium when there are heterogeneous agents and

dispersed information. The case of a representative agent is often treated as a simple

benchmark to compare with more elaborate scenarios. Levine et al. (2007) do consider a

representative agent model with partial information. However, in their paper agents are

rational; the case of limited cognitive abilities such as adaptive learning is not studied.

The limitation of finite data is also rarely a concern in this literature.

The learning literature made significant advances in recent years, but works in the

area of signal extraction are relatively rare. There are some papers that implicitly

incorporate a signal extraction problem in their models. For example, Bullard et al.

(2008) define an “exuberance equilibrium,” where agents use an ARMA-type PLM to

form their forecasts. In Preston (2005)’s infinite horizon learning framework, agents

often use VAR-type PLMs. By not formulating their PLMs in the MSV form, these

authors implicitly recognize that agents need not possess knowledge of the state vector

and/or the MSV solution form. Preston emphasizes that researchers must distinguish

between what agents possess in their information set and what not. This is, in spirit,

very similar to our argument for cognitive consistency.

Another area of learning research, the “misspecification” approach, also considers
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unobservable state variables. In those models, agents typically only observe a subset of

state variables. Their PLM therefore only consists of this subset of variables, rendering

their model “misspecified,” compared with the full observability MSV solution (Evans

and Honkapohja, 2001). When learning converges, these economies reach a “restricted

perceptions equilibrium.” The di↵erence between this approach and ours is as follows.

In misspecification models, agents still observe a state vector. What they observe is not

the entire state – they are not aware that some other state variables exist and should

be included. They still run regressions of endogenous variables against the observed

state variables, believing they are searching for the MSV solution.4 In this respect, the

cognitive inconsistency in these models is the same as that in full information models.

In our model, agents are aware that there are unobservable state variables, which is

precisely why signal extraction is important to them.

We apply our method to the new Keynesian model, and examine the impact of sig-

nal extraction learning on inflation persistence. That inflation has inertia is well docu-

mented, but its causes are not well understood. Standard rational expectation models

do not generate persistent dynamics due to their forward-looking nature. E↵orts to

explain inflation persistence can generally be divided into two categories: structural

causes and intrinsic causes. The structural approach emphasizes that certain features

of the economy leads to inflation persistence. Fuhrer and Moore (1995), for example,

argue that US inflation dynamics becomes backward-looking if workers care about past

wages. Christiano et al. (2005), Smets and Wouters (2003) and Giannoni and Woodford

(2003) advocate price indexation as an explanation of inflation persistence. The intrin-

sic persistence approach emphasizes that persistence may arise even if the underlined

economic structure does not contribute to such dynamics. Gaĺı and Gertler (1999), for

4If agents are aware of the hidden state variables, they would include past values of endogenous
variables in their forecasting functions to extract information and to improve the accuracy of their
forecasts.
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example, demonstrate that firms’ rule of thumb behavior can lead to persistent price

dynamics. Mankiw and Reis (2002) argue that persistence is caused by agents’ inability

to process information swiftly due to its high costs.

Orphanides and Williams (2004) and Milani (2007) study inflation persistence in

learning models. In Orphanides and Williams (2004), agents know the MSV form of

the model, but use constant gain learning to estimate the model’s parameters. Inflation

inertia arises from two sources: agents’ imperfect information about model parameters

and the inability of the model to converge, caused by the constant gain learning algo-

rithm agents adopt. Milani (2007) uses US data and a hybrid new Keynesian model

to determine which mechanism, price indexing or adaptive learning, contributes more

to inflation persistence. He finds that the latter is more important. In both papers,

there are no hidden variables and the PLMs are consistent with the MSV solution.

In our model, agents’ beliefs are not consistent with the MSV solution due to limited

information. This distinguishes our work from theirs.

The rest of the paper is organized as follows. In the next section, we set up a general

model, and defines a limited information REE as in Marcet and Sargent (1989). In the

following section, we apply the general theory to a new Keynesian model, and discuss

the empirical implications of our approach. The last section concludes the paper.

3 Adaptive learning with unobservable state vari-

ables

Consider a reduced form model
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y

t

= ME

⇤
t

y

t+1 + Pv

t

, (5a)

v

t

= Fv

t�1 + e

t

, (5b)

where y
t

is an n⇥1 vector of endogenous variables, and v

t

is anm⇥1 vector of exogenous

variables which follow a stationary autoregressive process. e
t

is an m⇥1 vector of white

noise. E⇤
t

represents expectations of private agents that are not necessarily rational.

This is a generic reduced form model that many contemporary macro models fit in.

It can, however, be made even more general. For example, in some macro models the

lagged values of endogenous variables play a role in agents’ decision making. That would

require that we add a vector y
t�1 to (5a). We choose not to include it for our benchmark

setup here, because doing so will make the contrast between the cases of unobservable

and observable state vector less distinct. We consider this case in Appendix A.1. We

also choose not to add any extra expectations terms (such as E

⇤
t�1yt) to (5a), as the

benchmark result can be extended to models with those terms. The exogenous process

can also be made more elaborate by adding extra noises and lags. We choose not to do

so in order to keep the analysis tractable.

Our information assumptions are as follows. In the benchmark case of full observ-

ability, agents can observe both the vector y

t�1 and v

t

. They use this information to

forecast future values y

t+1, and make decisions about current values y

t

. In the case

of limited information, agents only observe past values of y and do not observe the

state vector v. As a consequence, their forecasting functions cannot contain any ele-

ments of v. They need to use statistical techniques to extract information from the

observables, and forecast the future values of the endogenous variables. We note that

the self-referential nature of the system is evident in (5a): agents’ forecasts can clearly
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alter the time path of the economy itself. Following the learning literature, we assume

that learning agents do not have this knowledge and will not attempt to “game” the

system by altering their expectations strategically. They estimate system dynamics

based on the premise that the economic system is a stable stationary process.

A more general setup would encompass the possibility that a subset of v is observ-

able, and a subset of y is unobservable to agents. Unobservable endogenous variables

are possible: in a multi-agent model, for example, it is possible that some variables are

private to certain agents, and each agent only observes a subset of y. However, creat-

ing the most general environment is not the optimal strategy for us, as the technical

complications may obscure the main point that we attempt to make. So we decide to

make the assumption that the entire v vector is unobservable, and all past values of

y

t

are observable to agents. This way, agents’ main task will be to extract from past

endogenous variables information of the fundamental shocks v
t

. We believe this setup

captures the essence of the argument that we made earlier, that fundamental shocks

should not be assumed observable, and should not be used as right-hand-side variables

in agents’ learning process. This setup will also make a sharp distinction between our

limited information approach and the conventional approach, as we show below.

3.1 REE and learning with full observability

With full observability, both the REE and the adaptive learning solutions of this model

are well known. We briefly review the results below.

To derive the REE, assume agents have the perceived law of motion (PLM) that

corresponds to the minimum state variable (MSV) REE of the model:

y

t

= av

t

. (6)
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To obtain the T-mapping for the PLM to the actual law of motion (ALM), compute

the one-step forecast as

E

⇤
t

y

t+1 = aFv

t

. (7)

Plugging (7) into (5a) and (5b), we obtain the ALM as

y

t

= (MaF + P )v
t

. (8)

The REE is simply defined as the fixed point of

a = T (a) = MaF + P. (9)

We define more formally the REE solution below.

Proposition 1. The full information rational expectations equilibrium (REE) of the

system (5a) and (5b) is a matrix a that satisfies

a = T (a) = MaF + P.

In the REE, the law of motion of the economy is

y

t

= T (a)v
t

, (10)

v

t

= Fv

t�1 + e

t

. (11)

When learning is considered, agents are assumed to be running regressions of the

form

y

t�1 = c

t�1 + a

t�1vt�1, (12)
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where c is a constant term for the regression. The learning process can also be expressed

more generally in recursive form (Evans and Honkapohja, 2001). Note that (11) does

not include any expectation terms. With full observability, agents should be able to

learn the parameters easily. Hence it is typically assumed that (11) is known to agents.

Learnability or “E-stability” (Evans and Honkapohja, 2001) of the REE is governed

by the di↵erential equation

d

dt

(c, a) = T (c, a)� (c, a). (13)

The REE is learnable if the above equation converges in time. Note that throughout

the analysis, a critical assumption is that at time t, agents not only observe all the

endogenous variables y
t�1, but can also observe all the variables in the vector v

t

.

3.2 Limited information equilibrium with unobserved state

variables

Now we consider the case in which the shocks v

t

are not observable. Agents must

use past values of endogenous variables (y
t�1, yt�2, ...)0 to extract information about

the exogenous variables and forecast future endogenous variables. A foremost issue we

need to address is what “models” our agents should use to forecast future variables

with limited information.

3.2.1 Forecasting

After the publication of Sims’s seminar work Macroeconomics and Reality (1980),

VARMA (vector autoregressive moving average) methods have become the most widely

used tool for forecasting macroeconomic variables. There are at least two reasons why

this method is useful for our context. One, equilibrium solutions of structural macro
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models, such as the model we lay out above, can often be reduced to VARMA forms,

especially VARs. In a recent paper, Fernandez-Villaverde et al. (2007) derive condi-

tions under which a wide class of linearized DSGE models with hidden state variables

can be completely identified by running an infinite order VAR. Ravenna (2007) points

out that under certain conditions, the same class of models can also be represented by

finite order VARs. Both papers report that if the conditions for a VAR are not met,

the models can often be represented by more general VARMA forms. A second reason

to consider the VARMA approach is that it is also a relatively “model-free” method of

forecasting. VAR forecasting, for example, does not have to be based on any structural

models. It is sometimes regarded as an advantage that economists can rely on them to

make reasonable forecasts without committing to any specific model structures.

Much like real-life economists, agents in our model must forecast future variables

with limited knowledge. If they do understand the general structure of the economic

environment they live in, they will quite naturally use VARs to forecast the future.

As the next proposition shows, the REE solution of our model has a simple VAR

representation.

Proposition 2. Let the rational expectations equilibrium solution with full observability

be represented by (10) and (11). Suppose the matrix T (a) is non-singular, then the

solution has a VAR(1) representation

y

t

= T (a) · F · T (a)�1
y

t�1 + T (a) · e
t

,

Proof: solve for v
t

as v
t

= T (a)�1
y

t

from (10) and plug into (11), and rearrange.

Note that the non-singularity condition requires that there are equal number of

fundamental shocks in the vector v
t

as the number of endogenous variables in y

t

. This

condition is not as restrictive as it seems. As Ireland (2004) points out, measurement
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errors can always be added to an equation like (10) to ensure that a DSGE model can

be properly identified.

What if the agents do not understand the structure of the model? As we argue above,

it is still reasonable to assume that they use VARMA models to make forecasts, as this

is precisely what many real-life economists do. In this case, agents do not necessarily

have to use VAR(1) forecasting, as Proposition 2 would suggest. The problem facing

them is one that requires them to make a forecast as accurate as possible without

any definite knowledge of the economic structure. What they need is a general but

parsimonious forecasting function that finite data can support.

In principle, they can use any stationary VARMA models. Without loss of general-

ity, let us assume the forecasting model is a pth order VAR of the form

y

t

=
pX

j=1

b

j

y

t�j

+ ✏

t

. (14)

This assumption is an extension of Marcet and Sargent (1989)’s VAR(1) belief func-

tion and is almost the same as Bullard et al. (2008)’s assumption of VAR forecasting in

an exuberance equilibrium.5 It nests the rational expectations solution in Proposition

2.

We note that since agents know that there are unobserved fundamental shocks, the

above equation is not strictly their “perceived law of motion (PLM)” of the economy.

It should be more accurately called a “forecasting model.” To be consistent with the

literature, however, we shall still use the terminology “PLM.” We will use it and the

terms “forecasting model” and “belief function” interchangeably.

5As an example of other possible forecasting models, in Sargent (1991), learning agents run
ARMA(1,1) models to forecast future variables.
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Defining Y

t�1 = (y0
t�1, y

0
t�2, ..., y

0
t�p

)0, we can rewrite the above equation as

y

t

= bY

t�1 + ✏

t

, (15)

where b = (b1, b2, . . . , bp). The agents form their expectations

E

⇤
t

y

t+1 =
pX

j=1

b̃

j

y

t�j

(16)

where

b̃

j

=

8
><

>:

b1bj + b

j+1, j = 1, . . . , p� 1

b1bj, j = p.

Given the PLM (14), the ALM of the economy can be derived as

y

t

= M

pX

j=1

b̃

j

y

t�j

+ PFv

t�1 + Pe

t

, (17)

which can also be written as

z

t

=
pX

j=1

T

j

(b)z
t�j

+ V e

t

, (18)

where z

t

= (y0
t

, v

0
t

)0, T
j

(b) =

0

B@
Mb̃1 PF

0 F

1

CA if j = 1, T
j

(b) =

0

B@
Mb̃

j

0

0 0

1

CA otherwise,

and V =

0

B@
P

I

1

CA.

An even more compact expression for the ALM is

z

t

= T (b)Z
t�1 + V e

t

, (19)
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where T (b) = (T1(b), T2(b), . . . , Tp

(b)) and Z

t�1 = (z0
t�1, z

0
t�2, ...z

0
t�p

)0.

With the above assumptions and derivations, our model becomes a special and

extended case of Marcet and Sargent (1989). It is a special case because our model

does not have heterogeneous agents and private information; it is an extension because

in our model agents run pth order VARs, while in Marcet and Sargent (1989) agents

only run first-order VARs. In Appendix A.2, we show mathematically how our model

fits into Marcet and Sargent (1989)’s framework. This setup allows us to define an

equilibrium without proof in the subsequent discussion, as the theoretical foundations

have already been provided by Marcet and Sargent (1989).

3.2.2 Equilibrium and stability under learning

With the PLM and ALM given as above, the linear least-squares projection of y
t

on

Y

t�1 can be calculated as

P [y
t

|Y
t�1] = s(b)Y

t�1, (20)

where s(b) is the projection operator defined as

s(b) = i

n

T (b)(E
t

Z

t�1Y
0

t�1)(Et

Y

t�1Y
0

t�1)
�1
. (21)

The selection matrix i

n

= [I 0] picks out the vector y
t

from the projected z

t

. Intuitively,

the coe�cients of the population regression of Z
t�1 on Y

t�1 are computed first. The

result is then fed into the ALM to yield the optimal projection coe�cient matrix s(b).

Note that the theoretical population regression is not one that the learning agents can

really run, as they do not observe Z

t�1. If the agents’ forecast (16) converges to this

(optimal) least-squares projection, the system has reached an equilibrium. We are going

to call this a “limited information learning equilibrium.”

Proposition 3. A limited information learning equilibrium (LILE) is a matrix b =
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(b1, b2, . . . , bp) that satisfies

b = s(b), (22)

where b is defined by (21).

Hence, this equilibrium is a fixed point of the mapping s.

Evans and Honkapohja (2001) formalize the idea of an equilibrium with restricted

perceptions, which requires that given agents’ misspecified perceptions, the resulting

economic dynamics is such that agents are not able to detect any systematic errors.

The limited information equilibrium satisfies this requirement. The coe�cient matrix

of the OLS regression (15) is unbiased and converges in the long run to the theoretical

population regression coe�cient matrix

b

⇤ = (E
t

y

t

Y

0
t�1)(Et

Y

t�1Y
0
t�1)

�1
.

One requirement of the population regression is the orthogonality condition

EY

0

t�1[yt � b

⇤
Y

t�1] = 0.

It follows that in equilibrium,

EY

0

t�1[yt � s(b)Y
t�1] = 0.

That is, agents’ forecasting errors are orthogonal to the information set Y
t�1. It implies

that for any specific forecasting model, agents can no longer detect any systematic

errors and improve upon their existing forecasts.6 The di↵erence between a limited

information equilibrium and a restricted perceptions equilibrium is that in the latter

case, agents are not aware that there are hidden variables and do not use past values

6Agents can still improve their forecasts by selecting an optimal model among a set of models.
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of endogenous variables to extract information.

While the mathematical foundations of Marcet and Sargent (1989) allow us to define

the LILE, our equilibrium is conceptually di↵erent from theirs. Their limited informa-

tion equilibrium is an REE with private information, and learning serves to explain how

agents learn to reach it. In our model, the limited information equilibrium only occurs

when agents are not rational. It arises because under bounded rationality, agents are

assumed unable to observe the exogenous processes. That’s why we call it a “learning

equilibrium.”

Under learning, agents update the parameters of the VAR (equation 14) every period

as new data become available. The coe�cients of the VARs can be computed using the

recursive least squares formulas

b

t

= b

t�1 + �

t

R

�1
t

Y

t�1(yt � b

0

t�1Yt�1),

R

t

= R

t�1 + �

t

(Y
t�1Y

0

t�1 �R

t�1),

where �
t

represents a “gain” parameter, and R

t

is a moment matrix. The convergence

of least squares learning is governed by the “E-stability principle,” established by Evans

and Honkapohja (2001), which we now turn to.7 We state the following proposition:

Proposition 4. The limited information learning equilibrium is stable under adaptive

learning if the following di↵erential equation is stable:

db

dt

= s(b)� b. (23)

Thus, the LILE is reachable under adaptive learning if the E-stability equation is

stable. Note that this is a local result that governs the stability of learning within a

small neighborhood of the equilibrium values of b.

7Marcet and Sargent (1989) also establish the same stability conditions.
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Unobservability and the limited information equilibrium lead to two immediate con-

sequences. First, a comparison of (9) and (21) reveals that the LILE generally di↵ers

from the full information REE in functional forms. This suggests that model dynamics

can be significantly di↵erent, not only between equilibrium behavior of the REE and

the LILE, but also between learning dynamics of two models. We believe this is worth

further exploration. In the next section of the paper, we examine the implied levels of

inflation persistence in the LILE and the REE.

The second consequence is the possibility of multiple equilibria. There is no restric-

tion as to what order of VAR agents should run, and even what variables agents should

include in the PLM. In principle, every selection of PLM should lead to a new limited

information REE, as long as the fixed point of the mapping from the PLM to the ALM

exists. Thus, multiple equilibria become the norm in such models. The implication

is that if unobservability is a prevailing phenomenon, then multiple equilibria should

also be equally common in macroeconomic models. The unique REE solution in many

models is merely a full-information special case of a more complex reality.8

3.2.3 Determination of the VAR order p

A remaining issue to address is how agents determine the order p when they run the

VAR(p) model.

In the literature there are at least two methods to handle similar issues. One ap-

proach is the “misspecification equilibrium” approach suggested by Branch and Evans

(2006). In their setup, there are multiple possible underparameterized PLMs (predic-

tors) and equilibria. Their solution is to allow heterogeneous agents to consider all

possible predictors. In equilibrium, agents find their own best performing predictor

8In full information models, multiple equilibria are also possible, but criteria such as the MSV
requirement or the determinacy requirement can often help find a unique solution. The same criteria
cannot be applied to the limited information REE, as the source of multiplicity is not the same.
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given their choices, and it is possible that more than one predictor is utilized (by dif-

ferent agents). This approach requires the assumption of heterogeneous agents. The

second approach is advocated by Cho and Kasa (2011) and others. The idea is to let

agents use a statistical criterion to select the best performing model among all possible

models.

Since we do not consider heterogeneous agents, we will follow the second line of

thought. When facing model uncertainty in real life, econometricians use statistical

criteria to decide which model is their optimal choice. In time series models, information

criteria such as the the Bayesian information criterion (BIC) are often used to determine

the order of VARs. This is what agents will do in our model.

With infinite data, the more lags a PLM has, the more accurate it is, in the sense that

it reduces the gap between the incomplete information ALM and the full information

ALM (recall that most DSGE models can be reduced to infinite order VARs). But

with finite data, the accuracy of parameter estimates deteriorates as the number of lags

increases. The agents therefore face a trade-o↵ between a more precise model and more

precise parameters. The law of parsimony or Occam’s razor provides the remedy to

this dilemma.9 The idea is to maintain a good balance between the goodness-of-fit and

model complexity. In addition to the usual statistics that measures a model’s standard

error, this approach adds a penalty to each additional parameter adopted. The BIC,

proposed by Schwarz (1978), is one of the popularly used criteria that implement this

principle.10 Specifically, the BIC weighs the error and the number of parameters in the

9The principle has a long history. A 14th-century English logician and theologian, William of
Ockham, wrote “entities must not be multiplied beyond necessity.” This is interpreted that the simplest
explanation is the correct one. The principle has played a crucial role in the model selection literature,
and also in many other disciplines including statistics, physics, chemistry, and biology.

10Besides BIC, Akaike information criterion (Akaike, 1974), minimum description length (Rissanen,
1978), and minimum message length (Wallace and Boulton, 1968) are also widely used as model
selection criteria.
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following way (e.g., see Lütkepohl, 1991):

BIC = log det(⌃
err

) +
k logN

N

, (24)

where det(⌃
err

) refers to the determinant of the variance matrix of the error, N and k

denote the number of data and the number of parameters in the model, respectively.

The first term corresponds to the goodness-of-fit and the second term represents the

overparameterization penalty. A model with a smaller BIC value is considered to be

more preferable than a model with a larger BIC value.

Agents compute the BIC and determine the number of VAR lags endogenously

during real-time learning. We describe the details in the next section, where we apply

the methodology to a new Keynesian model.

4 Application: a new Keynesian model

In this section, we apply our learning approach to a standard new Keynesian model.

Our purpose is twofolds. First, we want to provide an example to illustrate how our

learning and signal extraction approach works. Second, as we argue in the previous

section, one consequence of a limited information equilibrium is that model dynamics

may di↵er significantly from the full information case. We examine such di↵erences for

the new Keynesian model.

On the empirical front, one issue that we are particularly interested in is whether the

new framework implies higher levels of inflation persistence than conventional rational

expectations models. We conjecture that there would be more inflation persistence for

the following reason: first we note that the original structural model (5a) is purely

forward looking. There is no built-in “intrinsic persistence,” except for the AR(1)

process of the shock in (5b). Consequently, in the full information REE (8), the only
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persistence comes from the variable v
t

. This is essentially why in many models, the level

of macroeconomic persistence fails to match the data. With limited information, system

dynamics have changed. In (17), current endogenous variables are not only functions

of v
t�1, but also functions of past levels of endogenous variables. There should be more

persistence in model dynamics.

4.1 A New Keynesian Model

The baseline framework for analysis is the standard New Keynesian model studied by

Woodford (2003), Clarida et al. (1999) and many others. The model economy consists

of a representative household, a continuum of monopolistically competitive firms, and a

central bank. The economy can be described by the following set of linearized equations,

each derived from the optimization behavior of households and firms.

The first equation in the reduced form system is the New Keynesian Phillips curve

(NKPC)

⇡

t

= �E

⇤
t

⇡

t+1 + �x

t

+ u

t

, (25)

and the second equation is the IS curve

x

t

= ��(i
t

� E

⇤
t

⇡

t+1) + E

⇤
t

x

t+1 + g

t

. (26)

⇡

t

is inflation rate, x
t

is the output gap and i

t

is the nominal interest rate, all repre-

senting the percentage deviations of variables from their steady state values. The terms

E

⇤
t

⇡

t+1 and E

⇤
t

x

t+1 represent the private sector’s expectations of inflation and output,

respectively. The parameters � and � denote the discount factor and the elasticity of

intertemporal substitution of a representative household. � is related to the degree of

price stickiness. The disturbance terms u

t

and g

t

represent a cost push shock and a
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shock to aggregate demand. They are assumed to follow AR(1) processes

u

t

=⇢u
t�1 + ũ

t

, (27a)

g

t

=µg

t�1 + g̃

t

, (27b)

where 0 < ⇢, µ < 1 and ũ

t

⇠ iid(0, �2
u

) and g̃

t

⇠ iid(0, �2
g

).

The monetary policy of the central bank is represented by the Taylor rule (Taylor,

1993)

i

t

= ⇡

t

+  

⇡

(⇡
t

� ⇡

⇤
t

) +  

x

(x
t

� x

⇤
t

), (28)

where ⇡⇤
t

and x

⇤
t

are the target levels of inflation rate and the output gap. Without loss

of generality, we assume ⇡⇤
t

= x

⇤
t

= 0. Then, the rule is reduced to

i

t

=  

⇡

⇡

t

+  

x

x

t

, (29)

where  
⇡

> 0 and  
x

> 0.

These equations can be combined into a reduced form as (5a) and (5b), which we

reproduce here:

y

t

= ME

⇤
t

y

t+1 + Pv

t

,

v

t

= Fv

t�1 + e

t

,

where y

t

= (⇡
t

, x

t

)0, v
t

= (u
t

, g

t

)0, and e

t

= (ũ
t

, g̃

t

)0. In (5b), F = diag(⇢, µ) and the

disturbance term e

t

follows iid(0, R) where R = diag(�2
u

, �

2
g

). The matrices M and P
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Table 1: Parameter values

� � � ⇢ µ  

⇡

 

x

0.99 0.024 1/0.157 0.35 0.35 1.05 0.05

depend on the choice of the monetary policy. They are given by

M =
1

1 + � 

x

+ �� 

⇡

0

B@
(1 + � 

x

)� + �� �

��� 
⇡

+ � 1

1

CA , (30a)

P =
1

1 + � 

x

+ �� 

⇡

0

B@
1 + � 

x

�

�� 
⇡

1

1

CA . (30b)

We follow Woodford (2003) and Bullard et al. (2008) to calibrate the parameters

of the model. Table 1 lists the values of parameters we choose to use. Since most

parameter values are quite standard, we do not elaborate on the calibration process.

4.2 Limited information learning equilibrium

The full information REE of this model is well known. With standard parameter values,

the system has a unique REE as long as the central bank’s policy follows the long-run

Taylor principle (Bullard and Mitra, 2002).

With full information, the learning agents’ PLM is given by (6), which corresponds

to the MSV solution under rational expectations. Agents estimate the parameters of

(6) and use the results to make one-step forecast (7). Plugging (7) into (5a), we obtain

the ALM as (8). It is also well known that the REE is E-stable if the Taylor principle

is satisfied.
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The equation that corresponds to inflation dynamics is

⇡

t

= b

⇡

v

t

,

where b
⇡

is a parameter. The inflation rate is a function of the shock variable alone. If

the shock is not persistent, then inflation will “jump” to equilibrium on impact of any

shock, and there will be zero persistence. With persistent shocks, the sole source of

inflation persistence is the AR(1) shock process. As documented in the literature, the

exogenous process is not persistent enough to match the level of inflation persistence

we observe in the data.

With limited information, the exogenous processes, (27a) and (27b), are not observ-

able. Agents will need to run VARs to form their forecasts.11 In the following exercise,

we put aside the issue of the endogenous determination of VAR lags, and consider six

variants of VARs as agents’ forecasting models (the case of lag selection will be dealt

with in the last subsection). In addition to the full VAR(p) type of forecasting func-

tions, we will allow our agents to consider AR(p) models. These models have the same

number of lags as VAR(p) but have fewer parameters (no o↵-diagonal elements). We

take an interest in them because various studies, such as Adam (2007), find that in

experiments, real-life agents’ expectations are often better characterized by simple ARs

than more sophisticated models. Hommes and Zhu (2012) define a “behavioral learning

equilibrium” for economies resided by agents who do AR(1) forecasting.

Without loss of generality, we let p = 1, 2, 3. That is, our agents have a set of six

models to choose from. Table 2 lists the forecasting functions agents use.

The complexity of the model does not allow us to derive the limited information

equilibrium analytically. We compute the equilibrium numerically as follows.

11We do not consider other belief functions such as ARMA or VARMA. The results of our paper
should extend to those specifications.
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Table 2: Forecasting functions

VAR(p) y

t

=
P

p

j=1 bjyt�j

+ ✏

t

, p = 1, 2, 3.

AR(p) ⇡

t

=
P

p

j=1 b⇡,j⇡t�j

+ ✏

⇡,t,

p = 1, 2, 3.

x

t

=
P

p

j=1 bx,jxt�j

+ ✏

x,t

, p = 1, 2, 3.

The key is to compute the fixed point of s(b) = b. We adopt the numerical approach

of Bullard et al. (2008), which they call the “E-stability algorithm.” It is a fixed point

iteration

b

t

= b

t�1 + (s(b
t�1)� b

t�1), (31)

where  is a small positive number. An advantage of this approach is that it not only

computes the equilibrium, but also eliminates unstable solutions. In other words, any

equilibrium found by this algorithm is guaranteed to satisfy the E-stability condition.

Using this approach, we attempted to compute the limited information equilibrium

for every forecasting function we defined in Table 2. It turns out that for each PLM,

there exists a limited information learning equilibrium that is stable under learning. The

convergence is robust given di↵erent initial values. We list the computed equilibrium

matrix b for each case in Table 3.

Table 3: The equilibrium coe�cients in various PLMs

VAR(1)

 
0.5819 �0.0175

0.1390 0.5067

!
yt�1 + ✏t

VAR(2)

 
0.5102 0.0028

�0.0291 0.4567

!
yt�1 +

 
�0.0959 �0.0024

0.0242 �0.0503

!
yt�2 + ✏t

VAR(3)

 
0.5390 0.0042

�0.0443 0.4582

!
yt�1 +

 
�0.0983 �0.0026

0.0269 �0.0493

!
yt�2 +

 
0.0198 0.0007

�0.0078 0.0053

!
yt�3 + ✏t

AR(1)

 
0.7478 0

0 0.4978

!
yt�1 + ✏t

AR(2)

 
0.4980 0

0 0.4595

!
yt�1 +

 
�0.0850 0

0 �0.0527

!
yt�2 + ✏t

AR(3)

 
0.5198 0

0 0.4627

!
yt�1 +

 
�0.0859 0

0 �0.0519

!
yt�2 +

 
0.0156 0

0 0.0061

!
yt�3 + ✏t
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4.3 Inflation persistence

First, we compute the level of persistence for the economy that is in the limited in-

formation learning equilibrium. That is, we assume that agent learning has already

led the economy to converge to the equilibrium, and we compute inflation persistence

using those equilibrium dynamic equations. We do this to make a direct comparison

of system dynamics in the two distinct equilibria: the limited information equilibrium

and the full information REE. Dynamics of learning is considered in the next section.

Following Fuhrer (2009), we employ six measures of persistence for inflation. The

first measure (AR1) is simply the autoregressive coe�cient obtained by estimating

an AR(1) process for inflation data. The second measure is the largest root of the

univariate time series process (LR): if the autoregressive representation of inflation is

of lag of length k

⇡

t

= c1⇡t�1 + c2⇡t�2 + ...+ c

k

⇡

t�k

+ e

t

,

then the companion matrix for the state space representation is

C =

2

664
c1 . . . ck

I 0

3

775 .

LR is the largest root of the matrix C. The next two measures are closely related.

sum(AR) is the sum of the autoregressive coe�cients c1...ck, and sum(|AR|) is the sum

of the absolute values of these coe�cients. The fifth measure is originally suggested by

Cogley et al. (2007). Persistence is measured by the R

2 of the j-step-ahead forecast

of an VAR of inflation. The rationale is that higher persistence makes future inflation

more predictable. Our sixth measure is the autocorrelation function (ACF). It is a

vector of the autocorrelations of current inflation with a series of its own lags. For
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Table 4: Inflation persistence in di↵erent equilibria (full and limit information)

Models Measures of persistence

Limited Information AR1 LR sum(AR) sum(|AR|) predictability

VAR(1) 0.6506 0.3500 0.5990 0.9111 0.4368

VAR(2) 0.4584 0.3500 0.4205 0.6042 0.2160

VAR(3) 0.4814 0.3500 0.4486 0.6258 0.2366

AR(1) 0.7478 0.5503 0.7016 1.0649 0.5737

AR(2) 0.4590 0.3500 0.4211 0.6045 0.2165

AR(3) 0.4811 0.3500 0.4481 0.6255 0.2363

Full information

REE 0.3500 0.3500 0.3500 0.3500 0.1225

example, the ith autocorrelation coe�cient in the vector is defined as

⇢

i

=
E(⇡

t

⇡

t�i

)

var(⇡
t

)
,

where the denominator is the variance of inflation. Given the ALM and parameter

values, the ACF can be analytically computed for each LILE. Five scalar measures can

then be calculated from the computed ACFs.

In Table 4, we compare the first five measures of persistence across six limited-

information models and the full-information REE model. The full information bench-

mark case is listed in the last row of the table. The first column of the table lists all

the forecasting functions we consider for learning agents. From the table, we can see

that the level of persistence of the REE model is entirely governed by the calibrated

persistence of the exogenous process (⇢ = 0.35). There is no intrinsic persistence, as

we argued above. In comparison, the six limited-information models display various

degrees of intrinsic persistence. The levels of persistence in the six limited information

models are almost all higher than the REE case. The VAR(1) model, for example,

implies a first order autoregression coe�cient of 0.65, almost twice the level of the full
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Figure 1: Inflation persistence in perfect information REE (denoted MSV) and LILEs

information model. In terms of predictability, the VAR and AR models score at least

twice as good as the REE model. For example, the VAR(3) model’s predictability is

almost exactly twice that of the REE model. In Figure 1, we plot the ACFs of all

seven models together. The autocorrelation functions of the REE model lies to the

far left, indicating that inflation correlations over time is the lowest among all models.

Among the six belief functions, VAR(1) and AR(1) perform the strongest in terms of

generating higher ACFs. Out of the six measures of persistence, only one measure, the

largest root (LR) does not produce significant di↵erences between the full information

and limited information cases. Only the AR(1) performs better than the REE models

when measured with LR. The other five models’ LRs are identical to that of the REE

model.

Thus, higher persistence arises in a standard model when agents have bounded

rationality and limited information. This type of persistence is intrinsic, as it does not

rely on any structural element of the model. Persistence is a direct result of expectation
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formation and the self-referential nature of the model.

4.4 Endogenous selection of VAR orders

Our analysis in the previous subsection focuses on equilibrium dynamics. Agents’ learn-

ing behavior was not explicitly modeled. We take up this task now. Agents will now

estimate their VARs in each period to update their parameters and forecasts. They

must decide the number of lags to use in the VAR and whether or not the AR models

are better. They not only need to run regressions to estimate the parameters of their

models, but also have to periodically re-evaluate their forecasting models with the BIC,

and switch to the best-performing model accordingly.

One concern is that agents may choose higher and higher number of lags for their

VARs as their sample size approaches infinity. This is possible because as the sample

size increases, the cost of using more data gradually diminishes. As we state earlier, the

case of infinite data availability is uninteresting as it does not realistically reflect the

trade-o↵ between model complexity and forecasting accuracy that real-life economists

must face. It also does not let agents consider the possibility of varying system dynamics

and structural breaks. We therefore implement a learning method that relies on finite

data. Specifically, our agents learn with rolling window regressions. They abandon

old data and only use the most recent N number of observations to estimate their

model. Rolling window regressions are similar to constant gain learning (Friedman,

1979, Orphanides and Williams, 2004), and are frequently employed in empirical studies

(e.g., see Swanson, 1998, Thoma, 2007, and Stark, 2010 among many others).

What is critical is the choice of N , the number of observations that the agent uses for

model evaluation. Its choice directly a↵ects which model will be chosen by the agent,

because in the BIC formula (24), the relative weight between the error term and the

penalty term depends on sample size N . In similar studies in the literature, a sample
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size of 30–100 is considered to be empirically plausible. For example, Pesaran and Tim-

mermann (2004) let N = 60, which corresponds to 15 years of quarterly observations.

In constant gain learning, the sample size is approximately equal to one or two times

the inverse of the learning gain. Orphanides and Williams (2005)’s estimate of this gain

parameter using the Survey of Professional Forecasters is between 0.01 and 0.04. Milani

(2006)’s estimate is 0.015. Many other papers report similar results, with the majority

of the estimates being around 0.02. This is translated into a sample size of 50–100

in the rolling window regression. In the following analysis, we experiment with three

di↵erent sample sizes: 100, 2,000 and 200,000. The last number is quite generous. We

do this purposely to highlight what happens when the sample size approaches infinity.

We must also decide how often agents re-evaluate their model choices. In principle,

agents could perform these evaluations in every period. They can also do so in every

finite number of periods. We experiment with a few di↵erent values. It turns out that

the core results are quite similar across di↵erent cases. We report the results for our

benchmark case in which agents perform a BIC test every 100 periods.12

In summary, our simulation procedures are as follows. In period 0, agents randomly

select a forecasting model among the six available choices. Using this model, they do

least-square learning to estimate the model’s parameters for a fixed period of time (100

periods). After every 100 periods, they compute the BIC to evaluate which forecasting

model is optimal. If the currently used model is optimal, they continue to use the model.

Otherwise, agents will switch to the model that performs the best in the statistical test,

and continue with parameter learning for another 100 periods.

To highlight the value-added of limited information learning, we also simulate agents’

learning process for the full information case, in which agents’ belief function is y

t

=

a+ bv

t

and observe v

t

.

12We will gladly provide results for other specifications upon requests.
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Table 5: Level of inflation persistence with learning and endogenous model selection

Models Measures of persistence

AR1 LR sum(AR) sum(|AR|) predictability

Data 0.6202 0.7989 0.6784 0.9980 0.4208

Full information learning 0.3557 0.3767 0.3931 0.4532 0.1273

Limited information learning 0.6498 0.4594 0.6622 0.9922 0.4338

We measure the levels of persistence for this simulation and compare with them

with the real data. Inflation data is obtained from the St. Louis Fed’s FRED database

and spans 1959:Q1 and 2013:Q1. Inflation rates are calculated by taking log-di↵erences

of GDP deflators and annualize them. We use a band pass filter to detrend the data.

This procedure follows that of Adam (2005).

The result is reported in Table 5 (see also Figure 2 for the ACF). With all six mea-

sures, our comparison with the full information case shows that limited information has

led to a significant rise in the level of inflation persistence and is much more comparable

to the level of persistence in the real data. Persistence comes from two sources: one

is the intrinsic persistence embedded in the equilibrium dynamics. This is the same

mechanism that leads to higher persistence in the previous subsection. The second

source of persistence comes from the learning behavior of agents itself.

Two other findings emerge from this analysis. The first is that as the sample size

increases, agents tend to select a more complex VAR as their forecasting model. This

is not surprising. What is unexpected is that it takes a very large sample size for

them to make such decisions. Table 6 reports the estimated probability that each

forecasting model will be chosen by agents, based on simulations of the model for 1

million periods.13 When the sample size is 100 or 2000, agents tend to select AR(1) or

AR(2) models. It is only in the third case, when the sample size is 200,000, that agents

13The simulation had to be run for a million periods because in the third case, agents’ sample size
is 200,000.
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Figure 2: Autocorrelation function for full and limited information.

select the VAR(3) model with a high probability. Since large sample sizes are typically

not available to real-life agents, it is reasonable to conclude that simpler belief functions

are more likely to prevail in reality. This result provides a justification for using simple

“misspecified” belief functions for boundedly rational agents. Most researchers argue

for simple belief functions on the ground that they are consistent with experimental

or survey results (Adam, 2007). Our analysis demonstrates that even agents who are

equipped with complex statistical tools may choose simple belief functions, because

when there are limited observations, these functions perform the best statistically.14

Our second finding is closely related to the first one. Notice that in Table 6, no

forecasting model has a convergence probability of 1. This implies that even agents

tend to select a particular model most of the time, there will be times when they decide

to switch to a di↵erent model for forecasting purposes. This phenomenon is sometimes

14The results in the three tables depend on the model selection criterion we use, the BIC. We also
experimented with another criterion, the AIC, and yielded similar results. We conjecture that with
other statistical criteria, the quantitative relationship between N and the optimal model may change
slightly, but our qualitative evaluation of the relationship should remain true.
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Table 6: Estimated probability that each model will be selected

Sample Size Models: VAR(1), VAR(2), VAR(3), AR(1), AR(2), AR(3)

100 0.0615 0.0105 0.0037 0.7048 0.1923 0.0272

1,000 0.0046 0.0033 0 0.2232 0.7443 0.0246

200,000 0 0.198 0.9332 0 0 0.0470
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Figure 3: Model switching with limited information learning

referred to as “escape dynamics,” as in Williams (2001), Williams (2002), Cho et al.

(2002) and Cho and Kasa (2011).

Figure 3 shows the model switching pattern in the simulation in which the sample

size is 100. The AR(1) model has the highest rate of occupancy, and the AR(2) model

ranks second. Most of the time, agents’ decisions fluctuate between these two models.

But occasionally, agents also switch to other models. Higher order models such as

the VAR(3) model is rarely used. This is no doubt due to the limited sample size we

impose on the agents. Agents switch their models quite frequently. This is because

they are not able to estimate the parameters of the true model robustly, given the
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limited number of data available to them. Our underlying assumption is that agents

discount old data when estimating their forecast models. This makes their parameter

estimates fluctuate around the true equilibrium parameter values but never converge

to them. If the estimated parameters deviate too far away from the true values, the

“true” forecasting model will predict poorly and be outperformed by a model which is

less accurate but have more robust parameters. As we pointed out in Section 3, agents

face a dilemma of choice between precise models and precise parameters. Selection

criteria such as the BIC help them make such a choice, but also makes it more likely

for them to switch away from their initial models.

4.5 Discussion

Early inflation models can reproduce the level of inflation persistence in the data be-

cause they incorporate lags of inflation in the Phillips curve (see, for example, Gordon

(1982), among others). Standard rational expectations models fail to capture the same

level of persistence primarily because these models are forward-looking in the core,

which implies prices should jump in response to shocks. To remedy this, there must

be a reconciliation between the “backward correlation” in the data and the forward-

looking nature of the model. Perhaps because of this, e↵orts to resolve this puzzle often

focus on deriving a new Phillips curve that has lagged terms for inflation. For example,

Mankiw and Reis (2002)’s sticky information approach, Christiano et al. (2005)’s price

indexation, and Gaĺı and Gertler (1999)’s rule of thumb consumers all produce new

Phillips curves that have lagged terms.

Our approach is innovative in that it does not require the new Phillips curve to

have any lagged terms. In the system (5a), the structural form of the Phillips curve

is purely forward-looking. Yet due to the unobservability of shocks, agents must reply

on past values of endogenous variables to extra information about the unobservables.
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Consequently, the solution of the model (the actual law of motion) necessarily includes

lagged terms of these variables. Consider our version of the inflation equation in the

equilibrium:

⇡

t

=
pX

j=1

c

j

⇡

t�j

+
pX

j=1

d

j

x

t�j

+ ✏

t

.

Inflation is a function of lagged inflation in equilibrium. This equation is reminiscent

of early models of the accelerationist Phillips curve. Indeed, even the rationale for

including the lagged terms is suggestive of the early literature, which argues that agents’

expectations should depend on past values of inflation.

Thus, without resorting to model complications such as price indexing, we have

found a way to make the Phillips curve more conformable with empirical estimates.

The key element that makes this possible is bounded rationality and realistic forecasting

behavior of learning agents.

5 Conclusion

In this paper we propose an approach of adaptive learning that can better satisfy the

cognitive consistency principle. We impose two information limitations on learning

agents: they cannot observe the fundamental shocks, and they only possess finite data.

To forecast future endogenous variables, agents solve signal extraction problems by

running VARs. We show that under this assumption, agents no longer have perceived

laws of motion that are consistent with the rational expectations equilibrium (REE).

This leads to limited information learning equilibria that are generally di↵erent from

full information REEs. Our application of the approach to the new Keynesian model

demonstrates that the dynamics of model are significantly di↵erent from those of the

standard learning models. The level of inflation persistence is amplified considerably

in the model with limited information.
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Given the result of this paper, chances now exist for us to study other topics using

the limited information approach. Potentially a large number of issues can be examined

using this new approach. One area that we are particularly interested in is the stability

under learning of such equilibria under di↵erent monetary policy regimes. This will be

our next project.
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A Appendix

A.1 A more general reduced form model

We consider more general form of economic model with a lagged value of endogenous

variable y

t

y

t

= ME

⇤
t

y

t+1 +Ny

t�1 + Pv

t

,

v

t

= Fv

t�1 + e

t

,

where y

t

is an n ⇥ 1 vector of endogenous variables, and v

t

is an m ⇥ 1 vector of

exogenous variables which follow a stationary VAR. e
t

is an m⇥1 vector of white noise.

E

⇤
t

represents expectations of private agents that are not necessarily rational.

A.1.1 Perfect Information REE

MSV form of PLM is

y

t

= by

t�1 + cv

t

.
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Agents form expectations

E

t

y

t+1 = b

2
y

t�1 + (bc+ cF )v
t

.

ALM becomes

y

t

= (Mb

2 +N)y
t�1 + (M(bc+ cF ) + P )v

t

.

The REE is defined as the fixed point of

b = T (b) = Mb

2 +N

c = T (c) = M(bc+ cF ) + P .

A.1.2 Limited information learning equilibrium (LILE)

In the REE, the actual law of motion can be expressed as VAR(1) form

y

t

=
1X

j=1

D

j

y

t�j

+ ✏

t

where

D

j

=

8
>><

>>:

b+ cP

�1
, j = 1

�(cFc� cP

�1)j�2
cP

�1(cFc

�1 + b+ cP

�1 + 2PFP

�1), j � 2.

Agents may have VAR(p) form of PLM

y

t

=
pX

j=1

b

j

y

t�j

+ ✏

t

.

Defining Y

t�1 = (y0
t�1, y

0
t�2, ..., y

0
t�p

)0, it is also written as

y

t

= bY

t�1 + ✏

t

.
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Agents form expectations

E

⇤
t

y

t+1 =
pX

j=1

b̃

j

y

t�j

where

b̃

j

=

8
>><

>>:

b1bj + b

j+1, j = 1, . . . , p� 1

b1bj. j = p.

The ALM becomes

y

t

= (Mb̃1 +N)y
t�1 +M

pX

j=2

b̃

j

y

t�j

+ PFv

t�1 + Pe

t

.

It can also be written as

z

t

=
pX

j=1

T

j

(b)z
t�j

+ V e

t

,

where z

t

= (y0
t

, v

0
t

)0, T1(b) =

0

BB@
Mb̃1 +N PF

0 F

1

CCA , T

j
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0

BB@
Mb̃

j

0

0 0

1

CCA when j � 2,

and V =

0

BB@
P

I

1

CCA.

The ALM is further simplified to

z

t

= T (b)Z
t�1 + V e

t

,

where T (b) = (T1(b), T2(b), . . . , Tp

(b)) and Z

t�1 = (z0
t�1, z

0
t�2, ...z

0
t�p

)0.
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With the PLM and ALM given as above, the projection of y
t

on Y

t�1 can be calcu-

lated as

P [y
t

|Y
t�1] = s(b)Y

t�1,

where s(b) is the projection matrix defined as

s(b) = i

n

T (b)(E
t

Z

t�1Y
0

t�1)(Et

Y

t�1Y
0

t�1)
�1
.

The selection matrix i

n

= [I 0] picks out the vector y
t

from the projected z

t

.

A limited information learning equilibrium (LILE) is a matrix b = (b1, b2, . . . , bp)

that satisfies

b = s(b).

A.2 Marcet and Sargent (1989)’s framework

We show how our approach fits into Marcet and Sargent’s framework as a special case.

Marcet and Sargent define their model as follows. There is a state vector z

t

. Let

z

it

= e

i

z

t

, where e
i

is a selector matrix and z

it

is a subvector of z
t

. The index i represents

the types of agents. There are two types of agents, a and b. Type a agents only observe

z

at

, and type b agents only observe z
bt

. Agents of type j want to predict future values of

subvectors z
k(j) = e

k(j)zt, where k(a) = c and k(b) = d. z
ct

and z

dt

are possibly distinct

subvectors from z

at

and z

bt

. The beliefs of agents are given by

E(z
ct

|z
at�1) = �

a

z

at�1,

E(z
dt

|z
bt�1) = �

b

z

bt�1.
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Given these beliefs, the actual law of motion is

z

t

= T (�)z
t�1 + V (�)✏

t

,

where ✏
t

is a vector of white noise.

Our model is

y

t

= ME

⇤
t

y

t+1 + Pv

t

, (32)

v

t

= Fv

t�1 + e

t

, (33)

If we define

z
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= z

bt
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t
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✏
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= e

t

,

and let �
a

= �

b

, and z

at

= z

bt

= z

ct

= z

dt

, then our model becomes a special case of

Marcet and Sargent’s framework.
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