Natural Disasters and Municipal Bonds

Jun Kyung Auh, Jaewon Choi, Tatyana Deryugina, Tim Park

March 9, 2023

Introduction ●000			Appendix 00

Our exposure to natural disasters is increasing

- Disaster damage growing faster than GDP, number of "billion-dollar" disasters has increased consistently since 1980
- Growth in the number of disaster and emergency declarations in the US averaged 7% annually in 1990–2020
- Severity of extreme weather events will continue to grow (IPCC 2021)
- Physical climate risk ranks as the top climate finance risk over next 30 years (Stroebel and Wurgler 2021)
- Understanding of the role physical risk plays in asset markets is limited

Introduction		Methodology				Appendix
0000	0000	00000000	00000	0000000	0	00

How do municipal bond prices respond to natural disasters?

- US municipal bonds: \$4 trillion market in 2022
- Geographic diversification to protect against physical climate risk is not feasible
- Focus on prices allows for diff-in-diff-style analysis, comparing same bonds before and after disasters
 - Ex-post analysis has implications for ex-ante pricing of risk
- Heterogeneity of response along various dimensions helps understand mechanisms

	wiethodology		Mechanisms		Appendix.
0000 0000	000000000	00000	0000000	0	00

Preview of results: post-disaster dynamics

- Following a severe natural disaster, uninsured municipal bond returns decrease by 31 basis points (0.31%) on average
 - Estimated investor losses are big: \$9.25 million per disaster-affected county (\$9.6 billion across all counties in our sample)
- Estimated effects depend on:
 - Whether bonds are insured
 - Whether bonds are financed by general or project-specific revenue
 - Disaster severity
 - Post-disaster aid
 - Local government's financial health and revenue diversification

Introduction				Appendix 00
Contribu	itions			

- Comparing prices of same set of bonds avoids potential endogeneity of post-disaster bond issuance (Jerch, Kahn, and Linn 2021)
- Rich heterogeneity analysis allows better understanding of mechanisms (e.g., role of federal aid)
- Study complements those of muni market response to sea level rise (Painter 2020; Goldsmith-Pinkham, Gustafson, Lewis, and Schwert 2021) and heat risk (Acharya et al. 2022)
 - Less salient than occurrence of natural disasters
 - Cannot be studied using the same set of bonds
 - SLR affects smaller set of communities

Data ●000			Appendix 00

Municipal bond data

- Municipal Securities Rulemaking Board (MSRB): 2005–2020
 - Reports each municipal bond transaction, including bond, date, and price
 - Aggregate to bond-by-week level
 - Exclude bond prices one week after issuance
- Mergent Municipal Bond Database: 1960–2016
 - Bond characteristics (e.g., source of repayment, coupon frequency, coupon rate)
 - Consider only tax-exempt bonds with fixed or zero coupons
 - Classify bonds as general obligation (GO) or revenue (REV) based on source of repayment

Introduction Data 0000 Deta Methodology Results Mechanisms Conclusion Appendix 00000 Spatial Hazard Events and Losses Database for the United

States (SHELDUS): 1960–2018

- Event type, year and month of occurrence, affected counties
- Estimated property and crop damage, injuries, and fatalities
- Exact event date is not available \implies assume disaster occurs on the last day of the month
- Focus on climatological disasters

Introduction
0000Data
0000Methodology
000000Results
000000Mechanisms
00000000Conclusion
000Ap
000Federal Emergency Management Agency (FEMA)Database:2005–2018

- Date and reason for major disaster declaration
- Amounts of Individual Assistance (ZIP level), Public Assistance (county level) and Hazard Mitigation funds (county level)
- Aggregate to county-year, normalize by reported SHELDUS damage

	Data	Methodology				Appendix
0000	0000	00000000	00000	0000000	0	00

County-level economic and financial data

- Regional Economic Information System (REIS): population, personal income
- Bureau of Labor Statistics: unemployment rate
- Census of Governments: local government debt, cash and securities, and tax revenue

Defining a natural disaster

- SHELDUS includes many small events: 191,177 county-months with "disasters" in the 2005–2018 period
- \implies calculate real per-capita property and crop damage, use \$3 as the cutoff for what constitutes a "disaster"
 - \blacktriangleright \approx top 25% of events (25,426 county-months)
 - results robust to considering top 10% or top 20% of events by per-capita damage

Introduction Data Methodology Results Mechanisms Conclusion Appendix 0000 0000 00000 0000000 0000000 00 00 00

Measuring bond prices

- Municipal bonds are rarely traded (< 3 times per year) ⇒ high-frequency event studies with raw data are impossible
- But there are tens of thousands of bond issuers (as many as 50,000)
- Solution: employ the repeat sales approach to obtain weekly bond returns for many US counties
 - Motivated by real-estate literature (e.g., Case and Shiller 1987)
 - Has been successfully applied to corporate bonds (Spiegel and Starks 2016; Robertson and Spiegel 2017)

IntroductionDataMethodologyResultsMechanismsConclusionAppendix0000000000000000000000000

Estimation of weekly return series

$$p_{i,s} = p_{i,b} \prod_{t=b+1}^{s} (1+r_t^c) \varepsilon_{i,t}$$

▶ $p_{i,s}$ and $p_{i,b}$: prices of bond *i* in weeks *s* and *b* (*s* > *b*), respectively

▶ r_t^c : overall weekly return in county c and week t

• $\varepsilon_{i,t}$: bond-specific idiosyncratic return component

• Take logs and rearrange...

		Methodology				Appendix
0000	0000	00000000	00000	0000000	0	00

Repeat sales approach for municipal bonds

$$R_{i,b:s} = \sum_{t=b+1}^{s} R_t^c + e_{i,b:s}$$

- $R_{i,b:s} = \log(p_{i,s}/p_{i,b})$ is log return of bond i issued by county c from week-year b to s
- $\blacktriangleright \ R_t^c = \log(1+r_t^c)$ is county-level weekly log returns at week-year t

•
$$e_{i,b:s} = \sum_{t=b+1}^{s} \log(\varepsilon_{i,t})$$

• Quantity of interest: R_t^c

	Methodology 0000●0000		Appendix 00

Repeat sales estimation

- For each county c, regress individual bond log returns $(R_{i,b:s})$ on week-year indicators that equals 1 if $b < t \le s$
 - \blacktriangleright Effectively estimating time fixed effects of bonds issued by county c
- Weight by par value of bond and the square root of time between \boldsymbol{b} and \boldsymbol{s}
- Use five-year rolling window [y-2, y+2] to estimate returns in year y (results similar with three-year rolling window)
- Do for all bonds issues by a county and for REV/GO bonds separately

		Methodology				Appendix
0000	0000	000000000	00000	000000	0	00

Repeat sales vs raw return data

		Methodology				Appendix
0000	0000	000000000	00000	0000000	0	00

Constructing cumulative abnormal returns

• For each extreme weather event indexed by (c,t), the weekly cumulative abnormal return at week τ from t-15 is:

$$WCAR_{c,t,\tau} = \sum_{s=-15}^{\tau} (R_{t+s}^c - R_{t+s}^b)$$

R^b_{t+s}: Average repeat sales return of 20 benchmark counties
 Chosen among disaster-unaffected counties 500+ miles away that most closely match: lagged average coupon, credit rating, maturity, population, per-capita income, and unemployment rate

IntroductionDataMethodologyResultsMechanismsConclusionAppendix0000000000000000000000000

Event study estimation

$$WCAR_{c,t,\tau} = \sum_{\substack{t' \in [-15,20], t' \neq -2 \\ + \sum_{p=-5}^{50} \gamma(p)D_{c,t,\tau}(p) + \sum_{q=0}^{40} \delta(q)E_{c,t,\tau}(q) + \alpha_c + \epsilon_{c,t,\tau},$$

• $W_{c,t,\tau}(t') = 1$ if τ weeks from the disaster

- $D_{c,t,\tau}(p) = 1$ if another disaster in the same county at $t + \tau p$
- $E_{c,t,\tau}(q) = 1$ if another disaster within 200 miles at $t + \tau q$
- *α_c*: county fixed effect

	Methodology 00000000●		Appendix 00

Monthly estimates

• For brevity and statistical power, compare monthly CAR at t-2 to CAR at t+4

$$MCAR_{c,t,\tau} = \beta Post_{c,t,\tau} + \sum_{p=-1}^{12} \gamma(p) D_{c,t,\tau}^{M}(p) + \sum_{q=0}^{10} \delta(q) E_{c,t,\tau}^{M}(q) + \alpha_{c} + \epsilon_{c,t,\tau}$$

- $Post_{c,t,\tau} = 1$ four months after the disaster
- (Month-by-month estimates in paper)

IntroductionDataMethodologyResultsMechanismsConclusionAppendix00000000000000000000000000000

Cumulative abnormal returns of uninsured bonds decrease slowly following a disaster

Prices of uninsured revenue (REV) bonds show a larger post-disaster decline

		Methodology	Results			Appendix
0000	0000	00000000	00000	0000000	0	00

Uninsured general-obligation (GO) bonds are unaffected

		Methodology	Results			Appendix
0000	0000	00000000	00000	0000000	0	00

CAR around natural disasters: monthly estimates

Dep Var: CR	All Bonds	REV Bonds	GO Bonds
Post	-0.3144**	-0.5089**	-0.1277
	(-2.3279)	(-2.5602)	(-1.0594)
County FE	YES	YES	YES
No. of Obs.	1996	1185	1316
Adj. R-Squared	0.31	0.32	0.3

Estimated investor losses are big: \$9.25 million per disaster-affected county or \$9.6 billion across all counties in our sample

0000 0000 000000 00000 0 00			Methodology	Results			Appendix
	0000	0000	00000000	00000	0000000	0	00

The repeat sales method is essential in our setting

Natural Disasters and Bond Returns Using the Conventional Approach

Dep Var: CR	eturns	
	REV Bonds	GO Bonds
Post	-1.2733	-0.0127
	(-1.0952)	(-0.0015)
County FE	YES	YES
No. of Obs.	38	15
Adj. R-Squared	0.22	0.1

		Methodology		Mechanisms		Appendix
0000	0000	00000000	00000	000000	0	00

Natural disasters affect income and employment, but not tax revenue

Dep Var:	Income per Capita	Unemployment	Tax Revenue
Current	-1394.4858***	-0.0826	-0.0047
	(-6.2512)	(-1.4271)	(-0.1986)
Short-term	356.0371	0.0655	-0.0235
	(1.4267)	(1.0350)	(-0.9895)
Long-term	836.3147***	0.1311**	0.0468
	(3.3395)	(2.0213)	(1.1444)
County FE	YES	YES	YES
Year FE	YES	YES	YES
No. of Obs.	7809	7851	2275
Adj. R-Squared	0.93	0.87	0.98

		Mechanisms ○●○○○○○	Appendix 00

Bond insurance protects muni investors from natural disasters

Dep Var: CR	All Bonds	REV Bonds	GO Bonds
Post	-0.099	-0.1419	-0.06
	(-1.2862)	(-1.5319)	(-0.5195)
County FE	YES	YES	YES
No. of Obs.	3191	2052	1987
Adj. R-Squared	0.25	0.2	0.3

		Methodology		Mechanisms	Appendix
0000	0000	000000000	00000	000000	

Physical damage is an important determinant of the post-disaster price response of REV bonds

	Below Med	Above Med	Below Med	Above Med
Dep Var: CR	REV Bonds	REV Bonds	GO Bonds	GO Bonds
Post	-0.3502	-0.6132*	-0.1243	-0.1986
	(-1.5429)	(-1.8343)	(-0.7799)	(-1.3201)
County FE	YES	YES	YES	YES
No. of Obs.	594	591	658	658
Adj. R-Squared	0.36	0.43	0.37	0.37

Above-median damage: average per-capita damage is \$528, median is \$44.1 Below-median damage: average per-capita damage is \$6.14, median is \$5.53

		Methodology		Mechanisms		Appendix
0000	0000	000000000	00000	0000000	0	00

Federal disaster aid mitigates negative effect on REV bonds

Dep Var: CR	Zero Aid	Below Med	Above Med
	REV Bonds	REV Bonds	REV Bonds
Post	-1.1954*	-0.7086**	-0.2969
	(-1.9769)	(-2.3249)	(-1.2096)
County FE	YES	YES	YES
No. of Obs.	242	537	648
Adj. R-Squared	0.29	0.34	0.37

Zero aid: average per-capita damage is \$54 Some aid: average per-capita damage is \$336

		Methodology		Mechanisms		Appendix
0000	0000	000000000	00000	0000000	0	00

Federal disaster aid doesn't change the price (non)response of GO bonds to natural disasters

Dep Var: CR	ep Var: CR Zero Aid		Above Med
	GO Bonds	GO Bonds	GO Bonds
Post	-0.0458	-0.2433	-0.1557
	(-0.1882)	(-1.3574)	(-1.1077)
County FE	YES	YES	YES
No. of Obs.	314	560	756
Adj. R-Squared	0.44	0.45	0.29

		Methodology		Mechanisms		Appendix
0000	0000	000000000	00000	0000000	0	00

When local revenue is geographically concentrated, severe disasters negatively affect GO bond returns

Dep Var: CR	Low Severity	High Severity	Low Severity	High Severity
	GO Bonds	GO Bonds	REV Bonds	REV Bonds
Post×Concentrated	0.2266	-0.5454*	0.2388	-0.01
	(0.7484)	(-1.9232)	(0.3992)	(-0.0176)
Post	-0.3643	-0.0652	-0.4649	-0.8143
	(-1.3679)	(-0.2497)	(-0.8535)	(-1.2748)
County FE	YES	YES	YES	YES
No. of Obs.	276	262	238	220
Adj. R-Squared	0.52	0.49	0.5	0.58

- High (Low) Severity: Counties in the top (bottom) tercile of severity
- Concentrated: Counties in the top tercile of local revenue share of total revenue

		Methodology		Mechanisms		Appendix
0000	0000	000000000	00000	000000	0	00

When the local debt-to-tax-revenue is high, severe disasters negatively affect GO bond returns

Dep Var: CR	Low Severity	High Severity	Low Severity	High Severity
	GO Bonds	GO Bonds	REV Bonds	REV Bonds
$Post \times Levered$	-0.0548	-0.5517**	-0.0635	0.2924
	(-0.2199)	(-2.3262)	(-0.1459)	(0.6155)
Post	-0.1518	-0.0142	-0.4773*	-0.5838*
	(-0.9086)	(-0.0600)	(-1.7731)	(-1.6831)
County FE	YES	YES	YES	YES
No. of Obs.	456	398	408	379
Adj. R-Squared	0.41	0.53	0.46	0.5

- High (Low) Severity: Counties in the top (bottom) tercile of severity
- Levered: Counties in the top tercile of debt-to-tax ratio

			Conclusion	Appendix 00
Conclusi	on			

- We study how natural disasters affect municipal bond returns using the repeat sales methodology
- Municipal bond investor losses from historic natural disasters are high
- Diversified bond revenue sources, insurance, and federal financial assistance provide meaningful protection to investors
- Climate change likely to pose additional challenges/costs to municipalities

	Data	Methodology				Appendix
0000	0000	00000000	00000	000000	0	00

Summary statistics: bond returns and natural disasters

[Weekly Bond Returns]

Variable	Mean	Stdev	p25	p50	p75	Ν
Ret, All Bonds (%)	-0.001	1.542	-0.51	0.004	0.562	339391
Ret, REV Bonds (%)	0.002	1.894	-0.551	0	0.609	218304
Ret, GO Bonds (%)	-0.002	1.39	-0.509	0.008	0.571	247898

[Natural Disasters]								
Variable	Mean	Stdev	p25	p50	p75	Ν		
Injuries	2.961	27.329	0	0	0	1033		
Fatalities	0.567	4.047	0	0	0	1033		
Property Damage (\$M)	137.1	1226	1.127	4	14.002	1033		
Crop Damage (\$M)	2.553	16.5844	0	0	0	1033		
Per-capita Damage (\$)	269.137	2392.438	5.319	11.042	39.248	1033		

		Methodology				Appendix
0000	0000	00000000	00000	0000000	0	00

Summary statistics: county characteristics

Variable	Mean	Stdev	p25	p50	p75	Ν
Avg Insured GO (%)	50.47	32.78	19.28	50.23	80.84	990
Avg Insured REV (%)	56.95	30.59	30.26	59.57	85.28	1025
Avg Maturity GO	6.85	2.63	5.28	6.61	8.4	990
Avg Maturity REV	7.83	2.58	6.35	7.79	9.33	1025
Avg Rating GO	2.49	1.05	1.58	2.44	3.18	974
Avg Rating REV	3.59	1.3	2.92	3.52	4.15	1014
# of Bonds Outstanding	1181.78	1571.3	360	750	1367	1033
Population (000s)	616.68	827.64	176.58	383.54	745.46	1033
Income Per Cap (\$K)	40.08	11.99	32.02	38.2	46.03	1033
Unemployment (%)	6.38	2.62	4.4	6	7.9	1033
Federal Aid (\$M)	9.51	50.4	0.01	0.76	4.2	1033
Debt/Cash and Security	1.61	0.94	1.07	1.4	1.87	1025
Debt/Tax Revenue	3.47	3.1	1.98	3.03	4.13	1025

