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Abstract

We analytically characterize robustly optimal monetary policy for an aug-
mented New Keynesian model with a housing sector. In our setting, the hous-
ing stock delivers a service flow entering households’ utility, houses are durable
goods that depreciate over time, and new houses can be produced using a
concave production technology.

We show that shocks to housing demand and to housing productivity have
“cost-push” implications, which warrant temporary fluctuations in the inflation
rate under optimal policy, even under an assumption of rational expectations,
for reasons familiar from the literature on “flexible inflation targeting”. How-
ever, under rational expectations optimal monetary policy can still be charac-
terized by commitment to a “target criterion” that refers to inflation and the
output gap only, just as in the standard model without a housing sector.

Instead, if policy is to be robust to potential departures of (house price
and inflation) expectations from model-consistent ones, the target criterion
must also depend on housing prices. In the empirically realistic case where the
government subsidizes housing, the robustly optimal target criterion requires
the central bank to “lean against” unexpected increases in housing prices, in
the sense that it should adopt a policy stance that is projected to undershoot
its normal targets for inflation and/or the output gap owing to the increase
in housing prices, and similarly aim to overshoot those targets in the case of
unexpected declines in housing prices.

∗We thank Lars Hansen and Monika Piazzesi for helpful comments, and the European Research
Council (Starting Grant no. 284262) and the Institute for New Economic Thinking for research
support.



1 Introduction

The question of how (if at all) asset price movements should be taken into account
in a central bank’s interest-rate policy decisions has been much debated since at
least the 1990s.1 The importance of the issue has become even more evident after the
fallout for the global economy of the recent real estate booms and busts in the US and
several other countries, which at least some attribute to monetary policy decisions
that failed to take account of the consequences for the housing market.2

Yet the issue is not easily addressed using standard frameworks for monetary pol-
icy analysis. One reason is that it is often supposed that large movements in asset
prices are particularly problematic when they are not justified by economic “funda-
mentals,” but instead represent mistaken valuations resulting from mistaken expecta-
tions. An analysis that evaluates alternative monetary policies under the assumption
that the outcome resulting from each candidate policy will be a rational-expectations
equilibrium assumes that there can never be any misallocation of resources due to
speculative mispricing of assets, regardless of the monetary policy that is chosen.
Such an analysis will accordingly conclude that there is no need for a central bank to
monitor or respond to signs of such mispricing — but by assuming away the problem.

Some analyses of the question have accordingly allowed for potential departures
of asset prices from “fundamental” values, introducing an expectational error term in
the asset pricing equation that is specified as an exogenous stochastic process (e.g.,
Bernanke and Gertler (1999, 2001)). But conclusions from such analyses depend on
what is assumed about the nature of expectational errors, and not only on what is
assumed about the probability distribution of errors under some given policy (perhaps
the kind of policy that has historically been implemented), but also, crucially on what
is assumed about how the probability distribution of errors would differ under each
alternative policy that may be contemplated. Yet there is little basis for confidence
about the correctness of a particular choice in this regard.

Here we propose a different approach to the problem. We do not assume that
expectations must necessarily be model-consistent, but we do not assume that ex-
pectational errors must be of any specific type that can be predicted in advance,
either; rather, we associate with any contemplated policy a set of possible probability
beliefs, that includes all possible (internally coherent) probability beliefs that are not
too different from those predicted by one’s model, in the case of that policy and those
beliefs. This is the hypothesis of “near-rational expectations” [NRE] introduced in
Woodford (2010)

This makes the set of possible private-sector beliefs contemplated by the policy
analysis dependent on the particular policy that is adopted, as in the case of the
rational expectations hypothesis. In particular, beliefs are treated as possible if it

1See, for example, Bernanke and Gilchrist (1999, 2001), Gilchrist and Leahy (2002), Christiano
et al. (2010)

2For example, Taylor (2007) or Adam, Marcet and Kuang (2011).
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would not be too easy to disconfirm them using observed data from the equilibrium
of the model, and whether this is so will depend on policy. But the set of beliefs that
are considered will include ones that result in asset valuations different from the ones
that will be judged correct according to the policy analyst’s model; hence the policy
analyst will consider the possibility of equilibria in which assets are mis-priced, and
will therefore consider the consequences of responding to such asset price movements
in different ways.

Because the set of possible “near-rational” beliefs associated with any given pol-
icy includes many elements, analysis of the kind proposed here will not associate a
single predicted path for the economy (contingent on the realized values of exogenous
shocks) with a given policy. It may therefore be wondered how welfare comparisons
of alternative policies are possible. Our proposal, in the spirit of the robust policy
analysis of Hansen and Sargent (2008), is to choose a policy that achieves the highest
possible lower bound for expected utility of the representative household, across all
of the equilibria with “near-rational” expectations consistent with that policy. We
call a solution to this problem a “robustly optimal” policy rule.

We wish to consider the problem of robustly optimal policy within as broad a class
of possible policy rules as possible; in particular, we do not wish to prejudge questions
such as the way in which the policy rule may involve systematic response to housing-
related variables or to indicators of market expectations. Our earlier paper (Adam
and Woodford (2012)) shows how it is possible to characterize robustly optimal policy
rules without restricting oneself a priori to some simple parametric family of policy
rules. The basic idea (reviewed in more detail in section 2) is that we can derive
an upper bound for the maximin level of welfare that is potentially achievable under
any policy rule, without reference to any specific class of policy rules; if we can then
display examples of policy rules that achieve this upper bound, we know that these
are examples of robustly optimal policies. We show here that this method can be
applied to a New Keynesian DSGE model with endogenous housing supply.

We are especially interested in a particular way of specifying the policy rule, in
which the central bank commits itself to fulfill a quantitative target criterion at all
times.3 Under this commitment it uses its policy instrument at each point in time
as necessary in order to ensure that the paths of various endogenous variables satisfy
the relationship specified by the target criterion. In a basic New Keynesian model
without a housing sector and under the assumption of rational expectations, it is
well-known that an optimal policy commitment can be characterized in these terms;
the required target criterion is a “flexible inflation targeting” rule in the sense of

3The robustly optimal policy rule is not unique, as is discussed in more detail in Adam and
Woodford (2012). Different rules may be consistent with the same worst-case NRE equilibrium
dynamics, and so achieve the same lower bound for expected utility, without being equivalent,
either in terms of the out-of-equilibrium behavior that they would require from the central bank,
or in terms of the boundaries of the complete set of NRE equilibria consistent with the policy in
question.
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Svensson (1999), in which short-run departures from the long-run inflation target are
justified precisely to the extent that they are proportional to short-run variations in
the rate of change of an “output gap” variable.4 Here we show that a generalization
of this criterion can be used to implement robustly optimal policy in our model with
a housing sector and allowance for non-model-consistent beliefs. We show, however,
that the robustly optimal target criterion must involve housing prices, as well as
inflation (or the price level) in the non-housing sector and the output gap.

In the empirically realistic case in which housing is subsidized by the government,
and is therefore supplies to excess in equilibrium, the robustly optimal target criterion
requires the central bank to ”lean against” unexpected increases in housing prices.
By this we mean that it should adopt a policy stance that is projected to result in
smaller increases in inflation and/or the output gap than would be chosen in the
absence of the surprise increase in housing prices; thus requires a ”tighter” monetary
policy than would otherwise be chosen. Similarly, it should aim for larger increases
in inflation and or the output gap in the case of an unexpected decline in housing
prices.

The policy of ”leaning against” housing price increases is more robust than a cor-
respondingly flexible inflation targeting rule that ignores housing price variations (and
that would be optimal under rational expectations), in the sense that the distorted
expectations that would lead to the worst possible outcome under this policy (among
all possible beliefs that comply with a certain bound on the possible size of belief dis-
tortions) do not lower welfare as much as some possible beliefs distortions (consistent
with the same bound on the size of distortions) would under the conventional policy.
The degree to which the robustly optimal policy requires ”leaning against” housing
prices increases depends, however, on model parameters. Notably, it depends both
on the size of the housing subsidy and on the price elasticity of housing supply, as
discussed further below.

Our linear approximation to the robustly optimal policy commitment can also be
derived as the solution to a robust linear-quadratic policy problem. In this problem,
the central bank’s quadratic loss function has three terms, representing three com-
peting stabilization objectives: inflation stabilization, output-gap stabilization, and
minimization of the variance of surprises in a composite variable that includes both
inflation and housing prices. It is this additional stabilization objective, that appears
only due to a concern for robustness and that requires housing prices to enter the
robustly optimal target criterion.

Section 2 defines robustly optimal policy and presents the general approach that
we use to characterize it. Section 3 then presents our New Keynesian monetary
DSGE model with a housing sector, and defines an equilibrium with possibly distorted
private sector expectations, generalizing the standard concept of rational-expectations
equilibrium. Sections 4 and 5 characterize equilibrium dynamics in the case of a
policy that achieves the highest possible lower bound for welfare of the representative

4See, for example, chapter 7 in Woodford (2003).
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household, for a given bound on the possible size of belief distortions. Section 6 then
derives a target cirterion that can implement this outcome, i.e., that achieves this
highest lower bound for all belief distortions subject to the bound, and shows that it
has the properties summarized above. Section 7 further discusses the reasons for our
results, in terms of the implications of a linear-quadratic stabilization problem that
approximates the exact problem solved in sections 4 and 5. Section 8 concludes.

2 The Policy Problem in General Terms

This section describes the general approach that we use to characterize robustly
optimal policy. These general ideas are then applied to a New Keynesian model with
a housing sector in section 3.

2.1 Robustly Optimal Policy

Consider a policymaker who cares about some vector x of endogenous economic out-
comes in the sense of seeking to achieve as high a value as possible for some (welfare)
objective W (x). The value of x depends both on policy and on forward-looking pri-
vate sector decisions, which in turn depend on the private-sector’s belief distortions as
parameterized by some vector m. Among the determinants of x is a set of structural
economic equations, typically involving first-order conditions of private agents and
market clearing conditions, that we write as

F (x,m) = 0. (1)

We assume that the equations (1) are insufficient to completely determine the vector
x, under given belief distortions m, so that the policymaker faces a non-trivial choice.

Let us suppose that the policymaker must choose a policy commitment c from
some set C of feasible policy commitments. Our results about robustly optimal policy
do not depend on the precise specification of the set C; for now, we simply assume that
there exists such a set, but we make no specific assumption about what its boundaries
may be. We only impose two general assumptions about the nature of the set C: first,
we assume that each of the commitments in the set C can be defined independently of
what the belief distortions may be5; and second, we shall require that for any c ∈ C,
there exists an equilibrium outcome for any choice of m ∈ M . The latter assigns to
the policymaker the responsibility for insuring existence of equilibrium for arbitrary
belief distortions.

Given our general requirements, the set C may include many different types of
policy commitments. For example, it may involve policy commitments that depend

5As is made more specific in the application below, we specify policy commitments by equations
involving the endogenous and exogenous variables, but not explicitly the belief distortions. Of
course, the endogenous variables referred to in the policy commitment will typically also be linked
by structural equations that involve the belief distortions.
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on the history of exogenous shocks; commitments that depend on the history of
endogenous variables, as is the case with Taylor rules; and commitments regarding
relationships between endogenous variables, as is the case with so-called targeting
rules. Also, the endogenous variables in terms of which the policy commitment is
expressed may include asset prices (futures prices, forward prices, etc.) that are
often treated by central banks as indicators of private-sector expectations, as long
as the requirement is satisfied that the policy commitment must be consistent with
belief distortions of an arbitrary form.

In order to define the robustly optimal decision problem of the policymaker, we
further specify an outcome function that identifies the equilibrium outcome x associ-
ated with a given policy commitment c ∈ C and a given belief distortion m.

Definition 1 The economic outcomes associated with belief distortions m and com-
mitments c are given by an outcome function

O :M × C → X

with the property that for all m ∈ M and c ∈ C, the outcome O(m, c) and m jointly
constitute an equilibrium of the model. In particular, the outcome function must
satisfy

F (O(m, c),m) = 0

for all all m ∈M and c ∈ C.

Here we have not been specific about what we mean by an “equilibrium,” apart from
the fact that (1) must be satisfied. In the context of the specific model presented
in the next section, equilibrium has a precise meaning. For purposes of the present
discussion, it does not actually matter how we define equilibrium; only the definition
of the outcome function matters for our subsequent discussion.6

To complete the description of the robustly optimal policy problem, letM denote
the set of all possible belief distortions and V (m) ≥ 0 a measure of the size of the
belief distortions. We assume that V (m) is equal to zero only in the case of beliefs
that agree precisely with those of the policymaker and that V (m) is strictly increasing
in the ’size of the distortions’. The functional form for V (m) ultimately reflects our
conception of ’near-rational expectations’. Section 2.2 introduces a specific functional
form that is based on a relative entropy measure.

The robustly optimal policy problem can then be represented as a choice of a
policy commitment that solves

max
c∈C

{
min
m∈M

W (O(m, c)) s.t. V (m) ≤ V

}
(2)

6If the set of equations (1) is not a complete set of requirements for x to be an equilibrium, this
only has the consequence that the upper-bound outcome defined below might not be a tight enough
upper bound; it does not affect the validity of the assertion that it provides an upper bound.
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where V ≥ 0 measures the policymaker’s degree of concern for robustness. For the
special case with V = 0 the robustly optimal policy problem reduces to a standard
optimal policy problem with model-consistent private sector expectations. As V
increases, the policymaker becomes concerned with increasingly larger deviations of
private sector expectations from those that would be consistent with its own model
used for policy analysis.

Let cR denote the robustly optimal policy commitment and mR the associated
worst-case beliefs, i.e., the solution to the inner problem in (2). Suppose there exists
a Lagrange multiplier θ ≥ 0 such that mR also solves

min
m∈M

W (O(m, cR)) + θV (m)

with θ(V (mR)− V ) = 0. Then cR and mR also jointly solve the alternative problem

max
c∈C

min
m∈M

W (O(m, c)) + θV (m) (3)

where θ now parameterizes the concern for robustness. Let the resulting values for
the endogenous variables be given by xR = O(mR, cR). Adam and Woodford (2012)
show that

max
c∈C

min
m∈M

W (O(m, c)) + θV (m) ≤ min
m∈M

max
x∈X

W (x) + θV (m) (4)

s.t. : F (x,m) = 0,

which allows us to determine the robustly optimal policy commitment as follows:
first, we determine the optimal choices x∗ and m∗ solving the problem on the right-
handside of (4). In a second step, we look for a policy-commimtment c̃ and a belief
disortion m̃ such that m̃ solves

min
m∈M

W (O(m, c̃)) + θV (m)

and for which W (O(m̃, c̃)) + θV (m̃) = W (x∗) + θV (m∗). Since W (x∗) + θV (m∗)
represents an upper bound on what robustly optimal policy can achieve, see (3), no
other policy commitment can achieve a better outcome, c̃ indeed represents an optimal
policy commitment, independently of the specific class C of policy commitments
considered (as long as our two general requirements on the class C hold).

2.2 Distorted Private Sector Expectations

We next discuss our approach to the parameterization of belief distortions, and the
distortion measure V (m). At this point it becomes necessary to specify that our
analysis concerns dynamic models in which information is progressively revealed over
time, at a countably infinite sequence of successive decision points.
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Let (Ω,B,P) denote a standard probability space with Ω denoting the set of pos-
sible realizations of an exogenous stochastic disturbance process {ξ0, ξ1, ξ2, ...}, B the
σ−algebra of Borel subsets of Ω, and P a probability measure assigning probabili-
ties to any set B ∈ B. We consider a situation in which the policy analyst assigns
probabilities to events using the probability measure P but fears that the private
sector may make decisions on the basis of a potentially different probability measure
denoted by P̂ .

We let E denote the policy analyst’s expectations induced by P and Ê the cor-
responding private sector expectations associated with P̂ . A first restriction on the
class of possible distorted measures that the policy analyst is assumed to consider
— part of what we mean by the restriction to “near-rational expectations” — is
the assumption that the distorted measure P̂, when restricted to events over any
finite horizon, is absolutely continuous with respect to the correspondingly restricted
version of the policy analyst’s measure P.

The Radon-Nikodym theorem then allows us to express the distorted private sector
expectations of some t+ j measurable random variable Xt+j as

Ê[Xt+j|ξt] = E[
Mt+j

Mt

Xt+j|ξt]

for all j ≥ 0 where ξt denotes the partial history of exogenous disturbances up to pe-
riod t. The random variable Mt+j is the Radon-Nikodym derivative, and completely
summarizes belief distortions.7 The variable Mt+j is measurable with respect to the
history of shocks ξt+j, non-negative and is a martingale, i.e., satisfies

E[Mt+j|ωt] = Mt

for all j ≥ 0. Defining

mt+1 =
Mt+1

Mt

one step ahead expectations based on the measure P̂ can be expressed as

Ê[Xt+1|ξt] = E[mt+1Xt+1|ξt],

where mt+1 satisfies
E[mt+1|ξt] = 1 and mt+1 ≥ 0. (5)

This representation of the distorted beliefs of the private sector is useful in defining
a measure of the distance of the private-sector beliefs from those of the policy analyst.
As discussed in Hansen and Sargent (2005), the relative entropy

Rt = Et[mt+1 logmt+1]

7See Hansen and Sargent (2005) for further discussion.
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is a measure of the distance of (one-period-ahead) private-sector beliefs from the
policymaker’s beliefs with a number of appealing properties.

We wish to extend this measure of the size of belief distortions to an infinite-
horizon economy with a stationary structure. In the kind of model with which we
are concerned, the policy objective in the absence of a concern for robustness is of
the form

W (x) ≡ E0

[
∞∑
t=0

βtU(xt)

]
, (6)

for some discount factor 0 < β < 1, where U(·) is a time-invariant function, and xt
is a vector describing the real allocation of resources in period t. Correspondingly,
we propose to measure the overall degree of distortion of private-sector beliefs by a
discounted criterion of the form

V (m) ≡ E0

[
∞∑
t=0

βt+1mt+1 logmt+1

]
, (7)

as in Woodford (2010). This is a discounted sum of the one-period-ahead distortion
measures {Rt}. We assign relative weights to the one-period-ahead measures Rt for
different dates and different states of the world in this criterion that match those
of the other part of the policy objective (6). Use of this cost function implies that
the policymaker’s degree of concern for robustness (relative to other stabilization
objectives) remains constant over time, regardless of past history.

3 A Sticky Price Model with a Housing Sector

We shall begin by deriving the exact structural relations describing a New Keynesian
model featuring a long-lived asset and potentially distorted private sector expecta-
tions. The existing stock of assets is assumed to generate a service flow that directly
enters agents’ utility. Assets depreciate over time but can be produced using a tech-
nology with decreasing returns to scale. For convenience we interpret the long-lived
asset as housing, though other interpretations are possible.

The model is completely standard, except for the presence of the long-lived asset
and the fact that the private sector holds potentially distorted expectations. The
exposition here extends the framework of Adam and Woodford (2011), who write the
exact structural relations for a simpler model without a housing sector.

3.1 Model Structure

The economy is made up of identical infinite-lived households, each of which seeks to
maximize

U ≡ Ê0

∞∑
t=0

βt

[
ũ(Ct; ξt)−

∫ 1

0

ṽ(Ht(j); ξt)dj + ω̃(Dt; ξt)

]
, (8)
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subject to a sequence of flow budget constraints8

PtCt +Bt + (Dt + (1− δ)Dt−1) qtPt + ktPt

≤ (1 + sd)d̃(kt; ξt)qtPt +

∫ 1

0

wt(j)PtHt(j)dj +Bt−1(1 + it−1) + Σt + Tt,

where Ê0 is the common distorted expectations held by consumers conditional on
the state of the world in period t0, Ct an aggregate consumption good which can be
bought at nominal price Pt, Ht(j) is the quantity supplied of labor of type j and
wt(j) the associated real wage, Dt the stock of durable assets or houses, δ ∈ [0, 1] the
housing depreciation rate, qt the real price of houses, kt investment in new houses
and d̃(kt; ξt) the resulting production of new houses, sd a government subsidy (which
may be positive or negative) applied to the value of newly produced houses, Bt

nominal bond holdings, it the nominal interest rate, and ξt is a vector of exogenous
disturbances, which may induce random shifts in the functions ũ, ṽ, ω̃ and d̃. The
variable Tt denotes lump sum taxes levied by the government and Σt profits accruing
to households from the ownership of firms.

The aggregate consumption good is a Dixit-Stiglitz aggregate of consumption of
each of a continuum of differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
η−1
η di

] η
η−1

, (9)

with an elasticity of substitution equal to η > 1. We further assume isoelastic func-
tional forms

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1 , (10)

ṽ(Ht; ξt) ≡
λ

1 + ν
H1+ν

t H̄−ν
t , (11)

ω̃(Dt; ξt) = ξdtDt, (12)

d̃(kt; ξt) =
Ad

t

α̃
kα̃t , (13)

where σ̃, ν > 0, α̃ ∈ (0, 1) and {C̄t, H̄t, ξ
d
t , A

d
t} are bounded exogenous and positive

disturbance processes which are among the exogenous disturbances included in the
vector ξt. Our specification includes two housing related disturbances that will be
of particular interest for our analysis, namely ξdt which captures shocks to housing
preferences and Ad

t shocks to the productivity in the construction of new houses. We

8We abstract from state-contingent assets in the household budget constraint because the repre-
sentative agent assumption implies that in equilibrium there will be no trade in these assets.
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impose linearity in the utility function (12) as this greatly facilitates the analytical
characterization of optimal policy.

Each differentiated good is supplied by a single monopolistically competitive
producer; there is a common technology for the production of all goods, in which
(industry-specific) labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/ϕ, (14)

where At is an exogenously varying technology factor, and ϕ > 1. The Dixit-Stiglitz
preferences (9) imply that the quantity demanded of each individual good i will equal9

yt(i) = Yt

(
pt(i)

Pt

)−η

, (15)

where Yt is the total demand for the composite good defined in (9), pt(i) is the
(money) price of the individual good, and Pt is the price index,

Pt ≡
[∫ 1

0

pt(i)
1−ηdi

] 1
1−η

, (16)

corresponding to the minimum cost for which a unit of the composite good can be
purchased in period t. Total demand is given by

Yt = Ct + kt + gtYt, (17)

where gt is the share of the total amount of composite good purchased by the gov-
ernment, treated here as an exogenous disturbance process.

3.2 Household Optimality Conditions

Each household maximizes utility by choosing state contingent sequences {Ct, Ht(j), Dt, kt, Bt}
taking as given the process for {Pt, wt(j), qt, it,Σt, Tt}. The first order conditions give
rise to an optimal labor supply relation

wt(j) =
ṽH(Ht(j); ξt)

ũC(Ct; ξt)
, (18)

a consumption Euler equation

ũC(Ct; ξt) = βÊt

[
ũC(Ct+1; ξt+1)

1 + it
Πt+1

]
, (19)

9In addition to assuming that household utility depends only on the quantity obtained of Ct, we
assume that the government also cares only about the quantity obtained of the composite good de-
fined by (9), and that it seeks to obtain this good through a minimum-cost combination of purchases
of individual goods.
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an equation characterizing optimal investment in new houses

kt =
((
1 + sd

)
Ad

t qt
) 1

1−α̃ , (20)

and an asset pricing equation

qut = ξdt + β(1− δ)Êtq
u
t+1, (21)

where
qut ≡ qtC

−σ̃−1

t C̄ σ̃−1

t (22)

is the market valuation of housing in period t, expressed in marginal-utility units.
The variable qut provides a measure of whether housing is currently expensive or
inexpensive, in units that are particularly relevant for determining housing demand.
More importantly, because of (21), it is expectations about the future value of quT ,
rather than the future value of qT as such, that influence the current market value of
housing, so that the degree of distortion that may be present in expectations regarding
the former variable is of particular importance for equilibrium determination. The
housing-price variable qut is accordingly of particular interest.

Equations (18)-(21) jointly characterize optimal household behavior under dis-
torted beliefs. Using (17) and (20), one an express aggregate demand as

Yt =
Ct + ΩtC

σ̃−1

1−α̃

t

1− gt
(23)

where

Ωt ≡
((

1 + sd
)
Ad

t C̄
−σ̃−1

t qut

) 1
1−α̃

> 0 (24)

is a term that depends on exogenous shocks and belief distortions only.

3.3 Optimal Price Setting by Firms

The producers in each industry fix the prices of their goods in monetary units for a
random interval of time, as in the model of staggered pricing introduced by Calvo
(1983) and Yun (1996). Let 0 ≤ α < 1 be the fraction of prices that remain unchanged
in any period. A supplier that changes its price in period t chooses its new price pt(i)
to maximize

Êt

∞∑
T=t

αT−tQt,TΠ(pt(i), p
j
T , PT ;YT , q

u
T , ξT ), (25)

where Êt is the distorted expectations of price setters conditional on time t informa-
tion, which are assumed identical to the expectations held by consumers, Qt,T is the
stochastic discount factor by which financial markets discount random nominal in-
come in period T to determine the nominal value of a claim to such income in period
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t, αT−t is the probability that a price chosen in period t will not have been revised
by period T , and the function Π(pt(i), . . .) indicates the nominal profits of the firm
in period t (discussed further below). In equilibrium, the discount factor is given by

Qt,T = βT−t ũC(CT ; ξT )

ũC(Ct; ξt)

Pt

PT

. (26)

Profits are equal to after-tax sales revenues net of the wage bill. Sales revenues are
determined by the demand function (15), so that (nominal) after-tax revenue equals

(1− τ t)pt(i)Yt

(
pt(i)

Pt

)−η

.

Here τ t is a proportional tax on sales revenues in period t; {τ t} is treated as an
exogenous disturbance process, taken as given by the monetary policymaker. We
assume that τ t fluctuates over a small interval around a non-zero steady-state level τ .
We allow for exogenous variations in the tax rate in order to include the possibility
of “pure cost-push shocks” that affect equilibrium pricing behavior while implying no
change in the efficient allocation of resources.

The real wage demanded for labor of type j is given by equation (18) and firms
are assumed to be wage-takers. Because the right-hand side of (23) is a monotonically
increasing function of Ct, (23) implies the existence of a differentiable function

Ct = C(Yt, q
u
t , ξt) (27)

solving (23) with the derivative CY satisfying 0 < CY (Yt, q
u
t , ξt) < 1 − g. Using

this function and the assumed functional forms for preferences and technology, the
nominal wage bill will equal

Ptwt(j)ht(i) = Pt
λHt(i)

νH
−ν

t

C−σ̃−1

t C
σ̃−1

t

ht(i)

= λPt

(
pt(i)

Pt

)−ηϕ
(
pjt
Pt

)−ηϕν

H
−ν

t

(
Yt
At

)1+ω (
C(Yt, q

u
t , ξt)

Ct

)σ̃−1

where
ω ≡ ϕ(1 + ν)− 1 > 0

is the elasticity of real marginal cost in an industry with respect to industry output.
Subtracting the nominal wage bill from the above expression for nominal after tax
revenue, we obtain the function Π(pt(i), p

j
T , PT ;YT , q

u
T , ξT ) used in (25). The vector

of exogenous disturbances ξt now includes At, gt and τ t, in addition to the shocks
(C̄t, H̄t, ξ

d
t , A

d
t ).

Each of the suppliers that revise their prices in period t chooses the same new price
p∗t , that maximizes (25). Note that supplier i’s profits in (25) are a concave function of
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the quantity sold yt(i), since revenues are proportional to yt(i)
η−1
η and hence concave

in yt(i), while costs are convex in yt(i). Moreover, since yt(i) is proportional to
pt(i)

−η, the profit function is also concave in pt(i)
−η. The first-order condition for the

optimal choice of the price pt(i) is the same as the one with respect to pt(i)
−η; hence

the first-order condition with respect to pt(i),

Êt

∞∑
T=t

αT−tQt,TΠ1(pt(i), p
j
T , PT ;YT , q

u
T , ξT ) = 0,

is both necessary and sufficient for an optimum. The equilibrium choice p∗t (which
is the same for each firm in industry j) is the solution to the equation obtained by
substituting pt(i) = pjt = p∗t into the above first-order condition.

Under the assumed isoelastic functional forms, the optimal choice has a closed-
form solution

p∗t
Pt

=

(
Kt

Ft

) 1
1+ωη

, (28)

where Ft and Kt capture the effects of discounted marginal costs and revenues, re-
spectively, and are defined by

Ft ≡ Êt

∞∑
T=t

(αβ)T−tf(YT , q
u
T , ξT )

(
PT

Pt

)η−1

, (29)

Kt ≡ Êt

∞∑
T=t

(αβ)T−tk(YT , ξT )

(
PT

Pt

)η(1+ω)

, (30)

where

f(Y, qu, ξ) ≡ (1− τ)C̄ σ̃−1

Y C(Y, qu, ξ)−σ̃−1

, (31)

k(Y, ξ) ≡ η

η − 1
λϕ

H̄−ν

A1+ω
Y 1+ω (32)

Relations (29)–(30) can also be written in the recursive form

Ft = f(Yt, q
u
t , ξt) + αβÊt[Π

η−1
t+1Ft+1] (33)

Kt = k(Yt, ξt) + αβÊt[Π
η(1+ω)
t+1 Kt+1], (34)

where Πt ≡ Pt/Pt−1.
10 The price index then evolves according to a law of motion

Pt =
[
(1− α)p∗1−η

t + αP 1−η
t−1

] 1
1−η , (35)

10It is evident that (29) implies (33); but one can also show that processes that satisfy (33) each
period, together with certain bounds, must satisfy (29). Since we are interested below only in the
characterization of bounded equilibria, we can omit the statement of the bounds that are implied by
the existence of well-behaved expressions on the right-hand sides of (29) and (30), and treat (33)–
(34) as necessary and sufficient for processes {Ft,Kt} to measure the relevant marginal conditions
for optimal price-setting.
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as a consequence of (16). Substitution of (28) into (35) implies that equilibrium
inflation in any period is given by

1− αΠη−1
t

1− α
=

(
Ft

Kt

) η−1
1+ωη

. (36)

Equations (33), (34) and (36) jointly define a short-run aggregate supply relation
between inflation, output and house prices, given the current disturbances ξt, and
(potentially distorted) expectations regarding future inflation, output, house prices
and disturbances.

3.4 Summary and Equilibrium Definition

For the subsequent analysis it will be helpful to express the model in terms of the
endogenous variables (Yt, Kt, Ft,∆t, q

u
t ,mt, it) only, where mt is the belief distortions

of the private sector and

∆t ≡
∫ 1

0

(
pt(i)

Pt

)−η(1+ω)

di ≥ 1

a measure of price dispersion at time t. The vector of exogenous disturbances is given
by ξt =

(
At, gt, τ t, C̄t, H̄t, ξ

d
t , A

d
t

)′
.

We begin by expressing expected household utility (evaluated under the objective
measure P) in terms of these variables. Inverting the production function (14) to
write the demand for each type of labor as a function of the quantities produced of
the various differentiated goods, it is possible to write the utility of the representative
household as a function of the expected production plan {yt(i)}. One thereby obtains

U ≡ E0

∞∑
t=0

βt

[
u(Yt, q

u
t ; ξt)−

∫ 1

0

v(yjt ; ξt)dj + ω̃(Dt; ξt)

]
, (37)

with

u(Yt, q
u
t ; ξt) ≡ ũ(C(Yt, q

u
t , ξt); ξt)

v(yjt ; ξt) ≡ ṽ(f−1(yjt/At); ξt)

where in this last expression we make use of the fact that the quantity produced of
each good in industry j will be the same, and hence can be denoted yjt ; and that the
quantity of labor hired by each of these firms will also be the same, so that the total
demand for labor of type j is proportional to the demand of any one of these firms.

One can furthermore express the relative quantities demanded of the differentiated
goods each period as a function of their relative prices, using (15). This and the linear
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dependence of utility on the stock of assets allows us to write the utility flow to the
representative household in the form

u(Yt, q
u
t ; ξt)− v(Yt; ξt)∆t + ξ̄

d
t

Ad
t

α̃
kα̃t ,

where

ξ̄
d
t ≡

∞∑
T=t

Et[(1− δ)T−t βT−tξdT ]. (38)

We can use (20), (22) and (27) to express kt in terms of Yt, q
u
t and exogenous shocks.

Hence we can express the household objective (37) as

U = E0

∞∑
t=0

βtU(Yt,∆t, q
u
t ; ξt). (39)

where the explicit expression for the flow utility is given by

U(Yt,∆t, q
u
t ; ξt) =

C
σ̃−1

t C(Yt, q
u
t , ξt)

1−σ̃−1

1− σ̃−1

− λ

1 + ν
H̄−ν

t

(
Yt
At

)1+ω

∆t

+
Ad

t ξ̄
d
t

α̃
Ω(qut , ξt)

α̃ C(Yt, q
u
t , ξt)

α̃
1−α̃

σ̃−1

, (40)

which is a a monotonically decreasing function of ∆ given Y , qu and ξ and where
Ω(qut , ξt) is the function defined in (24).

The consumption Euler equation (19) can be expressed as

ũC(C(Yt, q
u
t , ξt); ξt) = βEt

[
mt+1ũC(C(Yt, q

u
t , ξt); ξt+1)

1 + it
Πt+1

]
, (41)

Using (36) to substitute for the variable Πt equations (33) and (34) can be expressed
as

Ft = f(Yt, q
u
t ; ξt) + αβEt [mt+1ϕF (Kt+1, Ft+1)] (42)

Kt = k(Yt; q
u
t ; ξt) + αβEt [mt+1ϕK(Kt+1, Ft+1)] , (43)

where the functions ϕF , ϕK are both homogeneous degree 1 functions of K and F .
Because the relative prices of the industries that do not change their prices in

period t remain the same, one can use (35) to derive a law of motion for the price
dispersion term ∆t of the form

∆t = h(∆t−1,Πt), (44)
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where

h(∆,Π) ≡ α∆Πη(1+ω) + (1− α)

(
1− αΠη−1

1− α

) η(1+ω)
η−1

.

This is the source of welfare losses from inflation or deflation. Using once more (36)
to substitute for the variable Πt one obtains

∆t = h̃(∆t−1, Kt/Ft). (45)

The asset pricing equation (21) and equations (41)-(45) represent five constraints on
the equilibrium paths of the seven endogenous variables (Yt, Ft, Kt,∆t, q

u
t ,mt+1, it).

For a given sequence of belief distortions mt satisfying restriction (5) there is thus
one degree of freedom left, which can be determined by monetary policy. We are now
in a position to define the equilibrium with distorted private sector expectations:

Definition 2 (DEE) A distorted expectations equilibrium (DEE) is a bounded stochas-
tic process for {Yt, Ft, Kt,∆t, q

u
t ,mt+1, it}∞t=0 satisfying equations (5), (21) and (41)-

(45).

4 Upper Bound in the Model with Housing

We shall now formulate the upper bound problem on the right-hand side of (4) for the
nonlinear New Keynesian model with a housing market and distorted private sector
expectations, and characterize its solution. The upper bound problem can be written
in the form11

min
{mt+1,qut }

∞
t=0

max
{Yt,Ft,Kt,∆t}∞t=0

E0

∞∑
t=0

βt


U(Yt,∆t, q

u
t ; ξt) + θβmt+1 logmt+1

+γt

(
h̃(∆t−1, Kt/Ft)−∆t

)
+Γ′

t[z(Yt, q
u
t , ξt) + αβmt+1Φ(Zt+1)− Zt]

+Ψt[ξ
d
t + β(1− δ)mt+1q

u
t+1 − qut ]

+βψt (mt+1 − 1)

 (46)

+ αΓ′
−1Φ(Z0) + Ψ−1(1− δ)qu0 ,

where γt,Γt,Ψt and ψt denote Lagrange multipliers and we use the shorthand notation

Zt ≡
[
Ft

Kt

]
, z(Y, qu, ξ) ≡

[
f(Y, qu, ξ)
k(Y, ξ)

]
, Φ(Z) ≡

[
ϕF (K,F )
ϕK(K,F )

]
, (47)

11From the constraint (21) follows that the choice of {mt+1}∞t=0 and the exogenous shocks jointly
determine {qut }

∞
t=0. Therefore, worst case beliefs effectively determine the minimizing sequence for

{mt+1, q
u
t }

∞
t=0.
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and added the initial pre-commitments αΓ′
−1Φ(Z0) + Ψ−1(1− δ)qu0 to obtain a time-

invariant solution. The Lagrange multiplier vector Γt is associated with constraints
(42) and (43) and given by Γ′

t = (Γ1t,Γ2,t). The multiplier γt relates to equation
(45), the multiplier Ψt to equation (21) and the multiplier ψt to constraint (5). We
also eliminated the interest rate and the constraint (41) from the problem. Under
the assumption that the zero lower bound on nominal interest rates is not binding,
constraint (41) imposes no restrictions on the path of the other variables.12 The path
for the nominal interest rates can thus be computed ex-post using the solution for
the remaining variables and equation (41).

The nonlinear FOCs for the policymaker are then given by

UY (Yt,∆t, q
u
t ; ξt) + Γ′

tzY (Yt, q
u
t , ξt) = 0 (48)

−γth̃2(∆t−1, Kt/Ft)
Kt

F 2
t

− Γ1t + αmtΓ
′
t−1D1(Kt/Ft) = 0 (49)

γth̃2(∆t−1, Kt/Ft)
1

Ft

− Γ2t + αmtΓ
′
t−1D2(Kt/Ft) = 0 (50)

U∆(Yt,∆t, q
u
t ; ξt)− γt + βEt[γt+1h̃1(∆t, Kt+1/Ft+1)] = 0 (51)

for all t ≥ 0. The nonlinear FOC for the worst-case belief distortions mt+1 and the
FOC for qut take the form

θ(logmt+1 + 1) + αΓ′
tΦ(Zt+1) + (1− δ)Ψtq

u
t+1 + ψt = 0 (52)

Uq(Yt,∆t, q
u
t , ξt) + Γ′

tzq(Yt, q
u
t , ξt) + Ψt−1(1− δ)mt −Ψt = 0 (53)

for all t ≥ 0. Above, h̃i(∆, K/F ) denotes the partial derivative of h̃(∆, K/F ) with
respect to its i-th argument, and Di(K/F ) is the i-th column of the matrix

D(Z) ≡
[
∂FϕF (Z) ∂KϕF (Z)
∂FϕK(Z) ∂KϕK(Z)

]
. (54)

Since the elements of Φ(Z) are homogeneous degree 1 functions of Z, the elements of
D(Z) are all homogenous degree 0 functions of Z, and hence functions of K/F only.
Thus we can alternatively write D(K/F ). The optimal upper-bound dynamics are
then bounded stochastic processes {Yt, Ft, Kt,∆t, q

u
t ,mt+1} that satisfy the structural

equation (5), (21), (42)-(45) and the first order conditions (48)-(53).

5 Optimal Upper Bound Dynamics

We shall be concerned solely with optimal outcomes that involve small fluctua-
tions around a deterministic optimal steady state. An optimal steady state is a

12This assertion also depends on our assumption here that the central bank chooses its interest-rate
operating target it with full information about the state of the economy at date t.

17



set of constant values (Y , Z,∆, qu,m, γ,Γ,Ψ, ψ) that solve the structural equations
(5),(21),(42)-(45) and the FOCs (48)-(53) in the case that ξt = ξ at all times and
initial conditions consistent with the steady state are assumed. We now compute the
steady-state, then derive the local dynamics implied by these equations.

5.1 The Optimal Steady State and Its Properties

In a deterministic steady state, restriction (5) implies m = 1. Equation (21) then

implies qu = ξ
d
. Moreover, as in the model without housing, considered in Adam

and Woodford (2012), the optimal steady state satisfies F = K = (1−αβ)−1k(Y , ξ),
which implies Π = 1 (no inflation) and ∆ = 1 (zero price dispersion), where the value
of Y is implicitly defined by

f(Y , qu, ξ) = k(Y , ξ). (55)

As shown in appendix A.1, there exists a unique steady state consumption level Y
solving (55).

Furthermore, with h̃2(1, 1) = 0 (the effects of a small non-zero inflation rate on
the measure of price dispersion are of second order), conditions (49)–(50) reduce in
the steady state to the eigenvector condition

Γ′ = αΓ′D(1). (56)

Moreover, since when evaluated at a point where F = K,

∂ log(ϕK/ϕF )

∂ logK
= −∂ log(ϕK/ϕF )

∂ logF
=

1

α
,

we observe that D(1) has a left eigenvector [1 − 1], with eigenvalue 1/α; hence (56)
is satisfied if and only if Γ2 = −Γ1. Condition (48) provides then one additional
condition to determine Γ1. It implies

UY (Y , 1, q
u; ξ) + Γ1(fY (Y , q

u, ξ)− kY (Y , q
u, ξ)) = 0. (57)

Appendix A.1 shows that
kY − fY > 0,

so that Γ1 has the same sign as UY . Appendix A.1 also proves that

UY (Y , 1, q
u; ξ) = C̄ σ̃−1

C
(
Y , qu, ξ

)−σ̃−1
(

1− g

1 + sd
+

sd

1 + sd
CY

(
Y , qu, ξ

)
− η − 1

η
(1− τ)

)
(58)

which shows that in the absence of a housing subsidy (sd = 0) we have UY = 0
and thus Γ1 = 0, whenever the output subsidy eliminates the steady state monopoly
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distortion, i.e., when 1 − τ =
(
1− g

)
η

η−1
. The resulting steady state consumption

level is then determined by (98) in appendix A.1.
More generally, we shall consider the case with a non-zero housing subsidy/tax.

Conditional on the value of housing subsidy sd one can then define an efficient steady
state output subsidy τ eff (sd), which is the value of τ such that UY = 0 in (58).
Appendix A.2 shows the following result:

Lemma 1 If sd ≥ 0, or if sd < 0 but sufficiently close to zero, then UY Y < 0.

The previous lemma shows that τ eff (sd) indeed maximizes steady state utility in
the presence of a housing subsidy or a housing tax that is not too large. Appendix
A.1 then establishes the following result:

Lemma 2 Given a housing subsidy sd and the efficient output subsidy 1 − τ = 1 −
τ eff (sd), we have

UY = Γ1 = 0.

If the output subsidy falls short of its efficient value, 1− τ < 1− τ eff (sd), then

UY > 0, Γ1 > 0,

while if instead 1− τ > 1− τ eff (sd) one obtains

UY < 0, Γ1 < 0.

The previous lemma shows that the marginal utility of output is positive (neg-
ative) in the steady state, whenever the output subsidy falls short of (exceeds) the
output subsidy that would be efficient given the assumed level of housing subsidies.

Condition (51) provides a restriction that determines the steady state value of γ̄ :

U∆(Y , 1, q
u; ξ)− γ + βγh̃1(1, 1) = 0.

Since U∆ < 0 and h̃1(1, 1) = α, we have

γ =
U∆(Y , 1, q

u; ξ)

(1− βα)
< 0.

Condition (53) implies

Ψ =
1

δ

(
Uq(Y, 1, q

u; ξ) + Γ1fq(Y , q
u, ξ)

)
(59)

and appendix A.3 proves the following result:
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Lemma 3 If sd = 0, Uq(Y, 1, q
u; ξ) = 0. If instead sd > 0, Uq < 0, and if sd < 0,

Uq > 0. Then since Γ1 = 0 if τ = τ eff (sd), it follows that

Ψ = 0 if sd = 0 and τ = τ eff (0)
Ψ < 0 if sd > 0, τ sufficiently close to τ eff (sd)
Ψ > 0 if sd < 0, τ sufficiently close to τ eff (sd)

The previous lemma shows that for a positive housing subsidy, the representative
household’s utility is decreasing with further house price increases, whenever the out-
put subsidy is sufficiently close to its efficient level. Correspondingly, in the presence
of a housing tax, houshold utility decreases with a fall in housing prices. Intuitively,
holding the level of total output Y fixed, an increase in the housing price leads to a
further increase in housing investment, which is already inefficiently high (low) when
there is a housing subsidy (tax).

5.2 Characterizing the Upper Bound Dynamics

It is useful to implicitly define a variable Y ∗
t (a function of the exogenous distur-

bances), as the solution to the equation

UY (Y
∗
t , 1, ξ

d

t ; ξt) + Γ′zY (Y
∗
t , ξ

d

t , ξt) = 0 (60)

or alternatively as the output level that maximizes U(Yt, 1, ξ
d

t ; ξt) + Γ′z(Yt, ξ
d

t , ξt).
One can then derive a first order approximation of the upper bound dynamics for the
variables

πt ≡ log Πt

m̂t ≡ logmt

xt = log Yt − log Ŷ ∗
t

where xt denotes the output gap. We also make the following assumption:

Assumption 1: The output subsidy falls short of its efficient level (1 − τ < 1 −
τ eff (sd)), but 1 − τ is sufficiently close to 1 − τ eff (sd) for the conclusions of
lemma 3 to be valid. Either sd ≥ 0 or if sd < 0 then sd is sufficiently small
for the conclusions of lemma 1 to hold. In addition, initial price dispersion
∆−1 is small (∆−1 = 0 + O(2)) and the initial commitments are such that
Γ1,−1 = −Γ2,−1.

We then have the following result:
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Proposition 1 Suppose assumption 1 holds. The first order conditions (48)-(53)
and the constraints in (46) imply (to first order)

πt = βEtπt+1 + κxt + ut (61)

0 = ξππt + λ (xt − xt−1) + ξmm̂t (62)

m̂t = λm (πt − Et−1πt) + λq(q̂
u
t − Et−1q̂

u
t ). (63)

where the constants (κ, ξπ, ξm, λ, λm, λq) are functions of the deep model parameters
(explicit expression are provided in appendix A.4) with κ > 0, ξπ > 0, λ > 0, λm >
0, ξm > 0. Furthermore,

λq > 0 if sd > 0

λq < 0 if sd < 0

In the limiting case without robustness concerns (θ → ∞), we have λm → 0 and
λq → 0.

Equation (63) shows that the worst-case belief distortions are of the kind that
they increase the likelihood of positive inflation surprises. Intuitively, overweighing
positive inflation surprises (and underweighing negative ones) increases average ex-
pected inflation and thereby via (61) current inflation rates, which contributes (ceteris
paribus) to reducing output, which due to 1 − τ < 1 − τ eff (sd) is already below its
optimal level (given the assumed housing subsidy). In the presence of a housing sub-
sidy (sd > 0) worst case beliefs also overweigh positive housing price suprises (and
underweigh negative ones). Doing so increases increases the expected value of future
housing prices, thereby the average house price today, see the asset pricing equation
(21), which in turn increases housing supply. The latter is harmful in welfare terms
because the presence of an housing subsidy implies that the housing stock is already
suboptimally high.

The proof of proposition 1 also shows that to first order

q̂ut =
̂̄
ξ
d
t , (64)

so that q̂ut = log qut / log q is determined (to this order of approximation) purely by
exogenous disturbances. Importantly, this does not mean that endogenous belief
distortions have no consequences for the marginal-utility value of housing, only that
these effects are of second order in the amplitude of the exogenous disturbances, in
our local approximation. Such second-order effects remain welfare-relevant, since our
log-linear approximation to the optimal policy rule depends on second-order terms
in a local approximation to the expected utility of the representative household, see
Benigno and Woodford (2005) for discussion of this general issue.13

13In Adam and Woodford (2012), belief distortions similarly have no effect on a log-linear approx-
imation to the aggregate supply tradeoff (given as usual by the “New Keynesian Phillips curve”);
yet the second-order effects of belief distortions on this relationship explain why in that model, a
robustly optimal policy commitment requires different inflation dynamics than an optimal policy
commitment under rational expectations, even to a log-linear approximation.
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We are particularly interested in the analyzing effects of shocks origniating in the

housing sector, i.e., the disturbances Ad and ξ̄
d
. The following result determines their

effects on the ‘cost-push’ disturbance ut:

Proposition 2 Suppose sd is not too negative, so that lemma 1 holds. Then (to first
order)

ut = κu

(̂̄ξdt + Âd
t

)
+ n.h.s.

where n.h.s. denotes the effects of non-housing shocks and the constant κu is a func-
tion of deep model parameters (an explicit expression is derived in appendix A.5).
At the efficient steady state where sd = 0 and τ = τ eff (0) we have κu = 0. In the
presence of a housing subsidy (sd > 0) and for τ sufficiently close to τ eff (sd), we have
κu < 0. while with a housing tax (sd < 0) and for τ sufficiently close to τ eff (sd),we
have κu > 0.

The proof of the proposition can be found in appendix A.5. The proposition shows
that cost-push effects are absent (to first order) whenever the steady state is first best.
In the presence of a housing subsidy or tax, however, housing demand shocks and
shocks to the productivity of housing production give both rise to cost-push effects,
with the sign of the effect depending on the sign of the housing subsidy sd.

5.3 Impulse Responses to Housing Sector Shocks

We now derive a closed form solution for the impulse response to housing sector
disturbances implied by the upper bound dynamics. For simplicity we assume that
the evolution of the disturbances is described by

̂̄ξdt = ρξ
̂̄ξdt−1 + ωξt

Âd
t = ρAÂ

d
t + ωAt

where ρi ∈ [0, 1) captures the persistence of the disturbance and ωit is an iid innova-
tion (i = ξ, A).

Substituting (63) and (64) into (62) to eliminate m̂t and q̂ut , and using (61) to
substitute for xt, one obtains

0 =

(
ξπ +

λ

κ

)
πt −

λ

κ
(β (Etπt+1 − Et−1πt) + πt−1 + ut − ut−1)

+ ξmλm (πt − Et−1πt) + ξmλq

(̂̄ξdt − Et−1
˜̄ξdt) , (65)

which characterizes the inflation response to exogenous shocks with cost-push effects,
under the upper-bound dynamics. For a housing sector shock hitting the economy in
period t0 , i.e., for

ut0 = κuωξt0 or ut0 = κuωAt0 ,
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and an economy starting out in t0 − 1 at its deterministic steady state and with no
further shocks occurring after t0, the inflation response is characterized by

0 =

(
ξπ +

λ(1 + β)

κ

)
πt −

λ

κ
(βπt+1 + πt−1 + ut − ut−1) for t > t0 (66)

and for t0 and ut0 = κuωξt0 by

0 =

(
ξπ +

λ

κ
+ ξmλm

)
πt0 −

λβ

κ
πt0+1 −

(
λ

κ
κu − ξmλq

)
ωξt0 , (67)

and for t0 and ut0 = κuωAt0 by

0 =

(
ξπ +

λ

κ
+ ξmλm

)
πt0 −

λβ

κ
πt0+1 −

λκu
κ
ωAt0 . (68)

As shown in Adam and Woodford (2012), equation (66) has for t > t0 a unique
stable solution given by

πt = aπt−1 + biut−1 (69)

where a ∈ (0, 1) and bi = −(1 − ρi)a < 0 with a, bi (i = ξ, A) being independent of
the policymakers’ concern for robustness θ. Combining (69) for t = t0 + 1 with (67)
and (68), respectively, delivers the optimal initial inflation response at time t0 :

πt0 =

(
bξ + β−1

)
κu − κ

λβ
ξmλq

κ
λcβ

(
ξπ +

λ
κ
+ ξmλm

)
− a

ωξt0 for ut0 = κuωξt0 (70)

πt0 =

(
bA + β−1

)
κu

κ
λcβ

(
ξπ +

λ
κ
+ ξmλm

)
− a

ωAt0 for ut0 = κuωAt0 (71)

where κ
λβ

(
ξπ +

λ
κ

)
− a > 0. From proposition 1 follows that in the limiting case

without robustness concerns (θ → ∞) we have λm → 0 and λq → 0, so that the
impulses reponses to housing demand and productivity shocks are identical, provided
both shocks have the same persistence. Moreover, under the optimal response the
price level returns to its initial starting value.

In the presence of a housing subsidy (sd > 0) and with robustness concerns we
have λq > 0, so that the initial inflation response is dampened compared to the
case with rational expectations optimal policy, so that in the long-run the price level
undershoots its initial level following positive disturbances. The dampening and
undershooting effects are thereby more pronounced for the housing demand shock.

In the presence of a housing tax
(
sd < 0

)
we have λq < 0. Following a positive

disturbance, inflation thus optimally increases more in the initial period than under
rational expectations optimal policy. As a result, the price level will not fully return
and stay at an elevated level. The initial and terminal increase is thereby more
pronounced following a demand disturbance.
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For sd > 0 ( sd < 0) the response to housing demand shocks is dampenend (am-
plified) more by robustness concerns relative to the response to housing technology
shocks. This occurs because housing demand shocks show up (to first order) in the
asset pricing equation, while housing productivity shock do not.

5.4 The Case of Inelastic Housing Supply

Equation (63) shows that in the presence of a housing subsidy (sd > 0), worst case
beliefs increase the likelihood of future positive surprises to housing prices while
decreasing the probability of negative surprises. Worst case beliefs thus increase,
via the asset price equation (21), current house prices and thereby lead to a further
upward distortion of housing supply (an effect that is of second order).

These effects depend on the presence of an elastic supply of housing in response
to relative price changes. We can consider the limiting case of an inelastic housing
supply (α̃ → 0) by fixing an exogenous stochastic process for Ãd

t = Ad
t /α̃. All of our

previous equations then remain well-behaved in this limit, if written in terms of α̃Ãd
t

rather than Ad
t .

In the limit with α̃ = 0, zero resources are used to produce houses (kt = 0), housing

supply is equal to Ãd
t , and the housing stock therefore independent of agents’ beliefs.

Equation (23) then holds for Ω = 0, and the utility function (39) becomes independent
of qu. Similarly, the function f(Yt, q

u
t , ξT ) becomes independent of qut , so that equation

(59) implies that Ψ = 0. From equation (117) in the appendix it then follows that
λq = 0, so that worst case belief distortions become independent of house price
surprises. Since Ω = 0, it follows from equation (131) in the appendix that κu = 0,
so that housing sector shocks no longer have cost-push effects. One can then show
that the upper bound dynamics for inflation and the output gap are independent of
both types of housing shocks; in fact they depend on other fundamental disturbances
in exactly the same way as in the model without a housing sector analyzed in Adam
and Woodford (2012). In this case, the robustly optimal conduct of policy requires
no reference to housing prices or other housing variables.

6 A Robustly Optimal Target Criterion for Mon-

etary Policy

It remains to be shown that the lower bound for welfare associated with the upper-
bound dynamics characterized in the previous section can in fact be achieved by some
policy rule. This requires not only that we find a policy rule consistent with the upper-
bound dynamics in the case of the worst-case belief distortions also characterized
above, but also that we can show that these distorted beliefs are indeed worst-case
belief distortions in the case of that policy rule. In fact, not only is it possible to
find such a rule, but there are many of them, for the same reasons as are explored
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in Adam and Woodford (2012) in the case of the model without a housing sector.
Indeed, our analysis here is a direct extension of our results in the earlier paper. The
only important new work required here is the modification of our derivations of the
policy rules consistent with the upper-bound dynamics, showing the way in which the
policy rules must be modified because of the additional complications in the model.

As in Adam and Woodford (2012), it is of particular interest to note that ro-
bustly optimal monetary policy can be specified in terms of a target criterion — a
log-linear relationship among endogenous variables that the central bank commits
itself to maintain at all times (regardless of the evolution of exogenous disturbances),
through appropriate adjustment of its policy instrument (here, a short-term nom-
inal interest rate). As in the case of optimal policy commitments under rational
expectations, analyzed under general conditions in Giannoni and Woodford (2010),
the robustly optimal target criterion can be derived from the first-order conditions
that characterize the upper-bound dynamics, in a way that is independent of the
specification of the exogenous disturbance processes.

Substituting (63) into (62) to eliminate m̂t, we obtain

πt + ϕx (xt − xt−1) + ϕs (πt − Et−1πt) + ϕq(q̂
u
t − Et−1q̂

u
t ) = 0, (72)

where ϕx ≡ λ/ξπ > 0, ϕs ≡ ξmλm/ξπ > 0 and ϕq ≡ ξmλq/ξπ, so that ϕq > 0 if
sd > 0 and ϕq < 0 if sd < 0. Condition (72) makes no explicit reference to belief
distortions or to exogenous disturbances, except insofar as the latter are involved in
the definitions of xt and q̂

u
t .

This condition provides a target criterion that represents a possible form of mon-
etary policy commitment, as established by the following result.

Proposition 3 Suppose assumption 1 holds and suppose that the central bank com-
mits to use interest rate policy to ensure that (72) holds each period. Then for any
belief distortions {mt+1}∞t=0 close enough to the distortions {mub

t+1}∞t=0 associated with
the upper bound dynamics (and characterized to first order in proposition 1), there
exist equilibrium paths for all endogenous variables for which (72) holds each period
(so that the policy commitment is feasible). Moreover, the equilibrium paths are lo-
cally unique, so that the target criterion (72) fully determines the necessary policy
actions.

The proof of the previous result is in appendix A.6. The same appendix also
establishes that condition (72) is indeed the robustly optimal target criterion that we
seek:

Proposition 4 The belief distortion {mub
t+1}∞t=0 and the associated paths for the en-

dogenous variables (equal to first order to the dynamics characterized in proposition
1) represent a local solution to the inner problem on the left-hand side of (4); that
is, the distortions {mub

t+1}∞t=0 represent (locally) worst-case beliefs under the policy
(72), and the associated worst-case outcomes are those characterized (to first order)
in proposition 1.
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Note that (72) is a form of “flexible inflation-targeting rule”: it implies a definite
long-run average inflation rate (namely, zero) regardless of the history of disturbances,
and allows transitory departures of the actual inflation rate from that long-run tar-
get only to the extent that they are justified by the sign and magnitude of transitory
variations in the output gap xt and/or the housing price q̂ut . Moreover, in the limiting
case of no concern for robustness to possible departures from model-consistent beliefs
(θ → ∞), we have ϕs → 0 and ϕq → 0, in which case the criterion (72) reduces to the
optimal target criterion for the basic New Keynesian model under rational expecta-
tions and without a housing sector, as discussed in Benigno and Woodford (2005) and
Giannoni and Woodford (2010). In particular, under rational expectations, expected
utility can be maximized by committing to a target criterion

πt + ϕx (xt − xt−1) = 0, (73)

that can be stated purely in terms of the paths of inflation and the output gap, without
any reference to the behavior of housing prices, even in our model with a housing
sector subject to tax distortions. Robustness to belief distortions instead requires a
more complex rule with two additional terms, one of which involves surprise changes
in inflation an the other suprise changes in the index of housing prices (measured
in marginal-utility units). The terms involving surprise changes in inflation also
appeared in the the robustly optimal target criterion derived Adam and Woodford
(2012) in the case of a New Keynesian model without a housing sector. The new
term arising from robustness concerns in our model with housing is thus the term
involving housing price surprises.

The case of empirical relevance for economies like the US is the one in which there
is overproduction of housing owing to tax subsidies (sd > 0), so that the robustly
optimal target criterion involves ϕq > 0. This means that the central bank should
“lean against” unexpected increases in housing prices, in the sense that it adopts a
policy stance under which it deliberately undershoots its normal targets for inflation
and/or the output gap because of an unexpected rise in housing prices.

7 Belief Distortions and Stabilization Goals

Further insight into the way in which robustly optimal policy should respond to
housing variables can be obtained through an explicit consideration of the way in
which welfare is affected by variations in the inflation rate, real activity, and housing
prices.

In the basic New Keynesian model, without a housing sector, it is well known
that the expected utility of the representative household can be approximated by a
quadratic objective function, that varies negatively with a discounted sum of squared
inflation rates and squared output gaps.14 This result makes it natural to express the

14The approximation consists of a second order Taylor series approximation, valid in the case of
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target criterion for optimal policy in terms of those same two variables, the inflation
rate and the output gap.15 Here we show how such a quadratic approximation is
modified by the introduction of a housing sector, in order to obtain insight into the
way in which the robustly optimal target criterion must be modified.

We begin by observing that in the case of small enough exogenous disturbances,
small enough belief distortions, and small enough departures of endogenous variables
from their steady state values, the period contribution to the welfare objective (39)
can be locally approximated by

U(Yt,∆t, q
u
t ; ξt) = UY Ỹt + U∆∆̃t + Uq

(
qut − ξ

d

t

)
+

1

2
UY Y Ỹ

2
t

+ Ỹt

(
UY ξ ξ̃t + UY q ξ̃

d

t

)
+ t.i.p.+O(3), (74)

where Ỹt = Yt − Y , ∆̃t = ∆t −∆, ξ̃t = ξt − ξ, ξ̃
d

t = ξ
d

t − ξ
d
denote the deviation from

the steady state values of each variable, t.i.p. denotes terms which are independent
of policy (constants and exogenous disturbances), and O(3) indicates a residual that
is at most of third order in the amplitude of the disturbances.16

The terms labeled t.i.p. need not be written out explicitly, as their value will be
independent of monetary policy and of the nature of belief distortions, so that these
terms affect none of the comparison made below. In writing (74), we restrict attention
to possible paths for the economy in which fluctuations in the endogenous variable

Ỹt are of a magnitude proportional to that of the exogenous disturbances ξ̃
d

t (”of first

order”, in our terminology), and the fluctuations in the endogenous variables ∆̃t,

(qut − ξ
d

t ) are of a magnitude proportional to that of squared disturbance terms (”of
second order”). These bounds on the magnitude of fluctuations in the endogenous
variables hold for the solution of the upper bound dynamics characterized in sections
4 and 5, given initial conditions satisfying assumption 1.

One can similarly show that the worst-case belief distortions associated with these
dynamics will be such that m̃t+1 = mt+1 − 1 is of first order as well; in fact, only
fluctuations {m̃t+1}∞t=0 of first order will be consistent with a finite relative entropy
bound, and so in our local approximations we assume that m̃t+1 is of first order.
The fact that belief distortions can only be of first order in the amplitude of the

disturbances then implies that the discrepancy qut −ξ
d

t can be at most of second order
in the amplitude of the disturbances (as a consequence of (21)). This is why it is

small enough exogenous disturbances, see chapter 6 in Woodford (2003) and Benigno and Woodford
(2003).

15In fact, the appropriate definition of the output gap is precisely the one required in order to
express the quadratic approximation to expected utility in terms of squared inflation terms and
squared output gaps.

16See chapter 6 in Woodford (2003) and Benigno and Woodford (2003) for further discusssion of
the method of linear-quadratic approximation of optimal policy problems used here.
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convenient to expand (74) in powers of
(
qut − ξ

d

t

)
and ξ̃

d

t , rather than powers of qut −q
alone.17

Again under the assumption of initial conditions satisfying assumption 1, a second
order Taylor approximation to the dynamic equation (44) implies that18

∞∑
t=0

βt∆̃t = σ∆

∞∑
t=0

βtπ2
t + t.i.p.+O(3), (75)

where

σ∆ =
1

2

α

(1− α)(1− αβ)
η(1 + ω)(1 + ωη) > 0.

Using this to approximate the discounted sums of ∆̃t terms, one can then approximate
the welfare objective (39) by a discounted sum of squared inflation rates (as in (75)),

a discounted sum of terms that are quadratic functions of Ỹt and the exogenous
disturbances, and discounted sums of the form

∞∑
t=0

βt
[
UY Ỹt + Uq

(
qut − ξ

d

t

)]
. (76)

From lemma 3, if there is no housing subsidy (sd = 0), then Uq = 0. If in addition,
there is an efficient output subsidy (τ = τ eff (0)), by lemma 2, UY = 0. In this case,
all terms in (76) would vanish, and the welfare objective can be approximated by

∞∑
t=0

βtU(Yt,∆t, q
u
t ; ξt) = −

∞∑
t=0

βt
(
Λππ

2
t + Λxx

2
t

)
+ t.i.p.+O(3), (77)

where19

Λπ = −U∆σ∆ > 0

Λx = −1

2
Y 2UY Y > 0,

and

xt = log(Yt/Y ) + (Y UY Y )
−1

(
UY ξ ξ̃t + UY q ξ̃

d

t

)
. (78)

Thus we would obtain in this case the same form of loss function for monetary sta-
bilization policy as in chapter 6 in Woodford (2003).

17We do not need to include a Ỹt(q
u
t − ξ

d

t ) term, as this would be of at least third order, though

we do have to inlcude a Ỹtξ̃t term.
18See equation (25) in Benigno and Woodford (2005).
19The first inequality below follows from (40), which implies U∆ < 0. The second inequality

follows from the fact that UY Y < 0, as shown in appendix A.2.
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Because the approximate welfare objective (77) then contains only purely quadratic
terms, a second order approximation to welfare requires only a first order accurate
solution for the evolution of inflation and output, and so to this order of approxima-
tion, there will be no effects of belief distortions on welfare. The characterization of
optimal policy is then identical (to first order) to that under rational expectations,
given for example in chapter 7 in Woodford (2003).

Belief distortion can matter to first order for the form of robustly optimal policy
only to the extent that UY or Uq is non-zero. If the output subsidy falls short of its
efficient level, in accordance with assumption 1, then UY > 0. In this case, a second
order accurate solution for the evolution of Ỹt is necessary in order to evaluate welfare
to second order, and belief distortions matter. Specifically, belief distortions that
exaggerate expected inflation shift the Phillips curve trade-off between inflation and
output gap stabilization in an unfavorable direction, requiring a lower average value
of Ỹt for inflation stabilization, in a situation where output is already suboptimally
low. Robustly optimal policy must then make it more difficult for near-rational belief
distortions to exaggerate the expected inflation rate of inflation, as discussed in Adam
and Woodford (2012). However, in the absence of a housing subsidy (sd = 0), we
would still have Uq = 0. In this case, the fact that mistaken beliefs may distort the
housing price qut is irrelevant for welfare (to second order), and the optimal target
criterion continues to take the same form as that derived by Adam and Woodford
(2012) for an economy without a housing market.

If instead housing is subsidized (sd > 0), lemma 3 implies Uq < 0. In this case,
first-order belief distortions can cause second order variation in qut and so lower wel-
fare. Robustly optimal policy must then seek to guard both against belief distortions
that exaggerate expected inflation and those that exaggerate the expected future
value of housing.

The impact of these two types of belief distortions on welfare can be seen by using
quadratic approximations to the model structural equations to solve for the linear
terms in (76) as explicit functions of the belief distortions and variables independent
of belief distortions. We begin, as in Benigno and Woodford (2005), by using a
second-order approximation to the structural equations to eliminate the linear terms
Ỹt.

As shown in Appendix A.7, a second order approximation yields

E0

∞∑
t=0

βtΓ′ (z(Yt, q
u
t , ξt) + αβmt+1Φ(Zt+1)− Zt)

= E0

∞∑
t=0

βtΓ′
(
zY Ỹt + zq(q

u
t − ξ

d

t ) +
1

2
zY Y Ỹ

2
t + Ỹt

(
zY ξ ξ̃t + zY q ξ̃

d

t

))
− E0

∞∑
t=0

βt+1Γ1

(
δπ1m̃t+1πt+1 + δπ2π

2
t+1

)
+ Γ1δ

π
1π0 + Γ1δ

π
3 (π0)

2 + t.i.p.+O(3) (79)

where the coefficients δπ1 , δ
π
2 , δ

π
3 > 0 are defined in the appendix. Structural equations
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(42)-(43) imply that the left-hand side of (79) must equal zero in any DEE; hence the
right-hand side must also equal zero to second order. We can thus add these terms
to our second order approximation to the welfare objective and still have a second
order approximation to (39) that must apply to any DEE.

Because the optimal steady state around which we compute our second order
approximation satisfies UY + Γ′zY = 0 (see equation (48)), the terms linear in Ỹt
cancel, and we obtain an approximation of the form

E0

∞∑
t=0

βtU(Yt,∆t, q
u
t ; ξt)

=− E0

∞∑
t=0

βt
(
Λππ

2
t + Λxx

2
t + βΓ′δπ1m̃t+1πt+1 − δΨ

(
qut − ξ

d

t

))
+ Γ1δ

π
1π0 + Γ1δ

π
3 (π0)

2 + t.i.p.+O(3), (80)

where now

Λπ ≡ −U∆σ∆ + Γ1δ
π
2 > 0

Λx ≡ −1

2
Y 2 (UY Y + Γ′zY Y ) > 0

(generalizing the expressions given above to the case in which Γ ̸= 0), and xt is
defined as in section 5.2 (generalizing the expression given (78)). Appendix A.2
shows UY Y < 0 as long as the degree to which the output subsidy falls short of its
efficient level is not too great. The same condition guarantees that the term Γ′zY Y

will be close to zero, so that in this case we must again have Λx > 0.
The maximization of expected discounted utility then corresponds (to a second

order approximation ) to minimization of a discounted sum of losses of four types:
squared inflation rates, squared output gaps, and two types of expectational errors.
The losses due to expectational errors are terms proportional to

Etm̃t+1πt+1 = Êtπt+1 − Etπt+1 (81)

and terms that depend negatively on

qut − ξ
d

t = Êt

(
∞∑
j=0

(β(1− δ))j ξdt+j

)
− Et

(
∞∑
j=0

(β(1− δ))j ξdt+j

)
. (82)

Higher values of the former terms reduce welfare to the extent that Γ1 > 0, which
holds if and only if the output subsidy is inefficiently low, by lemma 2. Higher values
of the latter terms reduce welfare to the extent that Ψ < 0, which holds if housing is
subsidized and the inefficiency of the output subsidy is not too extreme, by lemma
3. As discussed above, belief distortion have no effects (to second order) on the π2

t
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and x2t terms, so they matter for welfare only through their consequences for the
expectational error terms (the ones proportional to expressions (81) and (82)).

We can further simplify (82), writing it in terms of one-period-ahead forecast
errors, as in (81). It follows from (21) that

qut = ξdt + β(1− δ)Et

[
mt+1q

u
t+1

]
= ξdt + β(1− δ)Et

[
m̃t+1q

u
t+1

]
+ β(1− δ)Et

[
qut+1

]
,

which can be iterated to yield

qut = ξ
d

t +
∞∑
j=0

(β (1− δ))j+1Et

[
m̃t+j́+1q

u
t+j+1

]
.

Because (5) implies Etm̃t+1 = 0, the previous equation can alternatively be written
as

qut − ξ
d

t =
∞∑
j=0

(β (1− δ))j+1Et

(
m̃t+j́+1q̃

u
t+j+1

)
, (83)

from which it is evident that the excess valuation qut −ξ
d

t is of second order, as asserted
above.

We can then use (83) to write

E0

∞∑
t=0

βt
(
qut − ξ

d

t

)
=

1− δ

δ
E0

∞∑
t=0

βt+1m̃t́+1q̃
u
t+1 −

1− δ

δ
E0

∞∑
t=0

(β (1− δ))t+1 (m̃t+1q̃
u
t+1

)
(84)

=
1− δ

δ
E0

∞∑
t=0

βt+1m̃t́+1q̃
u
t+1 −

1− δ

δ

(
qu0 − ξ

d

t

)
. (85)

To second order, we can also write20

m̃t́+1q̃
u
t+1 = ξ

d
m̂t+1q̂

u
t+1 +O(3), (86)

and similarly
m̃t+1πt+1 = m̂t+1πt+1 +O(3). (87)

Substituting (85)-(87) in (80), we obtain the alternative approximate welfare criterion

E0

∞∑
t=0

βtU(Yt,∆t, q
u
t ; ξt) = −E0

∞∑
t=0

βt
(
Λππ

2
t + Λxx

2
t + βϱπm̂t+1πt+1 + βϱqm̂t+1q̂

u
t

)
− (1− δ)Ψ

(
qu0 − ξ

d

t

)
+ Γ1δ

π
1π0 + Γ1δ

π
3 (π0)

2

+ t.i.p.+O(3), (88)

20This follows from m̃t+1 = m̂t+1 +O(2) and q̃ut+1 = ξ
d
q̂ut+1 +O(3).
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where

ϱπ ≡ Γ′δπ1 > 0

ϱq ≡ −(1− δ)Ψξ
d
> 0,

and where the asserted signs for hold ϱπ and ϱq hold under the conditions stated in
assumption 1.

Finally, suppose that the central bank must choose a policy for dates t ≥ 0 that
will ensure a particular value for the quantity αΓ′

−1Φ(Z0)+Ψ−1(1− δ)qu0 , as assumed
in the upper bound problem (46) in section 4, where the values of the multipliers
Γ−1 and Ψ−1 are chosen in a particular way (as functions of the history of shocks
through period −1) so as to give the robustly optimal policy commitment a time-
invariant form. We further suppose that Γ−1 = (1 + ı̃−1)Γ for some scalar ı̃−1 and

that Ψ−1 = Ψ + Ψ̃−1, where ı̃−1 and Ψ̃−1 are of first order in the amplitude of the
exogenous disturbances.21 We show in Appendix A.7 that under these assumptions

αΓ′
−1Φ(Z0) + Ψ−1(1− δ)qu0 = −(1 + ı−1)Γ1δ

π
1π0 + Γ1 (δ

π
2 − δπ3 ) π

2
0

+ (1− δ)Ψ(qu0 − ξ
d

0) + t.i.p.+O(3). (89)

Since this expression must be independent of the policy decisions and of the belief
distortions, it follows that we can write

Γ1δ
π
1π0 + Γ1δ

π
3π

2
0 − (1− δ)Ψ(qu0 − ξ

d

0) = −ı̃−1ϱππ0 + Γ1δ
π
2π

2
0 + t.i.p.+O(3).

Substituting this into (88), we find that maximization of (39) is equivalent to second
order to minimization of

E0

∞∑
t=0

βt
(
Λππ

2
t + Λxx

2
t + βϱπm̂t+1πt+1 + βϱqm̂t+1q̂

u
t

)
− ı̃−1ϱππ0 + Γ1δ

π
2π

2
0 + t.i.p.+O(3). (90)

Moreover, (90) can be evaluated to second order on the basis of a first order solution
for the dynamics of {πt, xt}∞t=0, for any first order belief distortions {m̂t+1}∞t=0. Hence
all that matters about the initial pre-commitment for the problem of constrained
minimization of (90) is the constraint that it places on the first order approximate
dynamics of inflation and the output gap. A first order approximation to (89) is
simply

αΓ′
−1Φ(Z0) + Ψ−1(1− δ)qu0 = −Γδπ1π0 + t.i.p.+O(2),

21One can show that the multipliers required in order for these initial precommitmenst to lead to
the selection of a robustly optimal policy commitment at some date to continue the robustly optimal
commitment solution chosen at an earlier date will satisfy these properties. Note that in the solution
to the upper bound problem stated in section 4, Γt = (1 + ı̃t)Γ for all t, and ı̃ = O(1),Ψt = O(1)
for all t.
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so that to this order of approximation, the initial pre-commitment can be written in
the form

π0 = π0, (91)

where π0 may depend on the history of shocks through period −1, but is independent
of the policy chosen for periods t ≥ 0 and of the belief distortions.

Given constraint (91), the π0 and (π0)
2 terms in (90) can also be subsumed among

the ”t.i.p.” terms. Hence maximization of (39) is equivalent (to second order) to
minimization of a quadratic loss function

Λ = E0

∞∑
t=0

βt
(
Λππ

2
t + Λxx

2
t + βϱπm̂t+1πt+1 + βϱqm̂t+1q̂

u
t

)
. (92)

This approximation to the central bank’s objective function makes it clear in what
sense policy should seek to reduce the extent to which over-estimates of either fu-
ture inflation of future housing prices can occur as a result of ”near-rational” belief
distortions.

We can similarly approximate the penalty function (7) for belief distortions by

E0

∞∑
t=0

βt+1mt+1 logmt+1 =
1

2
E0

∞∑
t=0

βt+1m̂2
t+1︸ ︷︷ ︸

≡ V (m̂)

+O(3) (93)

A linear quadratic approximation to the robustly optimal policy problem is then given
by the problem

min
ĉ∈Ĉ

max
m̂∈M̂

Λ(ĉ, m̂) + θV (m̂) (94)

where M̂ is the set of processes {m̂t+1}∞t=0 such that Etm̂t+1 = 0 at all times and V (m̂)

is finite; Ĉ is the class of linear policy rules ĉ such that the log-linearized Phillips
curves (61) have a solution {πt, xt}∞t=0; and Λ(ĉ, m̂) is the value of the loss function
(92) evaluated for the processes {πt, xt}∞t=0 determined by the policy ĉ and the belief
distortions m̂. The linear policy ĉ solving (94) provides a linear approximation to the
robustly optimal policy for the exact, nonlinear model.

The linear quadratic approximate problem (94) is simpler than the exact problem
(3) in a number of respects. Notably, a first-order accurate approximation to the
paths {πt, xt}∞t=0 under any policy suffices in order to evaluate (92) to second order,
under any belief distortion process {m̂t+1}∞t=0 of first order. This means that we can
- without loss of generality - restrict attention to linear policy rules ĉ, and approxi-
mate the equilibrium dynamics implied by any policy commitment by the solution to
the linearized structural equations (61). Hence the equilibrium dynamics {πt, xt}∞t=0

associated with a given policy are, to this order of approximation, independent of the
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belief distortions m̂. This makes it possible to replace the outer problem in (94) by a
direct choice of the equilibrium paths {πt, xt}∞t=0. We can thus alternatively consider
the problem

min
x̂∈X̂

max
m̂∈M̂

L(x̂, m̂)− θV (m̂), (95)

where X̂ is the set of processes x̂ = {πt, xt}∞t=0 (specified as linear functions of the
history of exogenous disturbances) such that

E0

∞∑
t=0

βtπ2
t <∞ and E0

∞∑
t=0

βtx2t <∞,

and that are consistent with the structural relations (61) and the initial pre-commitment
(91); and L(x̂, m̂) is the value of (92) for the processes x̂ and m̂.

An advantage of this approximate problem is that it is possible to directly solve
the inner problem for arbitrary outcome processes {πt, xt}∞t=0, and using this result
to directly solve for the equilibrium outcomes x̂ under a robustly optimal policy
commitment, rather than having to characterize upper bound dynamics (as in sections
4 and 5) and then show that the upper bound can be achieved. The inner problem
in (95) reduces simply to the choice of a random variable m̂t+1 looking ahead from
any date t ≥ 0, so as to minimize

Etβϱπm̂t+1πt+1 + βϱqEtm̂t+1q̂
u
t − 1

2
θEtm̂t+1,

subject to Etm̂t+1 = 0 and taking as given the conditional distributions for {πt, q̂
u
t }∞t=0.
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The solution to this problem is obviously given by (63), where

λm = ϱπ/θ and λq = ϱq/θ. (96)

It then follows immediately from (96) that λm and λq have the signs indicated in
proposition 1.

It is also easily seen that the first order conditions for the outer problem in (95)
are given by (62)23, where m̂t is the worst-case belief distortion in the case of the
outcomes chosen in the outer problem; the envelope theorem allow us to treat the
process m̂ as given when computing these first order conditions, even though m̂ is
no longer chosen first, as in the upper-bound problem. Hence the solution to the
approximate problem (95) is given by the solution to equations (61)-(63), the same

22The solution for q̂ut is determined to first order by exogenous disturbances, and the solution
for πt is determined to first order by monetary policy and the exogenous disturbances; both are
determined to first order independently of belief distortions.

23More precisely, we obtain (62) for all t ≥ 1 as a necessary condition for optimality. The first
order condition for t = 0 is of a different form, but implies that (62) also holds for t = 0 under an
appropriate choice for ı−1. This is the form of pre-commitment required in order for the robustly
optimal policy rule to have a time-invariant form.
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as our characterization in proposition 1 of the local approximation to the upper bound
dynamics. In terms of the coefficients of the loss function (92), we observe that the
coefficients in (62) are given up to an arbitrary multiplicative factor by

ξπ = Λπ > 0, λ =
Λx

κ
> 0, ξm =

ϱπ
2
> 0.

Alternatively, we can obtain an objective function for the central bank by explicitly
solving for the maximized value of (92), substituting the worst-case belief distortions
given by (63) for the m̂t+1 terms. This maximized value is

E0

∞∑
t=0

βt
(
Λππ

2
t + Λxx

2
t + βθ−1Et

[
(wt+1 − Et(wt))

2]) , (97)

where
wt+1 = ϱππt+1 + ϱq q̂

u
t+1.

The outer problem in (95) can then be equivalently stated as the choice of pro-
cesses {πt, xt}∞t=0 consistent with the structural relations (61) and the initial pre-
commitment (91), so as to minimize the quadratic loss function (97), given the process
{q̂ut }∞t=0 that (to first order) is determined by exogenous housing demand disturbances.

A concern for robustness to possible belief distortions, i.e., a finite value for θ,
therefore requires the central bank to seek to minimize the variance of surprise vari-
ations in the composite variable wt+1, in addition to its usual stabilization objectives
(minimization of the squared inflation and output gap terms). The reason is that
greater surprise variability in this variable makes it easier for the private sector to
maker larger errors in its estimated of the conditional mean of this variable; an a
higher average value of Êtwt+1 is the type of expectations error that reduces welfare,
as can be seen from (92).

The variance of surprise variations in wt+1 depends not only on the variance of
inflation surprises, but also on the correlation of inflation surprises with housing price
surprises. Reductions of the distortions associated with worst-case belief distortions
requires that the covariance of inflation surprises with housing price surprises be
reduced (or even be negative); hence the robustly optimal policy involves ”leaning
against” housing price surprises, as concluded in section 6.

8 Conclusion

Monetary policymakers concerned about whether private-sector expectations will nec-
essarily coincide with those implied by their own model, that they use to understand
the economy and choose their policy commitment, may find it desirable to include
housing prices in the set of variables that they must track in order to verify that policy
is on course, alongside the traditional “target variables” of inflation and a suitably
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defined measure of the output gap. This can be the case even under circumstances
where an optimal policy commitment could be formulated purely in terms of a de-
sired relationship between the paths of inflation and the output gap, if one could be
confident that one’s policy would result in a rational-expectations equilibrium. We
have illustrated this in the context of a standard New Keynesian model extended to
include a housing sector, where we find that robustly optimal policy can be charac-
terized by a linear “target criterion,” but this must involve housing price surprises in
addition to the paths of inflation and the output gap. In the presence of a housing
subsidy, this requires monetary policy to be tighter (less tight) following unexpected
increases (decreases) in the housing price than in the case in which the policymaker
can rely on the private sector to have the same expectations as herself.

Of course, our analysis does not pretend to provide a complete analysis of the
problem of the desirable policy response to housing booms and busts. In our simple
model, mis-pricing of housing due to expectational errors matters for welfare only
because of its consequences for the degree to which productive resources are drawn
into the housing sector; hence the dependence of our results on the degree to which
there is already an inefficient over-supply of housing in the steady state, owing to
housing subsidies. We believe that this is one reason why housing booms are harm-
ful, but it probably is not the only one. Central banks’ concern to “lean against”
housing booms is often based on the fear that both household and bank balance sheets
may be impaired in the event of a subsequent collapse of housing prices, as a result
of the increased household borrowing often observed during a housing boom. Our
model does not address this issue, as for simplicity we abstract both from household
borrowing and from the existence of banks. The exercise must therefore be viewed
more as an illustration of our proposed approach than as a complete treatment of a
policy issue. It should, however, suffice to indicate that conclusions about the need
to include asset prices among the target variables based on a rational-expectations
analysis need not be robust to an allowance for even modest departures from rational
expectations.
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A Appendix

A.1 Steady State Results

This appendix proves a number of claims made in section 5.1. Using (31) and (32)
on can write (55) more explicitly as

λϕ
H̄−ν

A1+ωY
ω =

η − 1

η
(1− τ)C̄ σ̃−1

C
(
Y , qu, ξ

)−σ̃−1

. (98)

Since the left-hand side is increasing and the right-hand side decreasing in Y (as
CY > 0), there is a unique value for Y solving this equation, as claimed.

Using the definitions of k and f and (98), we have

fY = (1− τ)C̄ σ̃−1

C(Y, qu, ξ)−σ̃−1

− σ̃−1(1− τ)C̄ σ̃−1

Y C(Y, qu, ξ)−σ̃−1−1CY (Y, q
u, ξ)

kY =
η

η − 1
λϕ

H̄−ν

A1+ω
(1 + ω)Y ω

= (1 + ω)(1− τ)C̄ σ̃−1

C
(
Y , qu, ξ

)−σ̃−1

,

so that from CY > 0 and ω > 0 we get

kY − fY = (1− τ)C̄ σ̃−1

C
(
Y , qu, ξ

)−σ̃−1

·
(
ω + σ̃−1Y C(Y, qu, ξ)−1CY (Y, q

u, ξ)
)

> 0. (99)

From (40) we get

UY (Yt,∆t, q
u
t ; ξt) = C

σ̃−1

t C(Yt, q
u
t , ξt)

−σ̃−1

CY (Yt, q
u
t , ξt)

− λ

1 + ν
(1 + ω)

H̄−ν
t

A1+ω
t

Y ω
t ∆t

+
Ad

t ξ̄
d
t

α̃
Ω(qut , ξt)

α̃

(
α̃

1− α̃
σ̃−1

)
C(Yt, q

u
t , ξt)

α̃
1−α̃

σ̃−1−1CY (Yt, q
u
t , ξt).

(100)

Using (98), 1 + ω = ϕ(1 + ν) and evaluating at the steady state we have

UY (Y , 1, q
u; ξ) = C

σ̃−1

C(Y , qu, ξ)−σ̃−1

CY (Y , q
u, ξ)

− η − 1

η
(1− τ)C

σ̃−1

C(Y , qu, ξ)−σ̃−1

+
Adξ̄

d

α̃
Ωα̃

(
α̃

1− α̃
σ̃−1

)
C(Y , qu, ξ)

α̃
1−α̃

σ̃−1−1CY (Y , q
u, ξ).
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Using the fact that at the steady state

CY

(
Y , qu, ξ

)
=

1− g

1 + Ω σ̃−1

1−α̃
C(Y , qu, ξ)

σ̃−1

1−α̃
−1

(101)

and (24) we have

UY (Y , 1, q
u; ξ) =C

σ̃−1

C(Y , qu, ξ)−σ̃−1

CY (Y , q
u, ξ)

− C
σ̃−1

C(Y , qu, ξ)−σ̃−1 η − 1

η
(1− τ)

+ C
σ̃−1

C(Y , qu, ξ)−σ̃−1

CY (Y , q
u, ξ)Ω

1

1 + sd

(
σ̃−1

1− α̃

)
C(Y , qu, ξ)

σ̃−1

1−α̃
−1

=C
σ̃−1

C(Y , qu, ξ)−σ̃−1

·

−η − 1

η
(1− τ) + CY (Y , q

u, ξ)
1 + sd + Ω σ̃−1

1−α̃
C(Y , qu, ξ)

σ̃−1

1−α̃
−1

1 + sd


=C

σ̃−1

C(Y , qu, ξ)−σ̃−1

(
1− g

1 + sd
− η − 1

η
(1− τ) +

sd

1 + sd
CY (Y , q

u, ξ)

)
.

(102)

The efficient output subsidy 1− τ eff (sd) is the one giving rise to UY (Y , 1, q
u; ξ) = 0

and is implicitly defined as

1− τ eff (sd) =
η

η − 1

(
1− g + sdCY (Y , q

u, ξ)

1 + sd

)

=
η

η − 1
(1− g)


1 + sd

1+Ω σ̃−1

1−α̃
C(Y ,qu,ξ)

σ̃−1
1−α̃

−1

1 + sd

 .

From Ω σ̃−1

1−α̃
C(Y , qu, ξ)

σ̃−1

1−α̃
−1 > 0 follows that ∂

(
1− τ eff (sd)

)
/∂sd < 0. Using (101)

we can express the terms in the last parenthesis in (102), which determine the sign
of UY whenever τ deviates from τ eff (sd), as

1− g

1 + sd
− η − 1

η
(1− τ) +

sd

1 + sd
CY (Y , q

u, ξ)

=
1− g

1 + sd
− η − 1

η
(1− τ) +

sd

1 + sd
1− g

1 + Ω σ̃−1

1−α̃
C(Y , qu, ξ)

σ̃−1

1−α̃
−1
. (103)

The derivative of the r.h.s of (103) w.r.t. (1− τ) is given by

−η − 1

η
− sd

1 + sd
1− g(

1 + Ω σ̃−1

1−α̃
C(Y , qu, ξ)

σ̃−1

1−α̃
−1
)2CY (Y , q

u, ξ)
∂Y

∂(1− τ)
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and is strictly negative because CY > 0 and because (98) implies ∂Y
∂(1−τ)

> 0. Since

UY = 0 for τ = τ eff (sd) this shows that UY < 0 whenever 1 − τ > 1 − τ eff (sd) and
UY > 0 whenever 1− τ < 1− τ(sd), as claimed in lemma 2.

A.2 Proof of Lemma 1

We establish the claim for the case of an efficient output subsidy. By continuity it
also holds for values of 1− τ sufficiently close to 1− τ eff (sd). We have

UY (Yt,∆t, q
u
t ; ξt) = C

σ̃−1

t C(Yt, q
u
t , ξt)

−σ̃−1

CY (Yt, q
u
t , ξt)

− λ

1 + ν
(1 + ω)

H̄−ν
t

A1+ω
t

Y ω
t ∆t

+
Ad

t ξ̄
d
t

α̃
Ω(qut , ξt)

α̃

(
α̃

1− α̃
σ̃−1

)
C(Yt, q

u
t , ξt)

α̃
1−α̃

σ̃−1−1CY (Yt, q
u
t , ξt).

(104)

Differentiating once more w.r.t. Yt and evaluating at the steady state, one obtains

UY Y = −σ̃−1C
σ̃−1

C−σ̃−1−1CYCY

+ C
σ̃−1

C−σ̃−1

CY Y

− λ

1 + ν
(1 + ω)ω

H̄
−ν

A1+ωY
ω−1

+ Adξ̄
d
Ωα̃ (1 + χ)

(
χ− σ̃−1

)
Cχ−σ̃−1−1CYCY

+ Adξ̄
d
Ωα̃ (1 + χ)Cχ−σ̃−1

CY Y ,

where χ = σ̃−1

1−α̃
− 1. Using Adξ̄

d
Ωα̃ = Ω

1+sd
C

σ̃−1

we have

UY Y = − λ

1 + ν
(1 + ω)ω

H̄
−ν

A1+ωY
ω−1

+ C
σ̃−1

C−σ̃−1


−σ̃−1C−1CYCY

+CY Y

+ 1
1+sd

(1 + χ)
(
χ− σ̃−1

)
ΩCχ−1CYCY

+ 1
1+sd

(1 + χ) ΩCχCY Y

 .
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Using also

CY =
1− g

1 + Ω σ̃−1

1−α̃
C

σ̃−1

1−α̃
−1

=
1− g

1 + Ω (1 + χ)Cχ > 0

CY Y = −
1− g(

1 + Ω σ̃−1

1−α̃
C

σ̃−1

1−α̃
−1
)2Ω σ̃−1

1− α̃

(
σ̃−1

1− α̃
− 1

)
C

σ̃−1

1−α̃
−2CY

= −
1− g

(1 + Ω (1 + χ)Cχ)2
Ω (1 + χ)χCχ−1CY < 0,

we obtain

UY Y = − λ

1 + ν
(1 + ω)ω

H̄
−ν

A1+ωY
ω−1

+ C
σ̃−1

C−σ̃−1

CY


−σ̃−1C−1 1−g

1+Ω(1+χ)Cχ

− 1−g

(1+Ω(1+χ)Cχ)2
Ω (1 + χ)χCχ−1

+ 1
1+sd

(1 + χ)
(
χ− σ̃−1

)
ΩCχ−1 1−g

1+Ω(1+χ)Cχ

− 1
1+sd

(1 + χ) ΩCχ 1−g

(1+Ω(1+χ)Cχ)2
Ω (1 + χ)χCχ−1


= − λ

1 + ν
(1 + ω)ω

H̄
−ν

A1+ωY
ω−1

+ C
σ̃−1

C−σ̃−1−1CY

1− g

(1 + Ω (1 + χ)Cχ)2


−σ̃−1 (1 + Ω (1 + χ)Cχ)

−Ω (1 + χ)χCχ

+ 1
1+sd

(1 + Ω (1 + χ)Cχ) (1 + χ)
(
χ− σ̃−1

)
ΩCχ

− 1
1+sd

(1 + χ) ΩCχΩ (1 + χ)χCχ


︸ ︷︷ ︸

=C0

.

(105)

The first term in the last expression is negative. Form CY > 0 follows that UY Y < 0
whenever C0 < 0. Simplifying terms we have

C0 = −σ̃−1 (1 + Ω (1 + χ)Cχ)

(
1 +

1

1 + sd
(1 + χ) ΩCχ

)
︸ ︷︷ ︸

<0

+(
1

1 + sd
−1) (1 + χ)χΩCχ

(106)
We thus have C0 < 0 and thereby UY Y < 0 if either sd ≥ 0 or sd < 0 but sufficiently
close to zero, as claimed.
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A.3 Proof of Lemma 3

From (40) we obtain using (24)

Uq(Y , q
u, ξ) = C

σ̃−1

C(Y , qu, ξ)−σ̃−1

Cq(Y , q
u, ξ)

+ Adξ̄
d
Ωα̃ σ̃−1

1− α̃
C(Y , qu, ξ)

α̃
1−α̃

σ̃−1−1Cq(Y , q
u, ξ)

+ Adξ̄
d
Ωα̃−1 C(Y , qu, ξ)

α̃
1−α̃

σ̃−1

(
1

qu
Ω

1− α̃

)
= C

σ̃−1

C(Y , qu, ξ)−σ̃−1

Cq(Y , q
u, ξ)

(
1 +

σ̃−1

1− α̃
ΩC(Y , qu, ξ)

σ̃−1

1−α̃
−1 1

1 + sd

)
+

Ad

1− α̃
Ωα̃ C(Y , qu, ξ)

α̃
1−α̃

σ̃−1

Implicitly differentiating (23) we obtain

Cq(Y , q
u, ξ) =

−∂Ω(qu,ξ)

∂q
C(Y , qu, ξ)

σ̃−1

1−α̃

1 + χ∗ (107)

where χ∗ = σ̃−1

1−α̃
ΩC(Y , qu, ξ)

σ̃−1

1−α̃
−1 > 0 and

∂Ω(qu,ξ)

∂q
= 1

qu
1

1−α̃
Ω. Using this we can

write

Uq(Y , q
u, ξ) = −C σ̃−1

C(Y , qu, ξ)
α

1−α̃
σ̃−1 1 +

χ∗

1+sd

1 + χ∗
1

qu
1

1− α̃
Ω

+
Ad

1− α̃
Ωα̃ C(Y , qu, ξ)

α̃
1−α̃
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= −C σ̃−1

C(Y , qu, ξ)
α

1−α̃
σ̃−1 1

qu
1

1− α̃
Ω

(
1 + χ∗

1+sd

1 + χ∗ − 1

1 + sd

)
Ω

= −C σ̃−1

C(Y , qu, ξ)
α

1−α̃
σ̃−1 1

qu
1

1− α̃
Ω

(
sd

(1 + χ∗) (1 + sd)

)
Ω

proving that Uq < 0 for sd > 0, Uq > 0 for sd < 0, and Uq = 0 for sd = 0. For τ
sufficiently close to τ eff (sd) we furthermore have from lemma 2 that UY is sufficiently
close to zero, so that (57) implies that Γ1 is also sufficiently to zero, so that from
(59) it follows that Ψ has the same sign as Uq, whenever τ ̸= τ eff . Furthermore, for
τ = τ eff we have UY = Γ1 = 0 and also Uq = 0, so that from (59) we obtain Ψ = 0.

A.4 Proof of Proposition 1

With initial price dispersion satisfying ∆−1 = 0 +O(2) it follows from equation (45)
that ∆−1 = 0+O(2) for all t ≥ 0. Furthermore, equations (5) and (21) jointly imply

q̂ut =
̂̄
ξ
d
t +O(2), (108)
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so that q̂ut is determined to first order purely by exogenous disturbances.
From 1− τ < 1− τ eff (sd) and lemma 2 follows that

Γ1 > 0.

Furthermore, we have from lemma 3

Ψ < 0 if sd > 0
Ψ > 0 if sd < 0.

Using the fact that ∆̂t and q̂
u
t −

̂̄
ξ
d
t are all zero to first order accuracy, a linearization

of (48) delivers

Y UY Y Ŷt + UY q ξ̃t + UY ξ ξ̃t + Y Γ′zY Y Ŷt +Γ′zY q ξ̃t +Γ′zY ξ ξ̃t + (fY − kY ) Γ̃1t = 0 (109)

whereξ̃t = ξt − ξ and ξ̃t = ξt − ξ. Using a first order approximation to (60) one can
rewrite (109) as

Γ̃1t = −λxxt (110)

where

λx =
Y UY Y + Y Γ′zY Y

fY − kY
> 0

The last inequality follows from fY − kY < 0, UY Y < 0 and the fact that for τ
sufficiently close to τ eff (sd) we have that Γ′ is approximately zero.

From the proof of proposition 2 in Adam and Woodford (2012) follows that log-
linearization of (49)-(50) delivers

b(K̂t − F̂t)− Γ̃1t + Γ̃1,t−1 + Γ1m̂t = 0 (111)

where

b = −
(
γ

K

1− α

α

η(1 + ω)

1 + ωη
+ αc

)
> 0

and

c = Γ1

F

K

(
−(1− α)

α

η(1 + ω)

1 + ωη
−
(
(1− α)

α

)2
η(1 + ω)

1 + ωη

)
< 0

Log-linearization of (36) delivers

πt =
1− α

α

1

1 + ωη
(K̂t − F̂t). (112)

Using the previous equation and (110) to substitute for K̂ − F̂ and Γ̂ in (111) one
obtains the targeting rule (62), where

ξπ = b
α

1− α
(1 + ωη) > 0

ξm = Γ1 > 0
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Log-linearization of the constraints (42) and (43) together with (112) delivers (61)
where the ‘cost-push’ disturbance is defined as

ut = κξ ξ̃t + κY Ŷ
∗
t (113)

and

κY =
(1− α) (1− αβ)

α(1 + ωη)

Y

k
(kY − fY ) > 0 (114)

κξ =
(1− α) (1− αβ)

α(1 + ωη)

1

k
(k′ξ − f ′

ξ) (115)

The linearization of (52) delivers

θm̂t+1 + αΦ(Z)Γ̃t + αK Γ′D(1)Ẑt+1 + (1− δ)Ψquq̂ut+1 + (1− δ)quΨ̃t + ψ̃t = 0.

Applying the expectations operator Et to the previous equation, subtracting the result
from it, and using αΓ̄′D(1) = Γ̄′ yields

θm̂t+1 = K Γ1

(
K̂t+1 − F̂t+1 − Et

(
K̂t+1 − F̂t+1

))
− (1− δ)Ψqu

(
q̂ut+1 − Etq̂

u
t+1

)
.

Using (112) and shifting back by one period, we get (63) with

λm =
K Γ1

θ

α

1− α
(1 + ωη) > 0 (116)

λq = −(1− δ)

θ
Ψqu (117)

The sign of λq depends on the sign of Ψ, which can be determined from lemma 3.

A.5 Proof of Proposition 2

From (113) we have

ut = κξ ξ̃t + κY Ŷ
∗
t

= κAdAdÂd
t + κ

ξ
dξ

d
ξ̂
d

t + κY Ŷ
∗
t + n.h.s., (118)

where n.h.s. denotes the effects of non-housing shocks. From (115) and noting that

the function k(·) is independent of the housing sector shocks Ad
t and ξ

d

t and that the

function f(·) depends only via qut = ξ̂
d

t +O(2) on ξ̂
d

t , we get

κAdAdÂd
t + κ

ξ
dξ

d
ξ̂
d

t =− (1− α) (1− αβ)

α(1 + ωη)

1

k
fAdAdÂd

t

− (1− α) (1− αβ)

α(1 + ωη)

1

k
fqξ

dξ̂
d

t
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Using (31) we get

fAd = −σ̃−1(1− τ)C
σ̃−1

Y C−σ̃−1−1CAd > 0, (119)

where CAd denotes the derivative of the function C(Y, qu, ξ) w.r.t. Ad, evaluated at
the steady state, and where (23) implies CAd < 0. We thus have

κAdAdÂd
t + κ

ξ
dξ

d̂̄ξdt = −(1− α) (1− αβ)

α(1 + ωη)

1

k
fAdAdÂd

t

Next, we determine the effects of Ad
t and ξ

d

t on Y ∗
t . From (60) we get

UY (Y
∗
t , 1, ξ

d

t ; ξt) + Γ1

(
fY (Y

∗
t , ξ

d

t , ξt)− kY (Y
∗
t , ξt)

)
= 0

The linear approximation to this w.r.t. Y ∗
t and all housing sector shocks delivers

UY Y Y Ŷ
∗
t + UY qξ

d
ξ̂
d

t + UY AdAdÂd
t + U

Y ξ
dξ

d
ξ̂
d

t

+Γ1(fY Y Y Ŷ
∗
t + fY qξ

d
ξ̂
d

t + fY AdAdÂd
t − kY Y Y Ŷ

∗
t ) = 0 + n.h.s., (120)

where we used the fact that k(·) is independent of Ad and ξ
d
, and subsumed the

effects of non-housing shocks into n.h.s. For the special case with an efficient
output subsidy, lemma 2 shows that Γ1 = 0, so that then

Ŷ ∗
t = − 1

UY Y Y

((
UY q + U

Y ξ
d

)
ξ
d
ξ̂
d

t + UY AdAdÂd
t

)
+ n.h.s.,

so that

ut =− (1− α) (1− αβ)

α(1 + ωη)

1

k
fAdAdÂd

t −
(1− α) (1− αβ)

α(1 + ωη)

1

k
fqξ

dξ̂
d

t

− (1− α) (1− αβ)

α(1 + ωη)

1

k

(kY − fY )

UY Y

((
UY q + U

Y ξ
d

)
ξ
d
ξ̂
d

t + UY AdAdÂd
t

)
=κξ

d

ξ̂
d

t + κA
d

Âd
t ,

where

κξ
d

= −(1− α) (1− αβ)

α(1 + ωη)

1

k
ξ
d
(
fq +

(kY − fY )

UY Y

(UY q + U
Y ξ

d)

)
κA

d

= −(1− α) (1− αβ)

α(1 + ωη)

1

k
Ad

(
fAd +

(kY − fY )

UY Y

UY Ad

)
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Due to the way in which qut , ξ
d

t and A
d enter the functions f(·) and U(·), we have that

ξ
d
fq = AdfAd and ξ

d
(UY q + U

Y ξ
d) = AdUY Ad, so that

κu ≡ κξ
d

= κA
d

.

We now derive an explicit expression for κξ
d

, so as to determine its sign. From (99)
we have

kY − fY = (1− τ)C
σ̃−1

C−σ̃−1

(
ω + σ̃−1Y

CY

C

)
> 0. (121)

Furthermore, lemma 1 insures UY Y < 0, as long as sd is not too negative. From (100)
we get

UY (Yt,∆t, q
u
t ; ξt) = C

σ̃−1

t C(Yt, q
u
t , ξt)

−σ̃−1

CY (Yt, q
u
t , ξt)

− λ

1 + ν
(1 + ω)

H̄−ν
t

A1+ω
t

Y ω
t ∆t

+ Ad
t ξ̄

d
tΩ(q

u
t , ξt)

α̃ (1 + χ)C(Yt, q
u
t , ξt)

χ−σ̃−1

CY (Yt, q
u
t , ξt). (122)

where χ = σ̃−1/(1− α̃)− 1. Taking derivatives w.r.t. qut and ξ
d

t and evaluating at the
steady state delivers

UY q = −σ̃−1C
σ̃−1

C−σ̃−1−1CqCY + C
σ̃−1

C−σ̃−1

CY q

+ Adξ̄
d
α̃Ωα̃−1∂Ω

∂q
(1 + χ)Cχ−σ̃−1

CY

+ Adξ̄
d
Ωα̃ (1 + χ)

(
χ− σ̃−1

)
Cχ−σ̃−1−1CqCY

+ Adξ̄
d
Ωα̃ (1 + χ)Cχ−σ̃−1

CY q

U
Y ξ

d = AdΩα̃ (1 + χ)Cχ−σ̃−1

CY

where
∂Ω

∂q
=

1

qu
Ω

1− α̃
.

From (107) we get

Cq(Y , q
u, ξ) =

− 1
qu

1
1−α̃

ΩCχ+1

1 + (χ+ 1)ΩCχ , (123)
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and from (101)

CY =
1− g

1 + Ω σ̃−1

1−α̃
C

σ̃−1

1−α̃
−1

=
1− g

1 + Ω (1 + χ)Cχ > 0

CAd = −
1

1−α̃
1
AdΩC

σ̃−1

1−α̃

1 + Ω σ̃−1

1−α̃
C

σ̃−1

1−α̃
−1

= −
1

1−α̃
1
AdΩC

1+χ

1 + Ω (1 + χ)Cχ < 0 (124)

CY Y = −
1− g(

1 + Ω σ̃−1

1−α̃
C

σ̃−1

1−α̃
−1
)2Ω σ̃−1

1− α̃

(
σ̃−1

1− α̃
− 1

)
C

σ̃−1

1−α̃
−2CY

= −
1− g

(1 + Ω (1 + χ)Cχ)2
Ω (1 + χ)χCχ−1CY

CY q = −
1− g

(1 + Ω (1 + χ)Cχ)2

(
Ω (1 + χ)χCχ−1Cq + (1 + χ)Cχ 1

1− α̃

Ω

qu

)

= −
1− g

(1 + Ω (1 + χ)Cχ)2

(
Ω (1 + χ)χCχ−1

− 1
qu

1
1−α̃

ΩCχ+1

1 + (χ+ 1)ΩCχ + (1 + χ)Cχ 1

1− α̃

Ω

qu

)

= −
1− g

(1 + Ω (1 + χ)Cχ)3
(1 + ΩCχ) (1 + χ)Cχ 1

1− α̃

Ω

qu

CY Ad = −
1− g(

1 + Ω σ̃−1

1−α̃
C

σ̃−1

1−α̃
−1
)2 (Ω σ̃−1

1− α̃

(
σ̃−1

1− α̃
− 1

)
C

σ̃−1

1−α̃
−2CAd +

σ̃−1

1− α̃
C

σ̃−1

1−α̃
−1 1

1− α̃

Ω

Ad

)

= −
1− g

(1 + Ω (1 + χ)Cχ)2

(
Ω (1 + χ)χCχ−1CAd + (1 + χ)Cχ 1

1− α̃

Ω

Ad

)
= −

1− g

(1 + Ω (1 + χ)Cχ)2

(
−Ω (1 + χ)χCχ−1

1
1−α̃

1
AdΩC

1+χ

1 + Ω (1 + χ)Cχ + (1 + χ)Cχ 1

1− α̃

Ω

Ad

)

= −
1− g

(1 + Ω (1 + χ)Cχ)2
(1 + χ)

1

1− α̃

Ω

Ad

(
−ΩχC2χ + Cχ + Ω(1 + χ)C2χ

1 + Ω (1 + χ)Cχ

)
= − (1 + χ)

(1 + Ω (1 + χ)Cχ)3
1− g

1− α̃

Ω

Ad
Cχ (1 + ΩCχ) .

We thus have

fq = −σ̃−1(1− τ)C
σ̃−1

Y C−σ̃−1−1Cq

= σ̃−1(1− τ)C
σ̃−1

Y C−σ̃−1 ΩCχ

1 + (χ+ 1)ΩCχ

1

qu
1

1− α̃
,

and can furthermore express
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UY q + U
Y ξ

d

= −σ̃−1C
σ̃−1

C−σ̃−1−1CqCY

+ C
σ̃−1

C−σ̃−1

CY q

+ Adξ̄
d
α̃Ωα̃−1∂Ω

∂q
(1 + χ)Cχ−σ̃−1

CY

+ Adξ̄
d
Ωα̃ (1 + χ)

(
χ− σ̃−1

)
Cχ−σ̃−1−1CqCY

+ Adξ̄
d
Ωα̃ (1 + χ)C

α̃
1−α̃

σ̃−1−1CY q

+ AdΩα̃ (1 + χ)C
α̃

1−α̃
σ̃−1−1CY

= −σ̃−1C
σ̃−1

C−σ̃−1−1
1− g

1 + Ω (1 + χ)Cχ

− 1
qu

1
1−α̃

ΩCχ+1

1 + (χ+ 1)ΩCχ

− C
σ̃−1

C−σ̃−1 1− g

(1 + Ω (1 + χ)Cχ)3
(1 + ΩCχ) (1 + χ)Cχ 1

1− α̃

Ω

qu

+ Adξ̄
d
α̃Ωα̃−1 1

qu
Ω

1− α̃
(1 + χ)Cχ−σ̃−1 1− g

1 + Ω (1 + χ)Cχ

+ Adξ̄
d
Ωα̃ (1 + χ)

(
χ− σ̃−1

)
Cχ−σ̃−1−1

− 1
qu

1
1−α̃

ΩCχ+1

1 + (χ+ 1)ΩCχ

1− g

1 + Ω (1 + χ)Cχ

− Adξ̄
d
Ωα̃ (1 + χ)Cχ−σ̃−1 1− g

(1 + Ω (1 + χ)Cχ)3
(1 + ΩCχ) (1 + χ)Cχ 1

1− α̃

Ω

qu

+ AdΩα̃ (1 + χ)Cχ−σ̃−1 1− g

1 + Ω (1 + χ)Cχ

Using

Adξ̄
d
Ωα̃ =

Ω

1 + sd
C

σ̃−1

and ξ̄
d
= qu we can write this as
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UY q + U
Y ξ

d

= +σ̃−1C
σ̃−1

C−σ̃−1−1 1

(1 + Ω (1 + χ)Cχ)2
ΩCχ+1 1

qu
1− g

1− α̃
(125)

− C
σ̃−1

C−σ̃−1 1

(1 + Ω (1 + χ)Cχ)3
(1 + ΩCχ) (1 + χ) ΩCχ 1

qu
1− g

1− α̃

+ α̃
Ω

1 + sd
C

σ̃−1

(1 + χ)Cχ−σ̃−1 1

1 + Ω (1 + χ)Cχ

1

qu
1− g

1− α̃

− Ω

1 + sd
C

σ̃−1

(1 + χ)
(
χ− σ̃−1

)
Cχ−σ̃−1 ΩCχ

(1 + (χ+ 1)ΩCχ)2
1

qu
1− g

1− α̃

− Ω

1 + sd
C

σ̃−1

(1 + χ)Cχ−σ̃−1 (1 + ΩCχ) (1 + χ) ΩCχ

(1 + Ω (1 + χ)Cχ)3
1

qu
1− g

1− α̃

+
Ω

1 + sd
C

σ̃−1

(1 + χ)Cχ−σ̃−1 1− α̃

1 + Ω (1 + χ)Cχ

1

qu
1− g

1− α̃

=
1

qu
1− g

1− α̃
C

σ̃−1

C−σ̃−1

ΩCχ



σ̃−1 1
(1+(1+χ)ΩCχ)2

− 1
(1+(1+χ)ΩCχ)3

(1 + ΩCχ) (1 + χ)

+α̃ 1
1+sd

(1 + χ) 1
1+Ω(1+χ)Cχ

− 1
1+sd

(1 + χ)
(
χ− σ̃−1

)
ΩCχ 1

(1+(1+χ)ΩCχ)2

− 1
1+sd

(1 + χ) ΩCχ (1+ΩCχ)(1+χ)

(1+(1+χ)ΩCχ)3

+ 1
1+sd

(1 + χ) 1−α̃
1+(1+χ)ΩCχ


︸ ︷︷ ︸

≡C1

(126)

From (105), (98) and 1 + ω = ϕ(1 + ν)we get

UY Y = −C̄ σ̃−1

C−σ̃−1

ω
η − 1

η
(1− τ)Y −1

+ C
σ̃−1

C−σ̃−1−1CY

1− g

(1 + Ω (1 + χ)Cχ)2


−σ̃−1 (1 + Ω (1 + χ)Cχ)

−Ω (1 + χ)χCχ

+ 1
1+sd

(1 + Ω (1 + χ)Cχ) (1 + χ)
(
χ− σ̃−1

)
ΩCχ

− 1
1+sd

(1 + χ) ΩCχΩ (1 + χ)χCχ


︸ ︷︷ ︸

≡C0

.

(127)

We can thus express
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fq +
(kY − fY )

UY Y

(UY q + U
Y ξ

d)

= σ̃−1(1− τ)C
σ̃−1

Y C−σ̃−1 ΩCχ

1 + (χ+ 1)ΩCχ

1

qu
1

1− α̃

+
(1− τ)

(
ω + σ̃−1Y CY

C

)
−ω η−1

η
(1− τ)Y −1 + CY

C

1−g

(1+Ω(1+χ)Cχ)2
C0

· 1

qu
1− g

1− α̃
C

σ̃−1

C−σ̃−1

ΩCχC1. (128)

From (106)

C0 = −σ̃−1 (1 + Ω (1 + χ)Cχ)

(
1 +

1

1 + sd
(1 + χ) ΩCχ

)
+ (

1

1 + sd
− 1) (1 + χ)χΩCχ

= −σ̃−1 (1 + Ω (1 + χ)Cχ)
1

1 + sd
(
1 + sd + (1 + χ) ΩCχ

)
− sd

1 + sd
(1 + χ)χΩCχ

=
1

1 + sd
(
−σ̃−1 (1 + Ω (1 + χ)Cχ)

(
1 + sd + (1 + χ) ΩCχ

)
− sd (1 + χ)χΩCχ

)
=

1

1 + sd
(
−σ̃−1 (1 + Ω (1 + χ)Cχ)2 − sdσ̃−1 (1 + Ω (1 + χ)Cχ)− sd (1 + χ)χΩCχ

)
,

(129)

50



and from (126) we get

C1 = σ̃−1 1

(1 + (1 + χ) ΩCχ)2

− 1

(1 + (1 + χ) ΩCχ)3
(1 + ΩCχ) (1 + χ)

− 1

1 + sd
(1 + χ)

(
χ− σ̃−1

)
ΩCχ 1

(1 + (1 + χ) ΩCχ)2

− 1

1 + sd
(1 + χ) ΩCχ (1 + ΩCχ) (1 + χ)

(1 + (1 + χ) ΩCχ)3

+
1

1 + sd
(1 + χ)

1

1 + (1 + χ) ΩCχ

= σ̃−1
1 + 1

1+sd
(1 + χ) ΩCχ

(1 + (1 + χ) ΩCχ)2

− (1 + ΩCχ) (1 + χ)
1 + 1

1+sd
(1 + χ) ΩCχ

(1 + (1 + χ) ΩCχ)3

− 1

1 + sd
(1 + χ)

(1 + (1 + χ) ΩCχ)2
(χΩCχ − 1− (1 + χ) ΩCχ)

= σ̃−1
1 + 1

1+sd
(1 + χ) ΩCχ

(1 + (1 + χ) ΩCχ)2

− (1 + ΩCχ) (1 + χ)
1 + 1

1+sd
(1 + χ) ΩCχ

(1 + (1 + χ) ΩCχ)3

+
1

1 + sd
(1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)2

= σ̃−1
1 + 1

1+sd
(1 + χ) ΩCχ

(1 + (1 + χ) ΩCχ)2
+

(1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)2

(
1

1 + sd
−

1 + 1
1+sd

(1 + χ) ΩCχ

1 + (1 + χ) ΩCχ

)

=
1

1 + sd

(
σ̃−11 + sd + (1 + χ) ΩCχ

(1 + (1 + χ) ΩCχ)2
+

(1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)2

(
1− 1 + sd + (1 + χ) ΩCχ

1 + (1 + χ) ΩCχ

))
=

1

1 + sd

(
σ̃−1

(1 + (1 + χ) ΩCχ)
+

sdσ̃−1

(1 + (1 + χ) ΩCχ)2
− (1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)2
sd

1 + (1 + χ) ΩCχ

)
=

1

1 + sd

(
σ̃−1

(1 + (1 + χ) ΩCχ)
+ sd

σ̃−1 (1 + (1 + χ) ΩCχ)− (1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)3

)
(130)
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Combining (128), (129) and (130) we have

fq +
(kY − fY )

UY Y

(UY q + U
Y ξ

d)

= σ̃−1(1− τ)C
σ̃−1

Y C−σ̃−1 ΩCχ

1 + (χ+ 1)ΩCχ

1

qu
1

1− α̃

+
(1− τ)

(
ω + σ̃−1Y CY

C

)
−ω η−1

η
(1− τ)Y −1 + CY

C

1−g

(1+Ω(1+χ)Cχ)2
C0

· 1

qu
1− g

1− α̃
C

σ̃−1

C−σ̃−1

ΩCχC1

= (1− τ)C
σ̃−1

C−σ̃−1

Y
1

qu
1

1− α̃
ΩCχ

 σ̃−1

1+(χ+1)ΩCχ

+
(1−g)

(
ω+σ̃−1Y

CY
C

)
−ω η−1

η
(1−τ)+Y

CY
C

1−g

(1+Ω(1+χ)Cχ)2
C0

C1


= (1− τ)C

σ̃−1

C−σ̃−1

Y
1

qu
1

1− α̃
ΩCχ

·


σ̃−1

(
−ω η−1

η
(1− τ)

+Y CY

C

1−g

(1+Ω(1+χ)Cχ)2
C0

)
+ (1− g)

(
ω + σ̃−1Y CY

C

)
(1 + (χ+ 1)ΩCχ)C1

(1 + (χ+ 1)ΩCχ)︸ ︷︷ ︸
>0

(
−ωη − 1

η
(1− τ) + Y

CY

C

1− g

(1 + Ω (1 + χ)Cχ)2
C0

)
︸ ︷︷ ︸

∝UY Y and UY Y <0 for sd not too negative from lemma 1


(131)
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So that the sign of −
(
fq +

(kY −fY )
UY Y

(UY q + U
Y ξ

d)
)
is identical to the sign of

σ̃−1

(
−ωη − 1

η
(1− τ) + Y

CY

C

1− g

(1 + Ω (1 + χ)Cχ)2
C0

)
+ (1− g)

(
ω + σ̃−1Y

CY

C

)
(1 + (χ+ 1)ΩCχ)C1

= σ̃−1

(
−ω η−1

η
(1− τ) + Y CY

C

1−g

(1+Ω(1+χ)Cχ)2

· 1
1+sd

(
−σ̃−1 (1 + Ω (1 + χ)Cχ)2 − sdσ̃−1 (1 + Ω (1 + χ)Cχ)− sd (1 + χ)χΩCχ

) )

+ (1− g)

(
ω + σ̃−1Y

CY

C

)
(1 + (χ+ 1)ΩCχ)

· 1

1 + sd

(
σ̃−1

(1 + (1 + χ) ΩCχ)
+ sd

σ̃−1 (1 + (1 + χ) ΩCχ)− (1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)3

)
= −σ̃−1ω

η − 1

η
(1− τ)

+ σ̃−1Y
CY

C

(
1− g

) 1

1 + sd

(
−σ̃−1 − sdσ̃−1 1

1 + Ω (1 + χ)Cχ − sd
(1 + χ)χΩCχ

(1 + Ω (1 + χ)Cχ)2

)
+ (1− g)

(
ω + σ̃−1Y

CY

C

)
1

1 + sd

(
σ̃−1 + sd

σ̃−1

(1 + (1 + χ) ΩCχ)
− sd

(1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)2

)
= ω

(
−σ̃−1 η−1

η
(1− τ)

+(1− g) 1
1+sd

(
σ̃−1 + sd σ̃−1

(1+(1+χ)ΩCχ)
− sd (1+χ)(1+ΩCχ)

(1+(1+χ)ΩCχ)2

) )

− 2σ̃−1Y
CY

C

(
1− g

) sd

1 + sd
(1 + χ)χΩCχ

(1 + Ω (1 + χ)Cχ)2

= −σ̃−1ω

(
η − 1

η
(1− τ)− 1− g

1 + sd

)
+ ω(1− g)

sd

1 + sd

(
σ̃−1

(1 + (1 + χ) ΩCχ)
− (1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)2

)
− 2σ̃−1Y

CY

C

(
1− g

) sd

1 + sd
(1 + χ)χΩCχ

(1 + Ω (1 + χ)Cχ)2

= −σ̃−1ω

(
η − 1

η
(1− τ)− 1− g

1 + sd

)
+ ωσ̃−1 (1− g)

1 + sd
sd

(1 + (1 + χ) ΩCχ)
− ω(1− g)

sd

1 + sd
(1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)2

− σ̃−1Y
CY

C

(
1− g

) sd

1 + sd
2

(1 + χ)χΩCχ

(1 + Ω (1 + χ)Cχ)2

= −σ̃−1ω

(
η − 1

η
(1− τ)− 1− g

1 + sd
− (1− g)

1 + sd
sd

(1 + (1 + χ) ΩCχ)

)
︸ ︷︷ ︸

=0 at the efficient output subsidy where UY =0 from (100)

− sd

1 + sd
ω(1− g)

(1 + χ) (1 + ΩCχ)

(1 + (1 + χ) ΩCχ)2︸ ︷︷ ︸
>0

− sd

1 + sd
σ̃−1Y

CY

C

(
1− g

)
2

(1 + χ)χΩCχ

(1 + Ω (1 + χ)Cχ)2︸ ︷︷ ︸
>0
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We thus have

−(fq +
(kY − fY )

UY Y

(UY q + U
Y ξ

d)) = 0 & κu = 0 for sd = 0

−(fq +
(kY − fY )

UY Y

(UY q + U
Y ξ

d)) < 0 & κu < 0 for sd > 0

−(fq +
(kY − fY )

UY Y

(UY q + U
Y ξ

d)) > 0 & κu > 0 for sd < 0

.

In the special case with sd = 0 we have from (106)

C0 = −σ̃−1 (1 + Ω (1 + χ)Cχ)2 , (132)

and for sd = 0 we also have, as show below

C1 =
σ̃−1

1 + (1 + χ) ΩCχ > 0, (133)
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so that

fq +
(kY − fY )

UY Y

(UY q + U
Y ξ

d)

= σ̃−1(1− τ)C
σ̃−1

Y C−σ̃−1 ΩCχ

1 + (χ+ 1)ΩCχ

1

qu
1

1− α̃

+
(1− τ)

(
ω + σ̃−1Y CY

C

)
−ω η−1

η
(1− τ)Y −1 +−σ̃−1CY

C

(
1− g

)
· 1

qu
1− g

1− α̃
C

σ̃−1

C−σ̃−1

ΩCχ σ̃−1

1 + (1 + χ) ΩCχ

= σ̃−1(1− τ)C
σ̃−1

C−σ̃−1

Y
1

qu
1

1− α̃

ΩCχ

1 + (1 + χ) ΩCχ

·

1 +

(
ω + σ̃−1Y CY

C

)
−ω η−1

η
(1− τ)− σ̃−1Y CY

C

(
1− g

) (1− g
)

=
−ω η−1

η
(1− τ)− σ̃−1Y CY

C

(
1− g

)
+
(
ω + σ̃−1Y CY

C

) (
1− g

)
−ω η−1

η
(1− τ)− σ̃−1Y CY

C

(
1− g

)
=

−ω
(

η−1
η
(1− τ) +

(
1− g

))
−ω η−1

η
(1− τ)− σ̃−1Y CY

C

(
1− g

)
= 0

where the last equality follows from the fact that −η−1
η
(1 − τ eff (0)) +

(
1− g

)
= 0

when the output subsidy is efficient, as has been assumed.

A.6 Proofs of Propositions 3 and 4

We start with the proof of proposition 3. From equation (21) follows that the dynam-
ics of q̂ut are to first order independent of policy choices and belief distortions (with
the latter being of first order), so that equations (61) and (72) jointly determine to
first order a unique path for {xt, πt}∞t=0. Since the dynamics of ∆t is to first order
independent of policy decisions and belief distortions, see (44), and since (33) and
(34) determine to first order Ft and Kt, given the first order solution for xt and πt,
this determines to first order the dynamics of {qut , Yt, Ft, Kt,∆t}∞t=0. Under the as-
sumed policy commitment, belief distortions thus affect the evolution of endogenous
variables at most to second order. The second (or higher) order effects of beliefs that
differ slightly from the worst-case beliefs implied by the upper bound dynamics can
be computed using the first order accurate paths for (which are already determined),
the considered deviations from the worst-case beliefs, and the second (or higher) or-
der approximations to equations (21) and (33)-(45). The interest rate required to
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support this outcome can be determined from equation (41), using the solution for
the other variables.

Next, we establish proposition 4. The problem of choosing worst-case beliefs under
a policy commitment to the target criterion (72) can be written as

min
{mt+1,qut ,Yt,Ft,Kt,∆t}∞t=0

E0

∞∑
t=0

βt



U(Yt,∆t, q
u
t ; ξt) + θβmt+1 logmt+1

+γt

(
h̃(∆t−1, Kt/Ft)−∆t

)
+Γ′

t[z(Yt, q
u
t , ξt) + αβmt+1Φ(Zt+1)− Zt]

+Ψt[ξ
d
t + β(1− δ)mt+1q

u
t+1 − qut ]

+βψt (mt+1 − 1)
+Υt

(
πt + ϕx (xt − xt−1) + ϕs (πt − Et−1πt) + ϕq(q̂

u
t − Et−1q̂

u
t )
)


(134)

+ αΓ′
−1Φ(Z0) + Ψ−1(1− δ)qu0 ,

where πt can be expressed as a function Ft and Kt using (36). It is clear, that the first
order conditions of this problem are satisfied by the upper bound dynamics under
the additional requirement that Υt = 0 at all times. To show that the upper bound
dynamics are indeed a local minimum to the worst case beliefs problem, we thus
only need to show that second order conditions are also satisfied at the upper bound
problem.

For any choice of {mt+1}∞t=0 near enough to
{
mub

t+1

}∞
t=0

proposition 3 established
that we have a locally unique solution for {qut , Yt, Ft, Kt,∆t}∞t=0. Since the first order
the dynamics of these variables are independent of belief distortions, the dynamics
of {qut , Yt, Ft, Kt,∆t}∞t=0 depend to second order at most linearly on the choice of
{mt+1}∞t=0. Therefore, to a second order approximation, all terms in (134) depend
only linearly on {mt+1}∞t=0, except for E0

∑∞
t=0 β

tθβmt+1 logmt+1, which is strictly
convex in the distortions. This implies that the second order conditions are indeed
satisfied at the upper bound solution and the associated worst-case belief distortions,
whenever monetary policy commits to the target criterion (72).
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A.7 Details of the Linear-Quadratic Approximation

We start by deriving the second-order approximation in equation (79):

E0Γ
′ (z(Yt, q

u
t , ξt) + αβmt+1Φ(Zt+1)− Zt)

= E0


Γ′

 zY Ỹt + zq(q
u
t − ξ

d

t ) + αβD(1)Z̃t+1 − Z̃t

+1
2
zY Y Ỹ

2
t + Ỹt

(
zY ξ ξ̃t + zY q ξ̃

d

t

) 
+1

2
Kαβc

(
F̂t+1 − K̂t+1

)2
+KαβΓ′D(1)m̃t+1

(
F̂t+1

K̂t+1

)


+ t.i.p.+O(3), (135)

where Γ′ = (Γ1,−Γ1) and where we used the fact that K times the Hessian matrix
of second partial derivatives of the function Γ′Φ(Zt+1) is of the form

c

(
1 −1
−1 1

)
,

with

c = Γ1

F

K

(
−(1− α)

α

η(1 + ω)

1 + ωη
−
(
(1− α)

α

)2
η(1 + ω)

1 + ωη

)
,

and c < 0 whenever steady state output falls short of its first best level, as then
Γ1 > 0 (see appendix A.2 in Adam and Woodford (2012) for further details).

A linear approximation to (36) delivers

F̂t+1 − K̂t+1 = − α

1− α
(1 + ωη)πt +O(2) (136)

Using this and
aΓ′D(1) = Γ′

we can write (135) as

E0Γ
′ (z(Yt, q

u
t , ξt) + αβmt+1Φ(Zt+1)− Zt)

=E0

 Γ′

 zY Ỹt + zq(q
u
t − ξ

d

t ) + βZ̃t+1 − Z̃t

+1
2
zY Y Ỹ

2
t + Ỹt

(
zY ξ ξ̃t + zY q ξ̃

d

t

) 
+1

2
Kαβc

(
α

1−α
(1 + ωη)

)2
π2
t+1 −KβΓ1

α
1−α

(1 + ωη) m̃t+1πt+1


+ t.i.p.+O(3)

=E0

 Γ′

 zY Ỹt + zq(q
u
t − ξ

d

t ) + βZ̃t+1 − Z̃t

+1
2
zY Y Ỹ

2
t + Ỹt

(
zY ξ ξ̃t + zY q ξ̃

d

t

) 
−βΓ1δ

π
2π

2
t+1 − βΓ1δ

π
1m̃t+1πt+1


+ t.i.p.+O(3), (137)
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where the last line uses the definitions

δπ1 = K
α

1− α
(1 + ωη) > 0

δπ2 =
1

2
F

α

1− α
η(1 + ω) (1 + ωη) > 0

and the fact that K = F at point around which we approximate. Multiplying by βt

and summing over all t ≥ 0 delivers

E0

∞∑
t=0

βtΓ′
(
βZ̃t+1 − Z̃t

)
= −Γ1F

(
F̂0 − K̂0

)
(138)

A second order approximation to (36) allows to express F̂t = logFt/F and K̂t =
logKt/K in terms of πt = logΠt:

F̂t − K̂t = − α

1− α
(1 + ωη)π0 −

1

2
α(1 + ωη)

(η − 1)

(1− α)2
(π0)

2 +O(3) (139)

so that

− Γ1F
(
F̂0 − K̂0

)
= −Γ1F

(
− α

1− α
(1 + ωη)π0 −

1

2
α(1 + ωη)

(η − 1)

(1− α)2
(π0)

2

)
+O(3)

= Γ1δ
π
1π0 + Γ1

1

2
F

α

1− α
(1 + ωη)

(η − 1)

1− α
(π0)

2 +O(3)

= Γ1δ
π
1π0 + Γ1δ

π
3 (π0)

2 +O(3), (140)

where

δπ3 =
1

2
F

α

1− α
(1 + ωη)

(η − 1)

1− α
,

and where the second to last equality uses the definition of δπ1 and the fact that
F = K in the steady state. Combining (137) with (138) and (140) delivers (79) in
the main text.
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Next, we derive (89):

αΓ′
−1Φ(Z0) + Ψ−1(1− δ)qu0

= α(1 + ı̃−1)Γ
′D(1)Z̃0 +

1

2
αcK

(
F̂0 − K̂0

)2
+ (1− δ)Ψ(qu0 − ξ

d

0)

+ t.i.p.+O(3)

= (1 + ı̃−1)Γ1K(F̂0 − K̂0) +
1

2
αcK

(
F̂0 − K̂0

)2
+ (1− δ)Ψ(qu0 − ξ

d

0)

+ t.i.p.+O(3)

= (1 + ı̃−1)Γ1K(− α

1− α
(1 + ωη)π0 −

1

2
α(1 + ωη)

(η − 1)

(1− α)2
(π0)

2)

+
1

2
αcK

(
− α

1− α
(1 + ωη)π0

)2

+ (1− δ)Ψ(qu0 − ξ
d

0)

+ t.i.p.+O(3)

= −(1 + ı̃−1)Γ1δ
π
1π0

−Γ1K
1

2

(
α(1 + ωη)

(η − 1)

(1− α)2
+ α

c

Γ1

(
α

1− α
(1 + ωη)

)2
)

︸ ︷︷ ︸
=Γ1(δ

π
2−δπ3 )

π2
0

+ (1− δ)Ψ(qu0 − ξ
d

0)

+ t.i.p.+O(3),

where the third equality uses (136) and (139).
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